
MATH 671 Particle Methods in Scientific Computing Winter 2022

hw#3 due: Thursday, March 17

1. Let ρ(x) be a charge density on 0 ≤ x ≤ 1 satisfying charge neutrality,
∫ 1

0
ρ(x)dx = 0.

In class we derived an integral expression for the associated potential function in the case of
periodic boundary conditions, φ(x) =

∫ 1

0
(g(x, y)− xy)ρ(y)dy, where g(x, y) = − 1

2
|x− y| is the

free-space Green’s function in 1d. Verify that the integral expression for φ satisfies the boundary
conditions, φ(0) = φ(1), φx(0) = φx(1), and the Poisson equation, −φxx = ρ; show this directly,
i.e. don’t use −gxx = δ.

2. Show that

∫ 1

0

(−gx(x, y) + y)dy = x, where g(x, y) = −1
2
sign(x− y). (page 28 of the notes)

3. The convolution of two functions f, g is defined by (f ∗ g)(x) =
∫∞
−∞ f(x− s)g(s)ds.

a) Let W0 be the nearest-mesh-point weight function, and let W1 be the cloud-in-cell weight
function (defined on pages 25-26 of the notes). Show that W1 = W0 ∗W0; take ∆x = 1 for
simplicity.

b) Find W2 = W1 ∗W0.

c) Show that
∫∞
−∞Wi(x)dx = 1 for i = 0, 1, 2.

d) Plot W0,W1,W2 in the same plot.

4. Download the file m671b Vlasov-Poisson PIC hw3.m from the course site. The file imple-
ments the PIC method for the 1d Vlasov-Poisson equations with periodic boundary conditions
for initial condition corresponding to the two-stream instability (two cold electron beams moving
in opposite directions with a perturbation in charge density). The code however is missing the
Poisson solver; your task is to fill in those lines (use either the FFT solver or the elimination
solver discussed in class); run the code and present plots of the particles in phase space at
time t = 0, 0.25, 0.5, 0.75, 1 (all on one page using subplot is fine). You may experiment with
different numerical parameters, perturbations, and weight functions, but the results you submit
should use the settings in the downloaded file. Also fill in the blanks in the following text.

At early times the beams propagate , but the perturbation causes some
particles to and others to . Eventually vortices form in
phase space in which some particles change .

5. The stream function of a vortex-blob is defined by ψδ(x, y) = − 1
2π

ln(x2 + y2 + δ2)1/2.

a) Find the associated vorticity ωδ(x, y) = −∇2ψδ(x, y) and show that
∫
R2 ωδ(x, y) dx dy = 1 for

all δ > 0. Plot wδ(x, 0) for −4 ≤ x ≤ 4 with δ = 0.2, 0.1, 0.05 all on the same plot. What can
you say about ωδ(x, 0) in the limit δ → 0?

b) Solve the vortex-blob equations with initial data xj(0) = cos θj, yj(0) = 0, θj = (−1 + j
N+1

)π,
and strength Γj = π

N+1
cos θj for j = 1 : N . See page 33 of the notes for the equations. Take

N = 200, δ= 2 · 10−1. Plot the location of the vortex-blobs at t = 0, 1, 2, 4, 8, 16 using square
axes. Use direct summation to evaluate the right hand side of the differential equations. Use
any time-stepping scheme you like, but make sure the results are correct to plotting accuracy.
Discuss the results. (Note: this is a 2d model for an aircraft wake; accounting for 3d effects is
an important research problem).

6. Show that g(x, y, z) = 1
4π

(x2 + y2 + z2)−1/2 is the Green’s function for the Laplace operator
in 3d, i.e. −∇2g = δ. Follow the steps for the 2d case on pages 31-32 of the notes.


