hw#1 due: Thursday, January 27 in class

- 0. (optional) Give a brief description of your academic background and research interests. If you work in a lab or research group, please give your supervisor's name and describe your project. One paragraph is fine.
- 1. Compute the DFT of the following vectors. Do this by hand (though you may check your answers using Matlab).

a)
$$v = (1, 0, 0, 0)^T$$
 b) $v = (1, 1, 1, 1)^T$ c) $v = (1, 0, 1, 0)^T$ d) $v = (1, -i, -1, i)^T$

- 2. In class we considered the vector $v = (\sin 2\pi k t_j)^T$, where $t_j = j/N$, j = 0: N-1, with N = 64, k = 16. We saw that the DFT is zero everywhere except for two entries, $|\hat{v}_{16}| = |\hat{v}_{48}| = 4$. Now consider the case when k is not an integer, for example take k = 16.5. Plot the vector v and the absolute value of the entries of \hat{v} ; follow the format on page 3 of the lecture notes. How do the results compare with the case k = 16? What is similar, what is different? Can you explain the results?
- 3. The Danielson-Lanczos lemma for the case M=2 says that $F_4=\frac{1}{\sqrt{2}}B_4(F_2\oplus F_2)P_4$. Write out each factor explicitly and check the equality.
- 4. In class we considered the Danielson-Lanczos lemma for the case N=2M.
- a) Write down a version for the case N = 3M.
- b) Let N=6 and write down the matrix F_6 . Note that in this case there are two factorizations, $6=2\cdot 3$ (as in class) and $6=3\cdot 2$ (as in part (a)). Write down both factorizations of F_6 . In your answers, all matrix elements should be from the set $\{0,1,\omega,\omega^2,\omega^3,\omega^4,\omega^5\}$, where $\omega=e^{-2\pi i/6}$ and $\omega^6=1$.
- 5. Express n = 2022 in binary form. Find the periodic shift n' and the bit reversed index n''. Give the answers in binary form and decimal form.
- 6. The discrete sine transform (DST) for $v \in \mathbb{C}^{N-1}$ is $\widehat{v}_n = \sqrt{\frac{2}{N}} \sum_{j=1}^{N-1} v_j \sin \frac{\pi n j}{N}$, for n = 1: N-1.

Find the formula for the inverse DST. (hint: to get started consider the case N=2)

- 7. Plot the balanced and unbalanced trigonometric interpolants of the following functions v(x), for $0 \le x \le 1$, as in class. Take N = 4, 8, 16, 32.
- a) v(x) = 4x(1-x)
- b) $v(x) = \sin \pi x$
- c) $v(x) = \sin 2\pi x$

Discuss the results. Do the interpolants converge uniformly to v(x) as N increases?