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1. Introduction 

Coherent vortex structures occur in many types of fluid flow including mixing 
layers, jets and wakes. A vortex sheet is a mathematical model for such structures, 
in which the shear layer is approximated by a surface across which the tangential 
fluid velocity has a jump discontinuity. Vortex sheet motion belongs to the field of 
vortex dynamics, one of the main approaches to understanding fluid turbulence. 

Careful numerical experiments have helped advance the mathematical study 
of vortex sheets. Difficulties arise in computing vortex sheet motion due to 
short wavelength instability, singularity formation, and spiral roll-up. This paper 
reviews the problem of computing vortex sheet motion and presents several 
applications. See [2] for a sample of other vortex models and numerical methods. 

2. Analytic Evolution and Singularity Formation 

A vortex sheet is defined by a curve z(T,t) in the complex plane, where F is the 
circulation parameter and t is time. The evolution equation is [4,32], 

3 _ /-CO -j 

Tt(r,t) = J^K(z(r,t)-z(r,t))dr , K(Z) = — . (i) 

The Cauchy principal value of the integral is taken. Equation (1) says that a 
point on the vortex sheet moves with the average of the two limiting velocities, 
as the curve is approached from either side. 

A flat vortex sheet of constant strength z(T,t) = T is an equilibrium solution 
of (1). Linear stability analysis shows that short wavelength perturbations can 
grow arbitrarily fast (Kelvin-Helmholtz instability). This means that the linearized 
initial value problem is ill-posed in the sense of Hadamard. However, Sulem et 
al. [35] have proven that if the initial perturbation is an analytic function of F, 
then the solution of (1) remains analytic for a positive time interval. 

Birkhoff conjectured that instability and nonlinearity would cause a singularity 
to form during the vortex sheet's evolution [4, 5]. An asymptotic analysis by 
Moore [24, 26] supports this conjecture, indicating that with initial perturbation 
amplitude e, a F ^ 2 branch point forms in the vortex sheet at a finite critical 
time t = tc(c). Meiron et al. [23] analyzed the Taylor series coefficients of z(T,t) 
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with respect to the time variable and obtained results consistent with Moore's. 
The validity of Moore's approximation for t <tc has been proven [6] and special 
solutions have been studied [7, 14], but proving that a singularity forms for 
general initial data is an open problem. 

3. The Point Vortex Approximation 

Rosenhead performed the first vortex sheet computation in 1931 [31], using the 
periodic Cauchy kernel in (1). The sheet was discretized by a finite number of 
point vortices per period z/(i) ~ z(Tj,t),j = 1,...,N, leading to the ordinary 
differential equations, 

d^i = Y4K(zj-zk)N-1, K(z) = j . cot nz. (2) 
Hi 

The sum omits the singular term k — j , but if the vortex sheet has a bounded 
2nd F-derivative, then the discretization error is 0(N~1) [25]. If the vortex sheet 
is analytic, then infinite order accuracy may be obtained by applying one step of 
Richardson extrapolation [34, 16]. 

Rosenhead used JV ~ 10 points and the 1st order Euler method with time 
step At ~ 0.05 to integrate in time. He drew a smooth interpolating curve 
through the point vortices, suggesting that a perturbed vortex sheet rolls up into 
a smooth spiral. In the 1950's, Birkhoff performed computations using a larger 
number of point vortices and more accurate time integration [4, 5]. In contrast to 
Rosenhead's results, the points' computed motion was irregular, leading Birkhoff 
to question whether the vortex sheet rolls up into a spiral. Later workers sought 
to obtain convergent numerical results by using higher order accurate quadrature 
rules for the principal value integral, e.g. [15, 38]. Another approach was to 
stabilize the problem by adding surface tension [28]. In spite of much effort, the 
computations failed to converge as the number of points increased. 

The key to obtaining convergent numerical results for t < tc lies in Fourier 
analysis of the computed solution [19]. Sulem et al. [36] showed that the singu­
larity structure of nonlinear evolution equations could be obtained from spectral 
computations, by analyzing the rate of decay of the discrete Fourier coefficients. 
For vortex sheet computations, discrete Fourier coefficients of the perturbation 
quantities pj(t) = Zj(j) — Tj can be similarly analyzed. 

Figure 1 shows computations with JV = 50 in single and double precision 
arithmetic. Irregular small scale motion develops in single precision, but the 
double precision results are smooth. The corresponding spectral amplitudes are 
plotted in Fig. 2. The initial spectrum has a spike at wavenumber k = 1 (an 
explicit perturbation of amplitude e = 0.01), as well as broad band noise in the 
higher modes. In Fig. 2a, the noise is amplified by the system's instability, leading 
to the irregular motion in Fig. la for t > 0.3. In Fig. 2b, the spectrum spreads 
smoothly to higher wavenumbers, due to genuine nonlinear effects [19]. 

A stable physical process is modeled by a well-posed initial value problem, 
and if the difference scheme is consistent and stable, then the solution converges 
as the mesh is refined [30]. Shear flows however are physically unstable and 
this appears as ill-posedness in the vortex sheet initial value problem. The point 
vortex approximation for an analytic vortex sheet defines a consistent but unstable 
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Fig. 1. Point vortex computations at times t = 0,0.1,0.2,0.3,0.4. (a) single precision. 
(b) double precision 

Fig. 2. Discrete Fourier coefficient amplitudes corresponding to Fig. 1. (a) single precision. 
(b) double precision 

difference scheme. Fritz John has observed [18], "Instability of a difference scheme 
under small perturbations does not exclude the possibility that in special cases 
the scheme converges towards the correct function, if no errors are permitted 
in the data or the computation." This refers to roundoff error, due to the 
computer's finite precision arithmetic, as opposed to discretization error, due 
to replacing a continuous operator by a discrete approximation. Using higher 
precision arithmetic is one way to see convergence as the mesh is refined, but for 
vortex sheet computations, a more practical remedy is to filter out the spurious 
roundoff error perturbations [19]. Computations and theory [8] now show that 
the point vortex approximation converges as JV —• oo for t < tc. A consistent 
picture of singularity formation in a vortex sheet has been obtained: infinite 
curvature forms at an isolated point, but the vortex sheet remains continuously 
differentiable at t = tc, showing no sign of roll-up [19, 23, 24, 26, 34]. 
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An obvious question is whether the vortex sheet continues to exist past the 
critical time. Note that in other problems, a physically valid weak solution can 
be defined past a critical time, e.g. shock formation in a nonlinear hyperbolic 
equation. Computations show that the point vortex approximation does not 
converge for t > tc as JV —> oo [19]. A different type of small scale motion occurs 
in the point vortex system (2) for t > tc, but it is not relevant to vortex sheet 
evolution. Based on work with self-similar vortex sheets [27], Pullin conjectured 
that a periodically perturbed sheet rolls up into a spiral for t > tc, the spiral 
vanishes in size as t -> £c

+, and for any t > tc it has an infinite number of turns 
[29]. As described in the next section, numerical experiments using Chorin's 
vortex blob method support this conjecture [1, 9, 10, 11, 20, 21, 22]. 

4. Vortex Sheet Roll-Up 

Let ö > 0 be a smoothing parameter and consider a regularized approximation 
to (1), 

dz_ 

dt /

oo 

Ks(z(r, t) - z(t, t))dt, Ks(z) = K(z)-
-00 I + <52 (3) 

When (3) is discretized, the computational elements are called "vortex blobs". For 
fixed ö > 0, short wavelength perturbations no longer have unbounded growth 
rates and computed solutions converge as the number of blobs JV —> oo, even 
for t > tc [20]. Figure 3a shows the evolution for 0 < t < 1, with the smoothing 
parameter value ö = 0.03, in a case for which the vortex sheet's critical time is 
tc ~ 0.375. Figure 3b shows the solution at time t = 1 with decreasing amounts 
of smoothing 0.05 < ö < 0.2. Figure 4 shows that the smoothed solutions at t = 1 
converge to a spiral as ö —> 0. The limit spiral is a candidate extension for the 
vortex sheet past the critical time. 

Fig. 3. Regularized vortex sheet roll-up past the critical time tc 

increasing time, (b) t = 1, decreasing <5 
0.375. (a) Ö = 0.03, 
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Fig. 4. Convergence as ö ->• 0 for t = 1 > tc ~ 0.375. (a) x-axis intercepts of one spiral 
branch plotted against <5. (b) closeup of the solution for ö = 0.03 

The numerical experiments suggest that the vortex blob method provides a 
convergent discretization of vortex sheet motion for t > 0. This has been proven 
for t <tc [8], but proving convergence for the physically important roll-up regime 
t > tc is an outstanding problem. Other interesting issues concern uniqueness of 
the limit for different regularizations [3, 37], existence of a weak solution to the 
incompressible Euler equations with general vortex sheet initial data and the 
possible presence of concentrations in the limit ö —• 0 [12, 13]. 

5. Applications 

The vortex blob method has advantageous mathematical and numerical proper­
ties, but the smoothing parameter ö has no precise physical meaning. One would 
like to know whether computations performed with a value ö > 0 approximate 
real fluid motion. Some applications presented below demonstrate the vortex blob 
method's potential for simulating shear layer dynamics. 

Aircraft Trailing Vortices. On takeoff and landing, an aircraft sheds vortices at 
the wing's trailing edge. Figures 5 and 6 show a free-space vortex sheet simulation 
of this process, including the effects of the wing tips and deployed flaps [21]. The 
computation illustrates different types of vortex interactions : rotation of like-sign 
vortex pairs, translation of opposite-sign vortex pairs, core deformation due to 
collision, and vortex sheet folding. 

Separation at a Sharp Edge. Vortices are shed from the edges of a flat plate that 
is moving in a viscous fluid. As the viscosity is reduced, an ideal flow emerges 
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Fig. 5. Roll-up of an aircraft trailing vortex sheet, including tip and flap vortices. The 
solid and dotted fines indicate opposite senses of rotation 

having embedded vortex sheets that emanate from the edges. This problem is 
more difficult to compute than the periodic and free space problems considered 
above. New issues arise, in satisfying the flow tangency condition on the plate, 
and shedding the correct amount of circulation at the edges. Previous numerical 
studies did not obtain smooth spiral roll-up, e.g. [17, 33]. 

A new implementation of the vortex blob method has been developed. Figure 
7a is a computation of the vortex sheets that separate from an impulsively 
started flat plate. The velocity field plotted in Fig. 7b shows that the sheets form 
a recirculating region behind the plate. 

To validate the algorithm, a comparison with Pullin's computation of self-
similar vortex sheet roll-up [27] has been performed. The similarity assumption 
circumvents the difficulty of solving the initial value problem. Figure 8 compares 
a time dependent vortex blob computation with, Pullin's self-similar result. The 
two plots may be superimposed to verify that the spiral shapes are in good 
agreement. Further details are given in [22] and a more complete validation is in 
preparation. 
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t = 5 

Fig. 6. Continuation of Fig. 5, showing details of core deformation and vortex sheet 
folding 

Instability of a Jet. Figure 9 shows the evolution of a jet being expelled from a 
box. The jet is driven by two point sources in the lower corners of the box, which 
are turned on at time t = 0. A starting vortex forms and propagates away from 
the outlet, leaving behind a thin straight jet. Waves form along the jet, rolling up 
into a small vortex which propagates through the large starting vortex. 

6. Final Remarks 

Vortex sheet motion poses interesting mathematical problems concerning singular 
integrals, weak limits, and nonlinear dynamics. Vortex blob computations may 
provide a useful tool for clarifying the role of coherent vortex structures in shear 
flow. Future computational work will focus on improved treatment of boundary 
conditions, the effects of parametric forcing, and three dimensionality. 
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Fig. 7. (a) Vortex sheet roll-up due to the impulsively started upward motion of a flat 
plate, (b) Velocity field at time t = 4 
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Fig. 8. (a) Time dependent vortex blob computation, <5 = 0.025, t = 1. (b) Self-similar 
vortex sheet roll-up past a semi-infinite flat plate, reproduced from [27] 



Computing Vortex Sheet Motion 1581 

Fig. 9. Computation of a jet being expelled from a box 
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