hw#3, due: Thursday, April 1 1. Show that the z-component of vorticity in polar coordinates is $\omega_z = \frac{\partial u_\theta}{\partial r} + \frac{u_\theta}{\partial r} - \frac{1}{r} \frac{\partial u_r}{\partial \theta}$. Problems 2-5 are from chapter 3 of Drazin & Reid - 2. Oscillations of a swirl flow in a cylinder. The velocity field $(u_r, u_\theta, u_z) = (0, r\Omega_0, 0)$ defines an inviscid equilibrium swirl flow with constant angular velocity Ω_0 in a cylinder of radius R_0 . In class we showed that the pressure perturbation p(r) satisfies the equation $(D_*D (n^2/r^2))p = k^2(1 + (4\Omega_0^2/\gamma^2))p$, where n and k are the azimuthal and axial wavenumbers, $\gamma = s + in\Omega_0$, and s is the growth rate. The boundary conditions are that p(r) has a finite value at r = 0 and $\gamma Dp + (2in\Omega_0/r)p = 0$ at $r = R_0$. Show that $s = \pm 2i\Omega_0/(1 + \alpha^2/a^2)^{1/2} in$, where $a = k/R_0$ and α is any root of the equation $\alpha J'_n(\alpha) \pm n(1 + \alpha^2/a^2)^{1/2} J_n(\alpha) = 0$. Hence the flow is marginally stable and imag(s) gives the oscillation frequency of the normal mode. Show that when n = 0, this becomes $s = \pm 2i\Omega_0/(1 + j_{1,m}^2/a^2)$, where $j_{1,m}$ is the mth positive zero of $J_1(\alpha)$. - 3. Rayleigh's theorem for swirl flow. Consider a general inviscid swirl flow with velocity $(u_r, u_\theta, u_z) = (0, V(r), 0)$ between two cylinders, $R_1 \le r \le R_2$. In class we showed that a 2D perturbation satisfies the equation $(s + in\Omega)(D_*D n^2/r^2)\phi inr^{-1}(DD_*V)\phi = 0$, where $\phi = ru$ and u = u(r) is the radial perturbation velocity. Multiply the equation by $r\phi^*/(s + in\Omega)$ (where ϕ^* is the complex conjugate of ϕ), integrate from $r = R_1$ to R_2 , apply the boundary conditions $\phi(R_1) = \phi(R_2) = 0$, take the imaginary part of the result, and hence derive the relation $real(s) \cdot n \int_{R_1}^{R_2} ((DD_*V)|\phi|^2/|s + in\Omega|^2) r dr = 0$. This yields Rayleigh's theorem for 2D perturbations of a swirl flow, i.e. a necessary condition for inviscid instability is that the basic vorticity profile should have a local maximum or local minimum somewhere in the flow domain. - 4. Oscillations of a columnar vortex (Kelvin modes). Consider the basic inviscid swirl flow given by $\Omega(r) = \Omega_0$ for $r < R_0$, $\Omega(r) = \Omega_0(R_0/r)^2$ for $r > R_0$. Show that the flow has constant vorticity for $r < R_0$ and is irrotational for $r > R_0$. Show that the flow is marginally stable with respect to both axisymmetric and 2D perturbations, and that in the latter case the oscillation frequency is $\operatorname{imag}(s) = -\Omega_0(n-1)$. Assume that the equation of the boundary of the perturbed vortex is $r = R_0(1 + \epsilon \exp(st + in\theta))$ and show that the perturbation represents a sequence of waves traveling around the vortex with angular velocity $\omega(n) = \Omega_0(1 n^{-1})$. Note that $\omega(1) = 0$ and $|\omega(n)| < |\Omega_0|$ for $n \ge 2$; explain what this means geometrically. - 5. Instability of a cylindrical vortex sheet (Rotunno). Consider the basic inviscid swirl flow given by $\Omega(r) = 0$ for $r < R_0$, $\Omega(r) = \Omega_0 (R_0/r)^2$ for $r > R_0$, which represents a cylindrical vortex sheet of radius R_0 . Show that the flow is marginally stable with respect to axisymmetric perturbations, but unstable with respect to 2D perturbations with growth rate $s = \pm (\Omega_0/2)((n^2 2n)^{1/2} in)$.