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The initial-value problem for perturbations of a flat, constant-strength vortex sheet
is linearly ill posed in the sense of Hadamard, owing to Kelvin—Helmholtz instability.
Previous numerical studies of this problem have experienced difficulty in converging
when the mesh was refined. The present work examines Rosenhead’s point-vortex
approximation and seeks to understand better the source of this difficulty. Using
discrete Fourier analysis, it is shown that perturbations introduced spuriously by
computer roundoff error are responsible for the irregular point-vortex motion that
occurs at a smaller time as the number of points is increased. This source of
computational error is controlled here by using either higher precision arithmetic or
a new filtering technique. Computations are presented which use a linear-theory
growing eigenfunction of small amplitude/wavelength ratio as the initial perturba-
tion. The results indicate the formation of a singularity in the vortex sheet at a finite
time as previously found for other initial data by Moore and Meiron, Baker & Orszag
using different techniques of analysis. Numerical evidence suggests that the point-
vortex approximation converges up to but not beyond the time of singularity
formation in the vortex sheet. For large enough initial amplitude, two singularities
appear along the sheet at the critical time.

1. Introduction

The vortex sheet is an asymptotic model of a parallel shear flow in which the
thickness of the transition region between the two streams is small compared with
a typical streamwise lengthscale. As a step towards determining the extent to which
this idealized model can describe properties of a real flow, the present work studies
a discretization of the model and also touches on some of the model’s properties.
Specifically, we shall examine Rosenhead’s point-vortex approximation for vortex-
sheet evolution from periodic analytic initial data.

1.1. The analytic initial-value problem
A vortex sheet in two-dimensional ideal flow can be described by a complex curve,

AT, t) = oI, ty+iy(T, t), (1.1)

where ¢ is time and I' is a Lagrangian parameter which measures the circulation
between a base point I” = 0 and an arbitrary point along the sheet (Birkhoff 1962).
The vortex-sheet strength (I, ¢) is the jump in tangential velocity across the sheet
and is determined by o ([, t) = |2|~! where z = 0z/0I". Consider a vortex sheet
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for which p(I',t) = z(I,t)—I' is periodic in I" with period 1. The initial-value problem
to be studied is,

; {1
%(I’,t) =% fo cot n(z(I", t)—2(I" 1)) dT", (1.2a)
«Al,0) = I+ p(I,0). (1.2b)

The bar over z on the left side of (1.2a) denotes complex-conjugate and the slash on
the integral sign denotes Cauchy principal value. Equation (1.2a) is the kinematical
condition that the vortex sheet move with the fluid. The dynamical requirement that
circulation around material curves be preserved is contained in the statement that
I’ is a Lagrangian variable. Initial condition (1.2b) is a perturbation of the flat vortex
sheet of constant strength 2(I',¢) = I" which is an equilibrium solution of (1.2a).

Linear stability analysis of this equilibrium yields perturbation solutions propor-
tional to exp 2n(wt+ikl") when the dispersion relation

w? = 32, (1.3)

is satisfied (Batchelor 1967). For each wavenumber k > 0 there is a growing and a
decaying eigenfunction given by,

p(I, t) = e(1 —1i) exp (rkt) sin 2nkT", (1.4a)
p(I,t) = e(1 +1) exp (—mnkt) sin 2nkrl". (1.4b)

Since there are short-wavelength solutions having arbitrarily large growth rates
(‘Kelvin—Helmholtz instability’), the linearized initial-value problem is not well-
posed in the sense of Hadamard (Garabedian 1964). We recall that the classical
example of this situation is the problem of analytic continuation, i.e. the initial-value
problem for the Cauchy-Riemann equations. For analytic Cauchy data, the Cauchy-
Riemann equations have a unique local solution which does not necessarily depend
continuously on the data. In line with this analogy, Birkhoff (1962) conjectured the
local existence of an analytic solution to the nonlinear problem (1.2). This was proved
by Sulem et al. (1981). Another conjecture of Birkhoff & Fisher (1959) was that an
analytic solution of (1.2) can stop being analytic at a finite time ¢, > 0. Support for
this was given by Moore (1984, 1979) in an asymptotic analysis which predicted that,
to leading order in the initial amplitude ¢, a singularity forms in the vortex sheet at
a critical time ¢,(¢). The singularity which appears is an infinite jump discontinuity in
the vortex sheet’s curvature. Using Taylor series in time, Meiron, Baker & Orszag
(1982) obtained results in agreement with Moore’s.

This recent work has led to a better understanding of vortex-sheet evolution, in
contrast to the confusion surrounding the failure of standard numerical methods to
solve (1.2). We shall now briefly survey the large literature on these computations;
see also Pullin (1982), Moore (1981), Saffman & Baker (1979) and the references
contained therein.

1.2. The point-vortex approximation

The classical approach to the numerical solution of the initial-value problem (1.2),
introduced by Rosenhead (1931), is to replace the curve (I, #) by a finite number
of points corresponding to a uniform I'-mesh. Thus z(t) approximates z([},t) for
II=(j—1)Al'j=1,...,N,where N = 1/AI'is the number of points per wavelength.
The integral on the right side of (1.2a) is approximated by a simple quadrature rule
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which omits the infinite contribution due to the integrand’s singularity at I = I'". This
discretization yields a system of ordinary differential equations for the points’ paths:

dz 1 X
= _
TR ’El cot m(z;—2y), (1.5a)
ki
z(0) = [;+p(I,0). (1.5b)

Equation (1.5a) also describes the evolution of N periodic rows of equal strength
point vortices and (1.5b) is a common method of initialization in which the point
vortices interpolate the initial vortex sheet (1.2b). The term ‘ vortex sheet’ refers to
the exact solution of the initial-value problem (1.2), as opposed to an approximating
curve constructed from the numerical solution of (1.5). Equations (1.5a) are a
Hamiltonian system for the conjugate variables x; N %, y; N~ where x;+iy; = z;; the
Hamiltonian function is given by,
—1 N

X X In (cosh 2n(y;—yy)—cos 2n(z; —x)). (1.6)

If one assumes that the variables y,(f) remain bounded, then the invariance of Hy(t)
implies that the point vortices remain separated. Numerical computations do not
contradict the assumption and we shall accept its validity, as have previous
investigators, together with the implication that for each value of N, the ordinary
differential equations possess an analytic solution for all time.

By analogy to the flat, constant-strength vortex sheet, (1.5) have the equilibrium
solution, z;(t) = I;. An analysis, due to von Kdrmdn (Lamb 1932), shows that the
linearized discrete problem has perturbation solutions p,(¢) = z(t)— I; proportional
to exp 2n(wt+ikj/N) for k = 0,1, ..., 1N, when the discrete dispersion relation

w?= }k=<1—§)2 (1.7)

is satisfied. For fixed k, these discrete growth rates converge as N—oo to the
continuous problem’s linear growth rates (1.3), a check on the discretization’s
consistency with (1.2a). Consider (1.5a) in the form, dX/dt = F(X), X(0) = X,, where
X=(z,...,25,¥, --.,Yy) is the vector of point positions, F(X) is the velocity field
and X, is the discrete equilibrium solution. It follows that the Jacobian matrix
(0F/0X)(X,) has eigenvalues A = *+2nw(k) for w(k) given by (1.7). The initial
condition (1.5b) used in a computation is a perturbation of X, and at least for a short
time, the system’s eigenvalues (which are always real and symmetric about zero) will
lie approximately in the interval (—0.25Nw, 0.25Nx). The term ‘stiff’ is usually
applied to a system of ordinary differential equations for which 9F/0X has large-
magnitude eigenvalues with negative real parts (Gear 1971). However for (1.5), the
Jacobian matrix also has large real positive eigenvalues and the numerical
considerations appropriate for stiff systems do not apply. Accuracy is the prime
concern in the present situation, a point we shall return to later.

Using a transverse sinusoidal initial perturbation, Rosenhead integrated the real
and imaginary parts of (1.5) by Euler’s method with N = 12 and a time step At = 0.05.
The interpolating curve that was drawn through the points indicated smooth roll-up
around periodic concentrations of vorticity. The validity of these findings was
challenged by Birkoff (1962) who viewed Rosenhead’s work as inconclusive since
convergence of the discretization had not been demonstrated. Birkhoff’s calculations,
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using N = 20, fourth order Runge—Kutta time integration and various initial con-
ditions, produced irregular point motion, i.e. smooth roll-up did not occur. Since the
appearance of Birkhoff’s work, it has become widely accepted that the point-vortex
approximation does not converge as N— oo and that it is inadequate for studying
vortex-sheet evolution.

1.3. Other numerical work

Later investigators have sought to repair the presumed defects in the point-vortex
approximation and two approaches have emerged:

(i) higher-order accurate discretizations of the integrodifferential equation were
derived,

(ii) the integrand in (1.2a) was smoothed by convolution with a cut-off function.

An example of the first approach is the work of van de Vooren (1980), in which
the Cauchy-principal-value integral in (1.2a) is replaced by an equivalent integral
whose integrand has a removable singularity. The trapezoidal rule is then applied
yielding a system of equations which differs from (1.5a) only in the addition of a
correction term to the right-hand side,

dz 1 X 1 er)
dt = m k§1 cot n(zj—zk)+4mN ('g r=rj. (18)
k+j

The order of accuracy is determined by the approximation used for the I'-derivatives
in the correction term. With an eighth-order finite-difference formula for these
derivatives and values of N up to 80, van de Vooren’s calculations yielded irregular
point motion. A pseudospectral method for calculating the I'-derivatives in (1.8),
proposed by Conte (1979), also led to irregular motion. Other higher-order discreti-
zations of (1.2a) have been proposed (e.g. Higdon & Pozrikidis 1985; Pullin 1982;
Baker 1980; Fink & Soh 1978). A variety of numerical procedures has been tried
including smoothing techniques. Some calculations have included stabilizing physical
effects such as stable density stratification, and surface tension. In spite of these
efforts, irregular motion has occurred for the present problem as the number of
computational points was increased. Some investigators have presented results which
used a small enough number of points to avoid the appearance of irregular motion.
Birkhoff’s criticism of Rosenhead’s work also applies to these investigations; if
convergence cannot be demonstrated as the discretization is refined, then conclusions
about the vortex sheet are open to doubt.

The second approach is exemplified by the vortex-blob method of Chorin & Bernard
(1973), originally applied to a finite vortex sheet. Later applications of the method
were reviewed by Leonard (1980). Anderson (1985) has recently applied the method
to an interface problem for weakly stratified flow. Vortex-blob calculations for the
present problem will appear elsewhere (Krasny 1986).

Moore (1981) pointed out that, with respect to the integrodifferential equation
(1.2a), the correction term in (1.8) is the leading-order of the truncation error in the
point-vortex approximation. Note that this will be true as long as the I'-derivatives
in the correction term remain bounded, i.e. before the vortex sheet’s critical time.
However, convergence of the point-vortex approximation at the expected rate O(N ™)
has not been proved or even demonstrated numerically for any ¢ > 0. Moore (1981)
used discrete Fourier analysis to study the point-vortex approximation for a circular
vortex sheet and found that irregular point motion corresponds to linear modes
growing at a rate which agrees with the discrete dispersion relation. He demonstrated
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that the onset of this irregular motion could be delayed by using various techniques:
linear smoothing (Longuet-Higgins & Cokelet 1976) or repositioning (Fink & Soh
1978). However, the effect of these techniques upon the approximation’s accuracy
is questionable.

The present work seeks to study singularity formation in a vortex sheet by
obtaining accurate numerical solutions to the point-vortex equations (1.5) for a range
of values of N and then extrapolating to the limit N— co. The first step will be to
understand better the source of the irregular point-vortex motion that has been
observed by previous investigators. Van de Vooren (1980) attributed the irregular
motion to roundoff errors in the computed solution of the point-vortex equations.
Birkhoff & Fisher (1959) claimed that the irregular motion was a property of the exact
solution of the point-vortex equations. In §2 we show that each of these views is
partially correct, i.e. there are two types of irregular motion which can occur in the
numerical solution of the point-vortex equations. These are,

(i) a type which occurs at smaller times ¢ > 0 as the value of N increases,

(ii) a type which occurs only for times ¢ > ¢, (the vortex sheet’s critical time)
regardless of the value of N.

Computations exhibiting the first type of irregular motion are inaccurate solutions
to the ordinary differential equations (1.5). This computational error is not caused
by the time-integration method. Its source is instead the computer’s finite precision
arithmetic which spuriously introduces perturbations at the amplitude of the
roundoff error. Once introduced, the perturbations grow according to the equations’
dynamics, leading to inaccuracy in the form of irregular point motion. This is
consistent with Moore’s (1981) findings for the circular vortex sheet, but unlike that
work, we emphasize the effect of roundoff error. The first type of irregular point
motion would not be present if the computation was performed in exact arithmetic.
The approach taken here to abating the difficulty is to use higher precision arithmetic
or alternatively, a new filtering technique.

Section 3 is a study of singularity formation in a vortex sheet for which the initial
perturbation is a linear-theory-growing eigenfunction of small amplitude/wavelength
ratio. The accurate numerical solutions of the point-vortex equations that we obtain
do not exhibit irregular motion for ¢ < ¢,. The numerical evidence indicates that the
point-vortex approximation converges as N—>oo for ¢ <t,. We did not observe
convergence with increasing values of N for ¢ > ¢,, when the genuine point-vortex
dynamics become more complicated (we have called this the second type of irregular
point motion). Extrapolating our results to the limit N oo, we find agreement with
Moore (1979, 1984) and Meiron et al. (1982) on the nature of the singularity that forms
in the vortex sheet. A new finding is that for large enough initial amplitude, two
singularities appear at the critical time. The results are discussed in §4.

2. Numerical solution of the point-vortex equations
2.1. The first type of irregular point motion

To illustrate the first type of irregular point motion, the point-vortex equations (1.5)
were solved with N = 50 by the fourth-order Runge—Kutta method using the time
step At = 0.01 for ¢ < 0.25 and At = 0.001 for ¢ > 0.25. The initial condition was a
discretized linear theory growing mode of amplitude ¢ = 0.01 and wavelength 1 (see
(1.4a), (1.5b)):

2(0) = I;+0.01(1 —i) sin 2nT;. (2.1)
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Fiaure 1. Numerical solution of the point-vortex equations (1.5) with initial condition (2.1) using
fourth-order Runge—Kutta integration (N = 50, At = 0.01 for ¢ < 0.25 and At = 0.001 for ¢ > 0.25),
(a) single precision (7 decimal digits); (b) double precision (16 decimal digits). Solution is plotted
at ¢t =0, 0.2, 0.3, 0.375.

The calculation was performed on a VAX 11/780 computer in both single-precision
(7 decimal digits) and double-precision (16 decimal digits) arithmetic. The computed
point positions are shown at successive times for each case in figure 1. In the
single-precision calculation, irregular point motion occurs past ¢{ = 0.2. The point
positions at ¢t = 0.3 and ¢ = 0.375 are very inaccurate solutions of the point-vortex
equations with initial condition (2.1). The inaccuracy is not due to time integration
error; it was checked that such irregular point motion occurs even if a different time
step or integration method is used. In addition, the computed Hamiltonian (1.6) is
quite flat over the time interval plotted, with minimum H,,(0.329) = 0.0208013617
and maximum H,(0.120) = 0.020801 3989. By contrast, the double-precision results
in figure 1 (b) have no irregular point motion for ¢ < 0.375 (the subsequent evolution
will be discussed later). In this computation, the computed Hamiltonian varied
between the values H,,(0) = 0.0208013822746 and H,,(0.375) = 0.0208013822774.
By varying the time step it was checked that the point positions in figure 1 (b)
approximate the solution of the ordinary differential equations to well within the
plotting resolution.

Insight into the effect of machine precision is gained by plotting the spatial
frequencies of the computed solution. The function p(I',t) = 2(I',t)— I is periodic in
I’ and the computed quantities p;(¢) = z;(t)— I; are approximations to p(I',?) at the
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F1auRe 2. Log-linear plots of the Fourier coefficients’ (2.2) amplitudes versus wavenumber for the
calculations shown in figure 1, (@) single precision; (b) double precision. The plotted times are ¢t = 0,
0.1, 0.2, 0.3, 0.375.

equally spaced points I;. It is therefore natural to consider approximate Fourier
coefficients of p(I’,t) defined by

N
Bu(t) = N} T py(t) exp (—2mikT;) (2.2)
j=
for | k| < 1N, which are obtained in practice by a fast Fourier transform. For the
calculations shown in figure 1, the Fourier coefficients’ logarithmic amplitudes are
plotted in figure 2 as a function of wavenumber at successive times. The initial
perturbation in (2.1) has, for k > 0, only one non-zero Fourier coefficient whose
amplitude is | $,(0)| = edN)i. Figure 2 shows that the computed initial spectrum
contains this spike at k¥ = 1 and also contains numerical noise in the higher modes.
This noise in the initial condition amounts to a spurious perturbation of the desired
initial condition (2.1) and it appears in both calculations at an amplitude determined
by the roundoff error.

As time progresses in the single-precision calculation (figure 2a), the low-
wavenumber modes (approximately k£ < 5) increase in amplitude, but they remain
monotone decreasing in k for each time. The higher-wavenumber modes (approxi-
mately k > 5) also increase in amplitude as time progresses, but for each fixed
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FicUrE 3. Numerical solution of the point-vortex equations (1.5) with initial condition (2.1) using
fourth-order Runge-Kutta integration (N = 100, At = 0.01 for¢ < 0.25 and At = 0.001 for ¢ > 0.25),
(a) single precision (7 digits); (b) double precision (16 digits); (¢) CDC double precision (29 digits).
Solution is plotted at ¢t = 0.2, 0.375.

time, their amplitudes roughly increase with wavenumber. Moore’s (1981) finding for
the circular vortex sheet also applies here; this growth in amplitude of the high-
wavenumber modes is explained by the discrete linear dispersion relation (1.7) and
corresponds to the irregular point motion in the physical space plots of figure 1 (a).

For the double-precision calculation (figure 2b), the higher-wavenumber modes are
introduced through nonlinearity rather than through roundoff-error perturbations.
At each time, the amplitudes are monotone decreasing as a function of wavenumber;
a small amount of growth due to spurious roundoff-error perturbations does occur
for t < 0.2 and k = k.,,, but its effect on this computation is insignificant. Even
though these higher-wavenumber modes attain larger amplitude as time progresses,
there is no sign of small-scale irregular motion in the corresponding point positions
(figure 1b).

Figures 3 and 4 show the point positions and computed spectra for a calculation
with N = 100. Results using 7 and 16 digit arithmetic are presented, as well as a 29
digit calculation which was performed using double-precision arithmetic on a CDC
7600 computer. In the 7 and 16 digit calculations, irregular point motion appears
sooner with N = 100 than it did with N = 50. However, it does not appear in the
29 digit calculation. The spectral plots shown in figure 4 further illustrate the idea
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Fiourke 4. Log-linear plots of the Fourier coefficients’ (2.2) amplitudes versus wavenumber for the
calculations shown in figure 3, (a) single precision (7 digits); (b) double precision (16 digits); (c) CDC
double precision (29 digits). The plotted times are ¢ = 0.0, 0.1, 0.2, 0.3, 0.375. The last two times
are omitted from (a) for clarity.
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that high wavenumber Fourier modes can grow once they have been spuriously
introduced by roundoff error.

2.2. The effect of machine precision

For a well-posed linear initial-value problem, Lax’s equivalence theorem ensures
convergence of a consistent, stable difference scheme (Richtmyer & Morton 1967).
In such a situation, roundoff errors may accumulate with each arithmetic operation,
but individual perturbations are not amplified in time and they usually do not affect
the computational accuracy. There are different numerical considerations for an
ill-posed initial-value problem (John 1959). Figures 14 demonstrate that machine
precision can significantly affect the computational accuracy for the present problem.
This phenomenon is subtle and we pause here to consider it more thoroughly.

In the computation, one solves difference equations which come from discretizing
the ordinary differential equations in time. If the amplitude of the spurious
roundoff-error perturbations is too large, then the computer will not return an
accurate solution to the difference equations. The difficulty arises because the
initial-value problem (1.2) is ill posed and therefore, to be consistent, the difference
scheme must be unstable (see Richtmyer & Morton 1967 p. 59). However, as noted
by John (1982), ‘Instability of a difference scheme under small perturbations does
not exclude the possibility that in special cases the scheme converges towards the
correct function, if no errors are permitted in the data or the computation’. This
remark appears in the context of a different problem but I believe that it applies also
to the present situation. Numerical evidence to be presented in the next section
indicates that the point-vortex approximation is a convergent discretization up to
the time that the vortex sheet stops being analytic. A computation will exhibit this
convergence only if the effect of roundoff error is diminished. The remainder of this
section will consider two ways of accomplishing this: higher precision arithmetic, and
a filtering technique.

Let 1072 be the roundoff unit and let ¢, be the time at which the first type of
irregular motion becomes noticeable. A crude estimate for ¢, is the time at which the
fastest-growing linear mode, perturbed by roundoff error at t = 0, attains a large
amplitude, say 1072. Using the dispersion relation (1.7), this yields

_(d—2)4In 10

ty =— =1

N n

(2.3)

This expression qualitatively explains some of the phenomena that were seen in
figures 1—4. The first type of irregular point motion will not appear if the value of
N is sufficiently small. For a fixed machine precision, using a larger number of points
incurs a greater computational error. This is because with more points, shorter
wavelengths are represented and once spuriously perturbed by roundoff error they
amplify quicker, leading to a faster collapse of the computation. With a fixed number
of points, the computational error is reduced by using higher machine precision since
that introduces the spurious perturbations at a lower amplitude. The machine
precision that is necessary to keep the first type of irregular point motion from
appearing increases with N and this method of maintaining computational accuracy
is impractical for N > 100.

In the present situation, the restriction on the value of N that is imposed by
machine precision can be overcome. Moore (1981) used a smoothing technique to
control irregular point motion, but a different approach is adopted here. In keeping
to the objective of the present work, which is to study singularity formation in
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the vortex sheet, we want to examine carefully how the approximation’s genuine
high-wavenumber component grows, without smoothing it unnecessarily. We next
introduce a filtering technique whose goal is to achieve accurate computation with
a large value of N without having to use higher machine precision.

2.3. A filtering technique

Motivated by the knowledge that the vortex sheet remains analytic for a finite time
(Sulem et al. 1981), we intend to bias the computation in a particular way. The
problem posed here by machine precision is one of ‘aliasing’ between the discretization
of an analytic function and the discretization’s computer representation. When an
analytic function is interpolated at equidistant points in exact arithmetic, the dis-
crete Fourier coefficients decay exponentially (at least) with increasing wavenumber,
but due to roundoff error, the spectrum seen by the computer may not decay.
This is shown in the spectral plots (figures 2 and 4) at t = 0 where the computational
modes for k> 1 are present at a finite amplitude even though from (2.1), their
exact value is zero. A computational ‘noise’ level is determined by the machine
representation of the initial condition’s spectrum and we propose setting to zero, at
the end of every time step, any Fourier coefficient whose amplitude is less than this
noise level. The point positions will then be correspondingly adjusted by an inverse
Fourier transform and the calculation can proceed to the next time step. In order
for a mode to grow, its amplitude must jump above the noise level in a single
time step and once this has happened for every mode, the filter turns off and the
computation proceeds normally.

The technique was used in a 16 digit calculation with N = 100 and the same
time-stepping as before. The filter level was set to 107® and in this case, the filter
turned off at ¢~ 0.35. The resulting point positions and Fourier coefficients are
plotted in figure 5. In this calculation the Hamiltonian was also well conserved. There
is no sign of the first type of irregular point motion which had appeared at t = 0.375
in the unfiltered 16 digit calculation (figure 3b). The point positions are very close
to those of the unfiltered 29 digit calculation (figure 3¢). There is no spurious growth
of Fourier modes as had occurred in figure 4(b) since the filter prevented the
numerical noise from growing above the horizontal line in figure 5(b) (at amplitude
In 10722 &~ —30). The filter does not suppress the growth of the high-wavenumber
modes but instead allows them to enter the computation legitimately, through
nonlinear effects. Above the computational noise level, the spectra in figure 5 (b) from
the filtered 16 digit calculation agree closely with the spectra from the unfiltered 29
digit calculation (figure 4c).

Figure 6 shows the point positions at £ = 0.375 using N = 200 for unfiltered 7, 16
and 29 digit calculations and also for a filtered 16 digit calculation. The 7 and 16 digit
results are quite inaccurate and even the 29 digit result exhibits irregular point
motion. This motion however is absent from the filtered calculation.

Technically, the filter can be called a smoothing operation since it averages the
point positions (in a solution dependent way). However, the aim (and we believe the
effect) of the filter is to ensure computational accuracy rather than to smooth or
stabilize the calculation. Smoothing, accomplished by convolution in either wave-
number or physical space with a rapidly decaying function, is an alternative approach
to the numerical solution of the present ili-posed initial-value problem (Krasny 1986).
The filter used here is an ad hoc attempt to comply with John’s injunction, quoted
above, that the data and the computation be free of error. The numerical evidence
indicates that, at the expense of introducing a small systematic error, the filter
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Fieure 5. Double-precision (16 digit) calculation with the filter level set at 10712 (the horizontal
line in (b)). This calculation used N = 100 and the same time stepping as before, (a) point-vortex
positions; (b) log-linear plot of the Fourier coefficients’ (2.2) amplitudes versus wavenumber.
Compare this with the unfiltered and the higher precision calculations in figures 3 and 4.

effectively stops spurious roundoff error perturbations from growing for a short time
and thus, for a given machine precision, it permits accurate computations with a
larger number of points. The error introduced by filtering depends on the filter level
and the time step, but this has not yet been rigorously analysed. In the next section
when N > 50, we will filter using 16 digit arithmetic, instead of less expensive 7 digit
arithmetic, since then the filter level can be set lower. Although the filter level can
be set even lower in a 29 digit calculation, we have not found the extra expense to
be justified since the computed point positions would not be significantly affected.

2.4, The second type of irregular point motion

Figure 7 extends figure 1(b) and shows the point positions (with N = 50) at several
times past ¢ = 0.375. The time step has been taken small enough to ensure that the
computed point positions are accurate solutions to the ordinary differential equations
(1.5) to within the plotting resolution. The two points nearest I” = 0.5 approach the
central point, pass each other vertically at ¢t = 0.44, achieve their minimum separation
at ¢t = 0.446 and then move apart. At later times there is a central region of rapidly
rotating points which grows by capturing pairs of slowly moving points from the outer
region as time progresses. In the last panel of figure 7, a straight line interpolating
curve of the point positions at ¢t = 0.5 has self-intersections.

As t approaches 0.446 it becomes more difficult to maintain a given accuracy in
the time integration. To better appreciate the timescales involved, we examined the
eigenvalues A of the Jacobian matrix for the point-vortex equations (recall the
discussion in the paragraph following (1.7)). The matrix elements are known
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FicUrE 6. Point-vortex positions at { = 0.375 for N = 200, (a) single precision (7 digits); (b) double
precision (16 digits); (c) CDC double precision (29 digits); (d) filtered at level 10713, double precision
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Fieure 7. Point-vortex positions (N = 50) at ¢ = 0.4, 0.44, 0.446, 0.46 and 0.5 (extension of
figure 1b). The last panel is the straight-line interpolant at ¢t = 0.5.
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FicURE 8. Positive eigenvalues A of the Jacobian matrix of the point-vortex equations with N = 50.
(@) The curve is a graph of the discrete linear dispersion relation (1.7) corresponding to linearization
around the equilibrium point positions. The points are the computed eigenvalues for initial
condition (2.1). (b) The eigenvalues’ evolution in time.

explicitly and the eigenvalues can be computed by a standard technique once the
point positions are supplied. Recall that the eigenvalues are real and symmetric about
zero; only the positive eigenvalues will be displayed. The curve in figure 8 (a) is the
graph of 2nw(k), the discrete dispersion relation (1.7), and the dots are the computed
eigenvalues at ¢ = 0. It follows from von Kdrman’s analysis that the eigenvalues for
an infinitesimal perturbation lie on the curve and have multiplicity two (except for
A = 2nw(iN) which has multiplicity one). The finite initial perturbation amplitude
(e = 0.01) moves the large-magnitude eigenvalues away from the curve and causes
them to have multiplicity one. Figure 8 (b) shows the eigenvalues’ evolution in time.
For t < 0.446 most of the eigenvalues decrease in amplitude. A small number of the
large eigenvalues increase ; the largest one varies between a value of about 40 att = 0
and about 160 at ¢t = 0.446. Associated with the increasing eigenvalues are rapidly
varying solution components whose accurate integration has led us to use smaller time
steps for ¢ > 0.25. For ¢t > 0.446 the situation becomes more complicated as some
eigenvalues apparently change multiplicity.

The motion of the point vortices in figure 7 is what we referred toin §1 as the second
type of irregular point motion. It will be shown in the next section that ¢, x 0.375
so that this irregular point-vortex motion occurs beyond the vortex sheet’s critical
time. We emphasize that this is the genuine point-vortex motion for N = 50; its
relevance to vortex-sheet evolution will be discussed later.

It was found that the onset of the second type of irregular point motion and
self-intersections in the interpolating curve, could be delayed by increasing the time-
integration error. As expected, such calculations do not conserve the Hamiltonian
to as many significant digits, but the actual behaviour was surprising. Figure 9 shows
the computed Hamiltonian for the present calculation (extended to ¢t = 1) as well as
with using fourth order Runge—Kutta integration with A¢ = 0.04 and first-order Euler
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Ficure 9. Hamiltonian values Hy,(t) computed up to ¢ = 1 using (a) fourth-order Runge-Kutta,
At = 0.01 for ¢t <0.25 and At =0.001 for ¢ > 0.25; (b) fourth-order Runge-Kutta, At =0.04;
(¢) first order Euler, At = 0.02.

integration with At = 0.02. In the latter two cases, Hy, is well conserved until an
abrupt change occurs between t = 0.4 and ¢ = 0.6. In the Runge—Kutta calculation,
the Hamiltonian first rises slightly and then jumps to a lower value on which it
remains to great accuracy. In the Euler calculation, the Hamiltonian decays
continuously. Of course, these variations in H;, can be made smaller by decreasing
the time step, as shown by the flat line in figure 9(a). We shall not pursue the
interesting question of why the time discretization affects the Hamiltonian system
of point vortices in this particular way.

3. Singularity formation in the vortex sheet
3.1. Previous investigations

Singularity formation in the vortex sheet may be studied by exploiting the relation
between the complex singularities of p(I', t) = z({", ) — I"and the asymptotic behaviour
of its Fourier coefficients (Carrier, Krook & Pearson 1966). Suppose that p(l,t) can
be analytically continued for complex values of I to a strip of width §(¢) in the upper
half plane and that a branch point of order £#(t)—1 > —1 lies on the boundary, i.e.

P 1) = (D= (L +i8(1)P0-1, (3.1)
Then the Fourier coefficients decay as k— o0,
|B(k, 1) & kO &R0, (3.2)

As the solution evolves in time, the complex singularity traces out a curve in the
complex plane (Sulem, Sulem & Frisch 1983). At the critical time, determined by
d(t,) = 0, the Fourier coeflicients’ algebraic decay rate §, = f(t,) can be used to infer
the regularity of p(I', ¢,).

Previous investigations have used various methods to approximate the Fourier
coefficients. Moore’s (1984, 1979) asymptotic analysis, based on a transverse sinusoidal
initial perturbation,

I, 0) = I'—iesin 20T, (3.3)
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predicted that to leading order in the initial amplitude €, a branch point intersects
I' = 0.5 on the real axis at a critical time given by,
2

nt,+1+1n (2rf,+e72™c—1) =1n —

(3.4)
(To express Moore’s results in the present units, replace his z,I',¢,t by 2n(z—1),
2r(I"—1), 2re, 2nt.) At the critical time the Fourier coefficients’ algebraic decay rate
is B, = 2.5. Meiron et al. (1982) applied Moore’s analysis to a flat sheet with perturbed
strength,

2Al,0)=e(l’), I'=e+esin2me. (3.5)

They also noted that the particular form of (3.5) allows the exact temporal Taylor
series coefficients to be computed. Analysis of these series over a range of initial
amplitudes yielded critical times in good agreement with Moore’s asymptotic relation
fort.(€). A value of f, = 2.7+ 0.2 was obtained for the Fourier coefficients’ decay rate.
As noted by Moore and Meiron et al., a decay rate of 2 < §, < 3 is evidence that at
the critical time, the sheet’s first derivative is continuous although the curvature is
infinite at some point. Both investigations found that at the critical time the vortex
sheet’s y-coordinate is a single-valued function of its z-coordinate. In addition, the
sheet’s slope remains bounded and the vortex-sheet strength, though continuous,
possesses a cusp.

Higdon & Pozrikidis (1985) presented numerical calculations for initial condition
(3.5) using a second-order accurate discretization of the integral in (1.2a) and a point
insertion technique. Convergence at the rate claimed was not demonstrated and the
calculations used a small enough number of points so that irregular motion did not
occur. The critical time, taken as the time at which the computed curvature became
infinite, was larger than that of Meiron et al. although the qualitative dependence
on ¢ was similar. There was disagreement with Moore and Meiron et al. on the nature
of the singularity. Higdon & Pozrikidis claimed that at the critical time, the vortex
sheet has the shape of an exponential spiral and the vortex-sheet strength is infinite
at the spiral’s centre. A Fourier coefficient decay rate of 8, = 2.3+0.2 was quoted
but no explanation was offered of how this can be consistent with the presence of
an exponential spiral in the sheet’s shape.

We have applied Moore’s (1984) analysis to the linear theory growing eigenfunction
of amplitude ¢,

2I,0) = I'+¢(1 —1i) sin 2T, (3.6)
and found the critical time relation,
1
ntc +1+In Tttc =1n % (37)

The critical time in (3.4) for the transverse sinusoidal initial perturbation is greater
than that in (3.7) by an amount (= 0.2) which does not vanish as ¢—>0. This delayed
critical time is plausible since the perturbation in initial condition (3.3) contains both
a growing and a decaying linear theory eigenfunction of amplitude 1e (see (1.4)).

In the remainder of this section we use the point-vortex method to study
singularity formation in the vortex sheet with initial condition (3.6). The first step
will be to obtain estimates of the critical time which are based on solutions to the
point-vortex equations for several values of N. We shall then extrapolate to the limit
N - o0 and compare this with the results of the previous investigations.
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FiGURE 10. Least-squares estimates of &;,(f) and f;,(t) for 0.25 <t < 0.45 based on the
N =50 calculation (figure 2b) for several fitted ranges of wavenumbers, (a) B2 < k < 10);
(b) B3 < k < 10); (c) B4 < k < 10); (d) 3(6 < k < 20); (¢) 8(5 < k < 20); (f) 8(4 < k < 20). The &
scale is on the left and the £ scale is on the right.

3.2. Extrapolation to the limit N — o0

As seen in §2.1, approximate Fourier coefficients for the vortex sheet are available
by taking the fast Fourier transform of the computed perturbation quantities.
Following Sulem et al. (1983) and Brachet et al. (1983), in which spectral numerical
methods were used to study loss of analyticity in other nonlinear evolution equations,
4(¢) and f(t) are estimated by least-squares fitting of the computed spectrum to the
model (3.2). Wavenumbers close to k,, are excluded from the fit as are modes with
amplitude below the noise level. Figure 2 (b) indicates the plausibility of expression
(3.2) and suggests that a high-wavenumber band be used to estimate d(¢) and a
low-wavenumber band be used for f(t). Values of &,,(¢) and f,,(f), fit to the model
(3.2) over several wavenumber ranges, are shown in figure 10 (the subscript denotes
an estimate based on N = 50 points). Changing the fitted range has a small effect on
050(t) as long as a band of high wavenumbers is included. The values of d;,(t) decrease
linearly with time until they fall within a strip above zero. We do not ascribe special
significance to the particular values of §,,(f) since these estimates are sensitive to the
band of low wavenumbers used in the fit.

Calculations were performed for eight values of N up to 200. With N > 50, the filter
level was set to 1072 and the time step (A¢ = 0.0002 in the final portion of the
Runge—Kutta integration) was sufficiently small to ensure several digit accuracy in
the computed point positions. For all values of N used, the behaviour was qualitatively
similar to what has already been presented in figure 10. In particular, 8, (¢) decreases
linearly with time until it falls within a strip of width O(N7!). The sensitivity of #(t)
to the range of fitted wavenumbers makes it difficult to estimate B, this way.
Estimates of the critical time could be based on the times at which d,(t) attains its
minimum, but we propose two other estimates which are more conveniently
computed.

Let t¥ be the first time at which a point passes vertically over another point and
let tY be the time at which the minimum separation s&; of any pair of points is
attained. The computed values are given in table 1. In all cases it was found that
the two points adjacent to I' = 0.5 were the ones for which these spatial phenomena
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N ty ty 311¥un -102 ?/10\{4 -10? Yo.40° 10°
20 0.526 0.541 2.057 —2.052 —13.15
40 0.455 0.462 0.931 —2.163 —8.701
50 0.44 0.446 0.725 —2.186 —7.694
80 0.417 0.421 0.433 —2.221 —6.105
100 0.4092 0.412 0.355 —2.232 —5.557
120 0.4034 0.406 0.28 —2.24 —5.168
150 0.3976 0.3996 0.221 —2.248 —4.784
200 0.3914 0.3928 0.163 —2.256 —4.409
0 0.375 0.375 0.01 —2.28 —3.23

TabLE 1. The dependence on N. ¢ = first time at which a point vortex passes vertically over another
point vortex. # = time of minimum separation of any pair of point vortices. s, = minimum
separation between any pair of point vortices. The last two columns contain y-coordinate values
at t, = 0.375 for I' = 0.4 and I" = 0.49. The former are all at point positions and the latter are
computed by linear interpolation of adjacent point positions. The values in the last row were
obtained by extrapolation to the limit N— co (see figures 11 and 14). The extrapolated value s3,,
differs from its exact value zero because of small errors in the computed values of s¥

min-
0.6 T T T
0.03
Y
Y
Sﬁm
0.3 ) L 1 0

0 N-1 0.06

Fieure 11. Values of (a) tY, (b) tY and (c) s, from table 1 plotted as function of N1, The curves
are quadratic polynomials in N~! whose coefficients are determined by least-squares fitting to the
eight data points in table 1. The timescale is on the left and the separation scale is on the right.

occurred (£2° = 0.44 and t3° = 0.446 were plotted in figure 7). The values of t¥, t¥ and
sN. . are plotted as functions of N7 in figure 11 along with the quadratic polynomials
in N~ whose coefficients are determined by a least-squares fit to the eight data points.

The good fit obtained is evidence of asymptotic convergence in the sense that,
N 2t +e, N1 4+c, N+ ... (N->o0), (3.8)

(similarly for t¥ and sX,.). The constant term of the least-squares quadratic
polynomial gives a value extrapolated to the limit N - co and appears in the last row
of table 1. The extrapolated value sX;, = 0.0001 differs from the exact value zero
because of small errors in the computed s, . For each N, the time ¢ is greater than
t¥ but both sequences converge to the same limit as N - co. We take the extrapolated
time ¢ = 0.375 as the estimate of the vortex sheet’s critical time. This value is less
than that (0.45) given by the asymptotic relation (3.7). A comparison between the
computed critical time for several initial amplitudes and the asymptotic relation (3.7)
will be given later.

Log-log plots of the discrete Fourier coefficients’ amplitudes | $,(t,) | at the critical
time ¢, = 0.375 for N = 50, 100 and 200 are shown in figure 12. As the value of N
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Ficure 12. Log-log plot of the Fourier coefficients’ (2.2) amplitudes at ¢, = 0.375 for N = 50,
100 and 200. The straight line has slope —2.5, the value obtained by Moore (1979).

increases, algebraic decay extends to higher wavenumbers, implying the presence of
a singularity in the vortex sheet at that time. This algebraic decay is well described
by the straight line in figure 12 which has slope —2.5, the value obtained by Moore.

We turn now to the shape of the vortex sheet at the critical time. Figure 13 (a)
shows the point positions at ¥ for N =50, 100 and 200. In the enlarged view
(figure 13b) the points in the interval 0.4 < I' < 0.6 have been connected by a
straight-line interpolant. For each value of N, at ) the interpolating curve has a kink,
but it does not follow that the vortex sheet also has a kink at the critical time 2.
At time tY the two points adjacent to I'= 0.5 are connected by a short vertical
segment whose length approaches zero as N > co. This implies that at the critical time,
the vortex sheet’s y-coordinate is a single-valued function of its z-coordinate. It was
also observed that for fixed time ¢ < ¢, = 0.375, the interpolating curves converge as
N - o0, with an error that is an asymptotic series in N ! as in (3.8). Typical values
exhibiting this convergence are yV(I' = 0.4,¢,) and y™(I" = 0.49,¢,) which are given
in table 1 and plotted in figure 14. The point at which the singularity forms
z(I' = 0.5,t) = 0.5 remains fixed by symmetry. The interpolating curve for N = 200
at £, = 0.375, is shown in figure 15. This curve describes the vortex sheet’s shape at
the critical time. The singularity is not visually apparent in the shape; as in the work
of Moore and Meiron et al., the vortex sheet has a bounded slope and shows no sign
of roll-up at the critical time.

Values of the vortex-sheet strength (o = (x3%+%%)7%) and curvature (x =
(@ryrr—yrxprr)o®) were computed using backward differences for I'< 0.5 and
forward differences for I > 0.5. The values at I" = 0.5 were taken to be the average
of the adjacent values. For ¢t < ¢, both o and « were smooth functions of I" with the
strength having a maximum at I = 0.5 and the curvature changing sign there. Values
of o and « along the curve at ¢, for N = 50, 100 and 200 are plotted in figure 16. The
results indicate the presence at I = 0.5 of a cusp in the vortex-sheet strength and
a jump discontinuity in the curvature. Note that these features of the vortex sheet
do not appear for any particular discrete approximation but only emerge in the limit
N —c0. As mentioned above, the Fourier coefficients’ decay rate f, &~ 2.5 suggests
that the curvature jump in the vortex sheet is infinite. The computed maximum
values of the sheet strength in figure 16 (a) increase with N. In view of the first-order
convergence of the computed sheet positions and the divergence of the sheet’s second
derivative at I" = 0.5, there is reason to doubt that a finite-difference approximation
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F1cURE 13.(a) Point vortex positions at ¢ for N = 50, 100, 200; (b) closeup of the straight-line
interpolant of the point positions for 0.4 < I < 0.6.

for o(I' = 0.5,1,) is reliable for determining whether the cusp’s amplitude is finite or
infinite. To resolve this issue we examine the Fourier coefficients of the computed
vortex-sheet strength at ¢,. Log—log plots in figure 17 show that these Fourier
coefficients decay algebraically at arate close to 1.5, an indication that the vortex-sheet
strength has a cusp of finite amplitude.

In spite of differences in the initial condition and methodology, the description of
singularity formation obtained here agrees with that of Moore (1984, 1979) and
Meiron et al. (1982). As previously mentioned, Higdon & Pozrikidis (1985) obtained
a different description of the singularity. However, they presented calculations using
only two different sets of mesh parameters and were unable to examine the limit as
their discretization is refined. Their conclusions therefore describe two particular
approximating curves whose relevance to the vortex sheet is unclear.
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Ficure 14. Values of the computed y-coordinates from table 1 plotted as functions of N7
(a) y¥(I' = 0.4,t, = 0.375)-10%; (b) y™(I" = 0.49,¢, = 0.375)- 10%. The curves are quadratic polyno-
mials in N~ whose coefficients are determined by least-squares fitting to the eight data points
in table 1. The y-coordinates in (a) are point positions and those in (b) are computed by linear
interpolation of adjacent point positions.
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FicURE 15. (a) Straight line interpolating curve for N = 200 at ¢, = 0.375. This curve describes
the vortex sheet’s shape at the critical time. (b) Closeup for 0.4 < I"' < 0.6.
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F16URE 16. Solution at t, = 0.375 for N = 50, 100 and 200. {a) vortex-sheet strength o.
(b) sheet curvature «.
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F1eure 17. Log-log plot of the Fourier coefficients’ amplitudes for the computed vortex-sheet
strength in figure 16 (a). The straight line has slope —1.5.
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Ficurg 18. Calculation with ¢ = 0.08 using N = 200, plotted at times ¢t = 0.071 and 2 = 0.094,
(@) point-vortex positions; (b) vortex-sheet strength o; (¢) curvature x at ¢ = 0.071; (d) curvature
K at 200 = 0.094.
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FicurE 19. Log-linear plots of the Fourier coefficients’ (2.2) amplitudes versus wavenumber for
the solution plotted in figure 18. Plotted times are ¢t = 0, 0.01, 0.06, 0.08, 0.094.

€
l\\\ 0.000625  0.00125 0.0025 0.005 0.01 0.02 004 - 0.08

50 1.28 1.08 0.88 0.7 0.52 0.36 0.22 0.12
100 1.18 0.99 0.8 0.62 0.46 0.31 0.19 0.11
200 1.115 0.93 0.75 0.58 0.425 0.285 0.175 0.105

ol 1.04 0.86 0.695 0.54 0.385 0.26 0.16 0.1

TaBLE 2. The dependence of the critical time on the initial amplitude. Values of £ are given. These
computations used Euler’s method with At = N~1. Two levels of Richardson extrapolation were
used to obtain the critical time estimates in the last row. All times are rounded to within 0.005.

3.3. The dependence on initial amplitude

The results presented thus far have used ¢ = 0.01 for initial condition (3.6). Results
using smaller initial amplitude are qualitatively similar, the difference being that the
critical time is larger and the vortex sheet’s maximum slope and amplitude at that
time are smaller. Larger initial amplitude produces a significant difference as shown
in figure 18 for which ¢ = 0.08. At ¢ = 0.071, the points near I = 0.5 lie on an almost
straight short-line segment of constant strength. At $2°° = 0.094 there are two places
along the curve at which points are passing each other vertically. These two places
correspond to maxima in the sheet strength and to jumps in the curvature. The
Fourier coefficients (2.2) of the vortex sheet shown in figure 19 contain a modulation
of the basic behaviour (3.2), a sign that two branch points are present. These results
suggest that the singularity appearing at I'= 0.5 for small initial amplitude
bifurcates to two singularities at a certain finite initial amplitude. Pozrikidis &
Higdon (1985) found a similar phenomenon in the dynamics of constant vorticity
layers, in that the layer thickens and rolls up at two places if the initial perturbation
amplitude is large enough.

Since studying the critical time’s dependence on e requires many separate
computations, it is desirable to use a less costly time-integration method instead of
the fourth-order Runge—Kutta method with small time steps that was used until now.
With Euler’s method the total truncation error is O(N1)+ O(At) and the two terms
can be balanced by choosing A¢ = N~. Using this time stepping, values of Y were
computed as before with initial amplitudes in the range 0.0006125 < ¢ < 0.08 for
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Ficure 20. The dependence of the critical time on the initial amplitude. The circles are the
extrapolated values from table 2. The curve is the asymptotic relation (3.7) derived using Moore’s
(1984) procedure.

N = 50, 100 and 200 (table 2). Two levels of Richardson extrapolation were applied
to obtain the critical-time estimates in the last row of table 2 (the values are rounded
to within 0.005). For ¢ = 0.01 the critical time obtained here is 0.385, in reasonable
agreement with the previous value 0.375, considering the values of N and Af used.
Figure 20 shows that there is good agreement between these computed critical times
and the asymptotic relation (3.7) derived using Moore’s procedure.

4. Closing remarks

Rosenhead’s point-vortex approximation for vortex-sheet evolution from periodic
analytic initial data has been examined. Our findings pertain to two issues: the
accurate numerical solution of the point-vortex ordinary differential equations, and
the nature of singularity formation in the vortex sheet.

The numerical integration of the point-vortex equations, with the initial condition
given by discretizing an analytic curve, is subject to difficulties. Due to the ill
posedness of the underlying continuous problem, the difference scheme is unstable
and therefore, spurious spatial perturbations introduced by roundoff error can lead
to inaccuracy in the form of irregular point motion. This phenomenon may also occur
in computations for other ill-posed initial-value problems e.g. Rayleigh-Taylor
instability (Baker, Meiron & Orszag 1980). In order to control this source of
computational error, which becomes more severe as the number of points increases,
we have introduced a filtering technique which suppresses the growth of the spurious
roundoff-error perturbations for a short time. Analyticity is important for the filter’s
effectiveness — we know a priort that the exact solution remains analytic for a finite
time and this should be reflected by a rapid decay of the discretization’s Fourier
coefficients. Another key ingredient is that the roundoff error, which is invisible at
small times in physical space, shows up clearly in wavenumber space. The numerical
evidence indicates that a filtered computation differs little from an unfiltered
computation performed using higher machine precision, although more work is
needed to establish conditions for the filter’s rigorous validity.

Apart from this difficulty arising due to roundoff error and instability of the
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difference scheme, there is the difficulty of maintaining a given accuracy in the time
integration. In a neighbourhood of the vortex sheet’s critical time, a small number
of point vortices develop sharply faster timescales. Accordingly, the fourth-order
Runge—Kutta method and time-step reduction were used when the goal was to
maintain high accuracy in the time integration. Since our main concern was the vortex
sheet, rather than the evolution of any particular finite number N of point vortices,
a less-expensive alternative strategy was also proposed for ¢ < ¢, namely to integrate
the point-vortex equations by the first order Euler method with At = N~! and then
to extrapolate to the limit N — oo.

The numerical evidence presented indicates that the point-vortex approximation
converges as N> c0, up to the vortex sheet’s critical time. Numerical vortex methods
have been proven convergent for flows with smooth vorticity (see Anderson &
Greengard 1985; Beale & Majda 1982; Cottet 1982; Hald 1979). Supplying a
convergence proof in the present case is an area for future work. Our results indicate
that fort < ¢, the error in the point-vortex approximation behaves like an asymptotic
power series in N~1. Since the operation count per time step is O(N?), this has
the important practical consequence that improved accuracy can be obtained by
extrapolating the results based on several moderate values of N rather than using
a single expensive computation with a large value of N. This approach should be
contrasted with the higher-order-accurate discretizations of the integral in (1.24)
which have been proposed by other investigators (e.g. Higdon & Pozrikidis 1985; van
de Vooren 1980; Baker 1980; Fink & Soh 1978). These discretizations assume a degree
of differentiability in the vortex sheet which is not present at the critical time. For
example, van de Vooren’s correction term in (1.8) is infinite for I' = 0.5 when ¢ = £,
In other words, these discretizations lose their consistency at the vortex sheet’s
critical time. This explains part of the difficulty in converging that these methods
have experienced with the present problem. Higher-order methods are also subject
to the roundoff error difficulty for certain mesh sizes. Were it not for the singularity
formation, using progressively higher-order-accurate discretizations might be an
appropriate alternative for dealing with the roundoff error difficulty (John 1959). This
is because a given error tolerance could then be attained using a coarser mesh (with
its smaller perturbation growth rates). However, in view of the current lack of a
rigorous convergence theory for ill-posed initial-value problems, convergence cannot
be taken for granted and it is reasonable to ask that convergence be demonstrated
numerically.

The computations presented used a linear-theory-growing eigenfunction of small
amplitude/wavelength ratio as the initial perturbation. Our results agree with the
findings of Moore (1984, 1979) and Meiron ef al. (1982) that a singularity forms in
the vortex sheet at a finite time. Our estimate for the order of the branch point is
not sharp, but it is close to 1.5, the order predicted by Moore’s asymptotics. We found
that at the critical time the vortex sheet’s slope is bounded, the sheet strength has
a cusp of finite amplitude and the sheet’s curvature is infinite at the singularity.
Critical time estimates were obtained whose dependence on the initial amplitude
agrees well with the asymptotic relation derived using Moore’s procedure. A new
finding is the simultaneous formation of two singularities along the sheet for large
enough initial amplitude. Properly used, the point vortex approximation is a reliable
and efficient tool for studying singularity formation in a vortex sheet and it
complements the techniques of Moore and Meiron et al. All of these methods are
approximate and there remains a need for a rigorous proof of singularity formation.

In our calculations, the interpolating curve developed self-intersections sooner past
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t, with increasing values of N. Pointwise convergence was not observed for £ > £, and
therefore, we can draw no conclusions about how (or even if) the vortex sheet evolves
past the critical time. We have called the point vortices’ behaviour past ¢, ‘the second
type of irregular motion’, but it is irregular only in that it does not yield the roll-up
expected for the vortex sheet. The point-vortex motion seen here for ¢ > ¢, may be
related to chaotic dynamics whose presence has been conjectured for large numbers
of point vortices (see Aref 1983). The point vortices’ behaviour has intrinsic
mathematical interest, but for ¢ > ¢, it may well be irrelevant to the vortex sheet’s
evolution. It is emphasized that these comments refer to the exact solution of the
point-vortex ordinary differential equations. As already mentioned in §2.4, we found
that using a rather large time step, i.e. solving the point-vortex equations less
accurately, delayed the appearance of self-intersections in the interpolating curve.
Figure 9 indicates that the dynamics of the time-discretized system can be quite
different (for ¢ > t,) than the exact point-vortex dynamics. Various time-stepping
strategies of the form At = CN~! (where C' = O(1)) were investigated but convergence
was not observed for ¢ > ¢, as N— 0o meaning that again, no conclusion about the
vortex sheet for ¢ > ¢, can be justified on the basis of these computations.

Moore (1979) and Meiron et al. (1982) felt that singularity formation may represent
a restriction on the validity of the vortex-sheet model. However, there are situations
in which a weak solution to an evolution equation exists, and is physically relevant,
past the time of singularity formation, e.g. shock waves in compressible flow (Lax
1973) and curvature discontinuities in flame fronts (Sethian 1985). The analogous
questions for a vortex sheet deserve attention. D. I. Pullin (private communication
1983) has conjectured that for ¢ > ¢, the vortex sheet rolls up on both sides of the
singularity, forming a double-branched spiral which vanishes in size as {—>t, from
above. Calculations using the vortex blob method (Krasny 1986) are consistent with
Pullin’s conjecture but more theoretical and computational work on this issue is
needed to better assess the validity and usefulness of the vortex-sheet model for
describing physical shear-layer dynamics.
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