MATH 671 Particle Methods in Scientific Computing Winter 2022
hw\#2 due: Thursday, February 17
Typewriter font indicates a Matlab command, e.g. fft. It is not necessary to submit your code unless specifically requested.

1. The logistic map, a model for population dynamics, is defined by $x_{n+1}=a x_{n}\left(1-x_{n}\right)$, where a is a parameter and x_{0} is given. Let $N=128$ and compute the iterates of the logistic map x_{n} for $n=0: N-1$, starting from the value $x_{0}=\frac{1}{2}$, and let $x=\left(x_{0}, \ldots, x_{N-1}\right)^{T}$ be the resulting time series. Compute the DFT of the time series, $\widehat{x}=F_{N} x$, using fft. Do this for six parameter values, $a=2.75,3.25,3.5,3.555,3.5665,3.57$. For each value of a, plot the time series x_{n} using plot, and also plot the spectral amplitudes $\left|\widehat{x}_{n}\right|$ using semilogy, both as functions of n. In the case of the time series, just plot a symbol for each x_{n} (don't connect the symbols by lines). Present the plots on one side of a single sheet (hint: present the six time series in one plot and the six spectral amplitudes in another plot; each of these plots can be a 3×2 matrix created using subplot ($3,2, i$), where $i=1: 6$ corresponds to the values of a). Print the value of a in the title of each subplot. Discuss the results.
2. Write a DFT code in Matlab that computes $\widehat{v}=F_{N} v$ by direct summation. To be consistent with Matlab, omit the prefactor $1 / \sqrt{N}$ that we used in class. Apply your code and Matlab's fft to the vector $v=\left(1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{N}\right)^{T}$, for $N=2^{q}, q=1: 12$. Plot the run time versus N using loglog for your DFT and Matlab's fft. Use tic, toc to compute the run time. Also make a table with the following format; column 1: q, column 2: max-norm difference between your DFT and Matlab's FFT (use format shorte). Discuss the results; what is expected or unexpected? Can you offer a plausible reason for anything unexpected?
3. Consider the BVP from class, $-\phi^{\prime \prime}+\sigma^{2} \phi=f$, on $0 \leq x \leq 1$ with periodic boundary conditions, $\phi(0)=\phi(1), \phi^{\prime}(0)=\phi^{\prime}(1)$. We showed that the eigenvalues of the finite-difference matrix are $\lambda_{n}=\sigma^{2}+\frac{4 \sin ^{2}(\pi n h)}{h^{2}}$ for $n=0: N-1$ with $h=1 / N$. We also showed that the eigenvalues of a general $N \times N$ circulant matrix are given by $\lambda_{n}=\sqrt{N} \widehat{c}_{n}$, for some vector c. Since the finite-difference matrix is circulant, show explicitly that the two expressions for λ_{n} are equivalent.
4. Consider the BVP from class, $-\phi^{\prime \prime}+\sigma^{2} \phi=f$ on $0 \leq x \leq 1$ with periodic boundary conditions, $\phi(0)=\phi(1), \phi^{\prime}(0)=\phi^{\prime}(1)$. Let $\sigma=2$ and consider two cases, $f_{1}(x)=x, f_{2}(x)=\sin \pi x$. In each case find the exact solution $\phi(x)$ (make sure your result satisfies the differential equation and boundary conditions). Then solve the problem numerically by the three methods discussed in class: (1) finite-difference/FFT, (2) pseudospectral, (3) Green's function/Riemann sum. All three methods have the form $u=F_{N}^{*} D F_{N} f$, where D is a diagonal matrix; use Matlab's fft and ifft, but note that in case (3) the relation $D=\operatorname{diag}\left(\sqrt{N} \widehat{c}_{n}\right)$, which was derived in class, should be modified to be consistent with Matlab's fft. Take $N=2^{q}$ for $q=2: 7$. Plot the exact solution and numerical solution using subplot in a 3×2 matrix corresponding to the 6 values of q. Include both boundary points in the plots. For each method present a table with the following format; column 1: h, column 2: $\max \left|\phi_{n}-u_{n}\right|$, column 3: max $\left|\phi_{n}-u_{n}\right| / h$, column 4: $\max \left|\phi_{n}-u_{n}\right| / h^{2}$. Discuss the results; what is expected or unexpected? Can you offer a plausible reason for anything unexpected?
5. Find the eigenvalues and eigenvectors of the matrix $A=\left(\begin{array}{ccc}a & c & b \\ b & a & c \\ c & b & a\end{array}\right)$.
