Homework \#5 due: Tuesday, December 9

1. Plot the streamlines for the potential flow past the ellipse $4 x^{2}+y^{2}=1$ which approaches the uniform stream $(u, v)=(1,0)$ at infinity and has zero circulation around the ellipse. Use any method of your choice.
2. Consider the problem of unsteady incompressible viscous flow on the plane \mathbf{R}^{2} with initial vorticity $\omega(x, y, 0)=\delta(x, y)$, a delta-function of unit strength at the origin. Since the domain and initial condition are radially symmetric, the flow is assumed to be radially symmetric for $t>0$ as well, and by dimensional reasoning we may assume that $\omega(r, t)=(1 / t) f(\eta)$, where η is an appropriate nondimensional variable. Find the vorticity $\omega(r, t)$ and azimuthal velocity $v(r, t)$, and sketch their profiles for viscosity values $\nu=10^{-2}, 10^{-4}, 10^{-6}$ and times $t=10^{-1}, 1,10$.
3. Consider the two-point boundary value problem $\epsilon^{2} u^{\prime \prime}-u=x-1, u(0)=u(1)=0$. Find the exact solution and use the method of matched asymptotic expansions to find a uniform asymptotic approximation in the limit $\epsilon \rightarrow 0$. Plot the exact solution, inner solution, outer solution, and the uniform approximation for $\epsilon=0.4,0.3,0.2,0.1$ (four separate plots).
4. In class we derived the Rayleigh equation for inviscid linear stability of a parallel shear flow and applied it to analyze the stability of a layer of constant vorticity in free-space,

$$
U(y)=\left\{\begin{aligned}
-\omega_{0} d & \text { if } \quad y>d \\
-\omega_{0} y & \text { if }-d \leq y \leq d \\
\omega_{0} d & \text { if } \quad y<-d
\end{aligned}\right.
$$

where d is the width of the vorticity layer and ω_{0} is the vorticity magnitude. Suppose now that the flow is confined to a channel, $-H \leq y \leq H$, where $H>d$. Find the dispersion relation in this case and show that it reduces to the free-space dispersion relation in the limit $H \rightarrow \infty$ with d, ω_{0}, k fixed. Plot the dispersion relation ($k c / \omega_{0}$ vs. $k d$) for the cases $H=d, 2 d, 4 d, 8 d$ (four separate plots), indicating unstable modes with a solid line and stable modes with a dashed line. Is the channel flow more stable or less stable than the free-space flow?
5. (a) Show that $\mathrm{pv} \int_{-1}^{1} \frac{\sqrt{1-s^{2}}}{x-s} d s=\pi x$ for $-1<x<1$. Can you find two derivations?
(b) Consider a flat vortex sheet of finite length, initially on the interval $-1<x<1$, with vortex sheet strength $\sigma(x)=\sqrt{1-x^{2}}$. Find the circulation $\Gamma(x)$ associated with the initial data and use the Birkhoff-Rott integral to evaluate the initial velocity at a point on the sheet. How do you think the sheet evolves for $t>0$?

