
Math 655 Topics in Fluid Dynamics - Hydrodynamic Stability Winter 2004

hw#3 , due: Thursday, April 1

1. Show that the z-component of vorticity in polar coordinates is ωz =
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Problems 2− 5 are from chapter 3 of Drazin & Reid

2. Oscillations of a swirl flow in a cylinder. The velocity field (ur, uθ, uz) = (0, rΩ0, 0)
defines an inviscid equilibrium swirl flow with constant angular velocity Ω0 in a cylin-
der of radius R0. In class we showed that the pressure perturbation p(r) satisfies the
equation (D∗D− (n2/r2))p= k2(1+ (4Ω2

0
/γ2))p, where n and k are the azimuthal and

axial wavenumbers, γ = s+ inΩ0, and s is the growth rate. The boundary conditions
are that p(r) has a finite value at r =0 and γDp+ (2inΩ0/r)p= 0 at r = R0. Show
that s= ± 2iΩ0/(1 + α2/a2)1/2 − in, where a= k/R0 and α is any root of the equa-
tion αJ ′

n(α)±n(1 + α2/a2)1/2Jn(α) = 0. Hence the flow is marginally stable and imag(s)
gives the oscillation frequency of the normal mode. Show that when n= 0, this becomes
s= ± 2iΩ0/(1 + j2

1,m/a2), where j1,m is the mth positive zero of J1(α).

3. Rayleigh’s theorem for swirl flow. Consider a general inviscid swirl flow with velocity
(ur, uθ, uz) = (0, V (r), 0) between two cylinders, R1 ≤ r≤R2. In class we showed that
a 2D perturbation satisfies the equation (s + inΩ)(D∗D−n2/r2)φ− inr−1(DD∗V )φ= 0,
where φ= ru and u = u(r) is the radial perturbation velocity. Multiply the equation by
rφ∗/(s + inΩ) (where φ∗ is the complex conjugate of φ), integrate from r =R1 to R2,
apply the boundary conditions φ(R1) =φ(R2) = 0, take the imaginary part of the result,

and hence derive the relation real(s) ·n
∫ R2

R1

(

(DD∗V )|φ|2/|s + inΩ|2
)

r dr =0. This yields
Rayleigh’s theorem for 2D perturbations of a swirl flow, i.e. a necessary condition for
inviscid instability is that the basic vorticity profile should have a local maximum or local
minimum somewhere in the flow domain.

4. Oscillations of a columnar vortex (Kelvin modes). Consider the basic inviscid swirl
flow given by Ω(r) = Ω0 for r <R0, Ω(r) = Ω0(R0/r)2 for r > R0. Show that the flow
has constant vorticity for r < R0 and is irrotational for r > R0. Show that the flow is
marginally stable with respect to both axisymmetric and 2D perturbations, and that in
the latter case the oscillation frequency is imag(s) =−Ω0(n−1). Assume that the equation
of the boundary of the perturbed vortex is r = R0(1 + ε exp(st + inθ)) and show that the
perturbation represents a sequence of waves traveling around the vortex with angular
velocity ω(n) =Ω0(1−n−1). Note that ω(1) = 0 and |ω(n)|< |Ω0| for n ≥ 2; explain what
this means geometrically.

5. Instability of a cylindrical vortex sheet (Rotunno). Consider the basic inviscid swirl
flow given by Ω(r) = 0 for r <R0, Ω(r) = Ω0(R0/r)2 for r > R0, which represents a
cylindrical vortex sheet of radius R0. Show that the flow is marginally stable with respect
to axisymmetric perturbations, but unstable with respect to 2D perturbations with growth
rate s= ± (Ω0/2)((n2 − 2n)1/2 − in).


