Notes on using MATLAB

MATLAB is an interactive program for numerical methods, with graphing capability. These notes describe some useful functions and syntax. The following sites have more extensive tutorials:

http://www.math.mtu.edu/~msgocken/intro/intro.html

http://www.engin.umich.edu/group/ctm/basic/basic.html_Matlab.html

http://math.math.unm.edu/~nitsche/courses/375/handouts/mattutorial.pdf

http://www.math.unh.edu/~mathadm/tutorial/software/matlab/

http://www.mines.utah.edu/gg computer seminar/matlab/matlab.html

The command for starting MATLAB depends on your system configuration (you can often start MATLAB on UNIX systems by typing **matlab**). To obtain help from within MATLAB, type **help**; this provides a list of available functions. Supply the function name for information about a particular item (e.g. **help plot**). For demonstration of a few commands, type **demo**. To terminate a MATLAB session, type **quit**.

Formats for printing numbers.

 format short
 3.1416

 format short e
 3.1416e+00

 format long
 3.14159265358979

 format long e
 3.141592653589793e+00

There is only one data type in MATLAB, complex matrices. Vectors and scalars are special cases. Matrices can be created as follows, $\mathbf{A} = [\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}]$. This creates a 2×4 matrix A whose first row is (1,1,1,1) and whose second row is (1,2,3,4). The dimensions of a matrix A can be found by typing size A.

To create a vector, type $\mathbf{x} = [1, 2, 3, 4]$. The system responds with:

 $x = 1 \quad 2 \quad 3 \quad 4$

The commas are optional, $\mathbf{x} = [1 \ 2 \ 3 \ 4]$ gives the same result. If an assignment statement ends with a semicolon, then the result is not displayed. Thus if you type $\mathbf{x} = [1 \ 2 \ 3 \ 4]$;, nothing will be displayed. You can then type \mathbf{x} to display the vector. The length of a vector \mathbf{x} is obtained from $\text{length}(\mathbf{x})$. Indices for vectors and matrices must be positive integers. Thus, A(1.5,2) and x(0) are not allowed. There is a special syntax for creating a vector whose components differ by a fixed increment. Thus, $\mathbf{x} = [0 \ .2 \ .4 \ .6 \ .8 \ 1]$ can be created by typing $\mathbf{x} = 0:.2:1$.

Built-in functions.

pi	3.1415
zeros(3,3)	3×3 matrix of zeros
eye(5)	5×5 identity matrix
ones(10)	vector of length 10 with all entries $=1$
abs(x)	absolute value
$\operatorname{sqrt}(\mathbf{x})$	square root, e.g. i=sqrt(-1)

real(z), imag(z) conj(z) atan2(y,x) sin(x), cos(x) sinh(x), cosh(x) exp(x) log(x) gamma(n) bessel (a,x)	real, imaginary parts of a complex number complex conjugate polar angle of the complex number $x + iy$ trig functions hyperbolic functions exponential function natural logarithm gamma function = (n-1)! bessel function of order a at x
Example of a loop. for $i = 1:4$ x(i) = i; end	
Example of a condition if $a==0$; x = a+1; elseif $a < 0$; x = a-1; else; x = a+1; end	onal.
Plotting. plot(x,y) grid title('text') xlabel('text') axis([0, 1, -2, 2]) hold on hold off clg mesh contour subplot	linear plot, uses defaults limits, x and y are vectors draw grid lines on graphics screen prints a title for the plot prints a label for the x-axis prints a label for the y-axis overides default limits for plotting superimpose all subsequent plots turns off a previous hold on clear graphics screen 3-d plot; type help mesh for details contour plot; type help contour for details several plots in a window; type help subplot for details
Example. To plot a C	aussian function, type the following lines:

x = -3...01:3;y=exp(-x.*x);plot(x,y)

 $\begin{array}{ll} \mbox{Matrix functions.} & \\ \mathbf{x} = \mathbf{A} \backslash \mathbf{b} & \mbox{gives the solution of Ax=b} \\ [\mathbf{l}, \mathbf{u}] = \mathbf{lu}(\mathbf{A}) & \mbox{LU decomposition of A} \\ [\mathbf{v}, \mathbf{d}] = \mathbf{eig}(\mathbf{A}) & \mbox{eigenvalues in d, eigenvectors in v} \end{array}$

$[\mathrm{u,s,v}] = \mathrm{svd}(\mathrm{A})$	singular value decomposition
chol(A)	Cholesky factorization
inv(A)	inverse of a square matrix
$\operatorname{rank}(\mathbf{A})$	matrix rank
$\operatorname{cond}(A)$	condition number
*, +	matrix product and sum
.*, .+	element by element product and sum
,	transpose, e.g. A'
^	power, e.g. A $\hat{}$ 2
•	element by element power, e.g. A. ²

m-files.

An m-file is a file that contains a sequence of MATLAB commands. Some m-files are built into MATLAB. A user can create a new m-file using an editor. For example, an m-file called fourier.m could be created containing the lines:

```
%
% Plot a trigonometric function.
%
x = 0:.01:1;
y=sin(2*pi*x);
plot(x,y)
```

In this case, typing **fourier** would produce a plot of a sine curve. (Note: % in an m-file denotes a comment line.) In order to pass arguments to and from an m-file, the word "function" must be on the first line. For example:

```
function [x,y] = fourier(n,xmax)
%
% Plot a trigonometric function.
%
x=0:.01:xmax;
y=sin(n*pi*x);
plot(x,y)
```

Typing $[\mathbf{x}, \mathbf{y}] = \mathbf{fourier}(2, 7)$; plots a sine curve. After execution, the vectors \mathbf{x} and \mathbf{y} are available for further calculations.

Useful commands.

type fft	lists the contents of the m-file fft.m
save A	stores a matrix in a file called A.mat
save	saves all variables in a file called matlab.mat
load temp	retrieves all the variables from file temp.mat
\mathbf{print}	prints the current graphics window