Notes on using MATLAB

MATLAB is an interactive program for numerical methods, with graphing capability. These notes describe some useful functions and syntax. The following sites have more extensive tutorials:
http://www.math.mtu.edu/~msgocken/intro/intro.html
http://www.engin.umich.edu/group/ctm/basic/basic.html_Matlab.html
http://math.math.unm.edu/~nitsche/courses/375/handouts/mattutorial.pdf
http://www.math.unh.edu/~mathadm/tutorial/software/matlab/
http://www.mines.utah.edu/gg_computer_seminar/matlab/matlab.html
The command for starting MATLAB depends on your system configuration (you can often start MATLAB on UNIX systems by typing matlab). To obtain help from within MATLAB, type help; this provides a list of available functions. Supply the function name for information about a particular item (e.g. help plot). For demonstration of a few commands, type demo. To terminate a MATLAB session, type quit.

Formats for printing numbers.
format short $\quad 3.1416$
format short e 3.1416e+00
format long $\quad 3.14159265358979$
format long e $3.141592653589793 \mathrm{e}+00$
There is only one data type in MATLAB, complex matrices. Vectors and scalars are special cases. Matrices can be created as follows, $\mathbf{A}=[\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{3}, 4]$. This creates a 2×4 matrix A whose first row is $(1,1,1,1)$ and whose second row is $(1,2,3,4)$. The dimensions of a matrix A can be found by typing size \mathbf{A}.

To create a vector, type $\mathbf{x}=[\mathbf{1 , 2 , 3 , 4}]$. The system responds with:

$$
\begin{aligned}
& \mathrm{x}=\mathrm{l} \\
& \\
& \\
& \\
& 1
\end{aligned} \begin{array}{llll}
& 2 & 3 & 4
\end{array}
$$

The commas are optional, $\mathbf{x}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$] gives the same result. If an assignment statement ends with a semicolon, then the result is not displayed. Thus if you type $x=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$;, nothing will be displayed. You can then type \mathbf{x} to display the vector. The length of a vector x is obtained from length(x). Indices for vectors and matrices must be positive integers. Thus, $\mathrm{A}(1.5,2)$ and $\mathrm{x}(0)$ are not allowed. There is a special syntax for creating a
 created by typing $\mathrm{x}=\mathbf{0 : . 2 : 1}$.

Built-in functions.

pi	$3.1415 \ldots$.
zeros(3,3)	3×3 matrix of zeros
eye(5)	5×5 identity matrix
ones(10)	vector of length 10 with all entries $=1$
abs(x)	absolute value
$\operatorname{sqrt(x)}$	square root, e.g. $\mathbf{i}=$ sqrt(-1)

```
real(z), imag(z) real, imaginary parts of a complex number
conj(z) complex conjugate
atan2(y,x) polar angle of the complex number x + iy
sin}(\textrm{x}),\boldsymbol{\operatorname{cos}(x)}\quad\mathrm{ trig functions
\operatorname{sinh}(x),\operatorname{cosh(x) hyperbolic functions}
exp(x)
exponential function
log(x) natural logarithm
gamma(n) gamma function = (n-1)!
bessel (a,x) bessel function of order a at x
```

Example of a loop.
for $\mathrm{i}=1: 4$
$\mathrm{x}(\mathrm{i})=\mathrm{i}$;
end

Example of a conditional.

```
    if a==0;
        x =a+1;
    elseif a < 0;
        x = a-1;
    else;
        x =a+1;
    end
```

Plotting.
grid
title('text')
xlabel('text')
ylabel('text')
axis([0, 1, -2, 2])
hold on
hold off
clg
mesh
contour
subplot
$\operatorname{plot}(\mathbf{x}, \mathbf{y}) \quad$ linear plot, uses defaults limits, \mathbf{x} and \mathbf{y} are vectors
draw grid lines on graphics screen
prints a title for the plot
prints a label for the x -axis
prints a label for the y -axis
overides default limits for plotting
linear plot, uses defaults limits, \mathbf{x} and \mathbf{y} are vectors draw grid lines on graphics screen prints a title for the plot
prints a label for the x -axis prints a label for the y -axis overides default limits for plotting superimpose all subsequent plots
turns off a previous hold on clear graphics screen 3-d plot; type help mesh for details contour plot; type help contour for details several plots in a window; type help subplot for details

Example. To plot a Gaussian function, type the following lines:

```
x = -3.:.01:3;
y=exp(-x.*x);
plot(x,y)
```

Matrix functions.

$\mathbf{x}=\mathbf{A} \backslash \mathbf{b}$	gives the solution of $A x=b$
$[1, \mathbf{u}]=\operatorname{lu}(\mathbf{A})$	LU decomposition of A
$[\mathbf{v}, \mathbf{d}]=\operatorname{eig}(\mathbf{A})$	eigenvalues in d, eigenvectors in v

$[\mathbf{u}, \mathbf{s}, \mathbf{v}]=\mathbf{s v d}(\mathbf{A}) \quad$ singular value decomposition
$\operatorname{chol}(A) \quad$ Cholesky factorization
$\operatorname{inv}(A) \quad$ inverse of a square matrix
$\operatorname{rank}(\mathrm{A}) \quad$ matrix rank
cond(A) condition number
*,$+\quad$ matrix product and sum
.$*$ element by element product and sum
,
-
.^ element by element power, e.g. A.^ $\mathbf{2}$
m-files.
An m-file is a file that contains a sequence of MATLAB commands. Some m-files are built into MATLAB. A user can create a new m-file using an editor. For example, an m -file called fourier.m could be created containing the lines:

```
%
% Plot a trigonometric function.
%
x = 0..01:1;
y=sin(2* pi*x);
plot(x,y)
```

In this case, typing fourier would produce a plot of a sine curve. (Note: \% in an m-file denotes a comment line.) In order to pass arguments to and from an m-file, the word "function" must be on the first line. For example:

```
function [x,y] = fourier(n,xmax)
%
% Plot a trigonometric function.
%
x=0:.01:xmax;
y=sin(n*pi*x);
plot(x,y)
```

Typing $[\mathbf{x}, \mathbf{y}]=$ fourier $(\mathbf{2}, \mathbf{7})$; plots a sine curve. After execution, the vectors \mathbf{x} and \mathbf{y} are available for further calculations.

Useful commands.

type fft	lists the contents of the m-file fft.m
save A	stores a matrix in a file called A.mat
save	saves all variables in a file called matlab.mat
load temp	retrieves all the variables from file temp.mat print
prints the current graphics window	

