Homework \#3 Due: Thursday, November 6
Some problems require plotting streamlines. You may use Matlab. Include any streamline that connects two stagnation points or that connects a stagnation point to infinity (if necessary, draw these by hand). Draw arrows on the streamlines to indicate the flow direction.

1. Consider inviscid incompressible flow with constant density $\rho_{0}=1$. Show that the pressure satisfies the Poisson equation $\Delta p=|S|^{2}-|D|^{2}$, where $\nabla u=D+S, D$ is the deformation matrix, S is the rotation matrix, and $|S|^{2},|D|^{2}$ denote the sum of squares of the matrix elements. (This is consistent with the results of problem 1 on hw2 showing that strain is a source of high pressure and vorticity is a source of low pressure.)
2. Find the deformation matrix D at $(x, y)=(0,1)$ induced by a point vortex of unit strength located at $(x, y)=(0,0)$. Plot some streamlines associated with D in a neighborhood of $(x, y)=(0,1)$. (This shows that a concentrated vortex induces strain in the far-field.)
3. Show that $g(r, \theta, \phi)=1 /(4 \pi r)$ is a fundamental solution of the Laplace equation on \mathbf{R}^{3}, i.e. $\Delta g=-\delta$, where (r, θ, ϕ) are spherical coordinates, and the Laplace operator is

$$
\Delta g=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial g}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial g}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} g}{\partial^{2} \phi} .
$$

Follow the same steps as the 2D case in class.
4. Given the complex potential $W(z)$, plot some streamlines of the flow.
a) $W(z)=\frac{1}{2 \pi} \log z$: point source
b) $W(z)=\frac{1}{2 \pi i} \log \left(\frac{z-i}{z+i}\right)+z / 4 \pi$: vortex pair (in a moving reference frame)
c) $W(z)=\frac{d}{d z}\left(\frac{1}{2 \pi i} \log z\right)$: vortex-dipole
d) $W(z)=\frac{d^{2}}{d z^{2}}\left(\frac{1}{2 \pi i} \log z\right)$: vortex-quadrupole
5. In class we saw that the complex potential $W(z)=U\left(z+R^{2} / z\right)$ describes flow past a circular cylinder, where R is the cylinder radius and U is the velocity at infinity. Suppose that a point vortex of strength Γ is placed in the flow at $z=z_{0}$, where $\left|z_{0}\right|>R$. Show that the condition of zero normal velocity on the boundary of the cylinder can be satisfied by placing a second point vortex of strength $-\Gamma$ inside the cylinder at $z=R^{2} / \overline{z_{0}}$. Plot some streamlines for the case $U=1, R=1, \Gamma=10, z_{0}=2+i$. (This illustrates the method of images, a technique for satisfying the boundary condition in potential flow.)

