MATH 654

Homework #5 due: Tuesday, December 9

1. Plot the streamlines for the potential flow past the ellipse $4x^2 + y^2 = 1$ which approaches the uniform stream (u, v) = (1, 0) at infinity and has zero circulation around the ellipse. Use any method of your choice.

2. Consider the problem of unsteady incompressible viscous flow on the plane \mathbb{R}^2 with initial vorticity $\omega(x, y, 0) = \delta(x, y)$, a delta-function of unit strength at the origin. Since the domain and initial condition are radially symmetric, the flow is assumed to be radially symmetric for t > 0 as well, and by dimensional reasoning we may assume that $\omega(r, t) = (1/t)f(\eta)$, where η is an appropriate nondimensional variable. Find the vorticity $\omega(r, t)$ and azimuthal velocity v(r, t), and sketch their profiles for viscosity values $\nu = 10^{-2}, 10^{-4}, 10^{-6}$ and times $t = 10^{-1}, 1, 10$.

3. Consider the two-point boundary value problem $\epsilon^2 u'' - u = x - 1$, u(0) = u(1) = 0. Find the exact solution and use the method of matched asymptotic expansions to find a uniform asymptotic approximation in the limit $\epsilon \to 0$. Plot the exact solution, inner solution, outer solution, and the uniform approximation for $\epsilon = 0.4, 0.3, 0.2, 0.1$ (four separate plots).

4. In class we derived the Rayleigh equation for inviscid linear stability of a parallel shear flow and applied it to analyze the stability of a layer of constant vorticity in free-space,

$$U(y) = \begin{cases} -\omega_0 d & \text{if } y > d, \\ -\omega_0 y & \text{if } -d \le y \le d, \\ \omega_0 d & \text{if } y < -d, \end{cases}$$

where d is the width of the vorticity layer and ω_0 is the vorticity magnitude. Suppose now that the flow is confined to a channel, $-H \leq y \leq H$, where H > d. Find the dispersion relation in this case and show that it reduces to the free-space dispersion relation in the limit $H \to \infty$ with d, ω_0, k fixed. Plot the dispersion relation $(kc/\omega_0 \text{ vs. } kd)$ for the cases H = d, 2d, 4d, 8d(four separate plots), indicating unstable modes with a solid line and stable modes with a dashed line. Is the channel flow more stable or less stable than the free-space flow?

5. (a) Show that $\operatorname{pv} \int_{-1}^{1} \frac{\sqrt{1-s^2}}{x-s} ds = \pi x$ for -1 < x < 1. Can you find two derivations?

(b) Consider a flat vortex sheet of finite length, initially on the interval -1 < x < 1, with vortex sheet strength $\sigma(x) = \sqrt{1 - x^2}$. Find the circulation $\Gamma(x)$ associated with the initial data and use the Birkhoff-Rott integral to evaluate the initial velocity at a point on the sheet. How do you think the sheet evolves for t > 0?