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Two vortex-sheet evolution problems arising in aerodynamics are studied numeri- 
cally. The approach is based on desingularizing the Cauchy principal value integral 
which defines the sheet’s velocity. Numerical evidence is presented which indicates 
that the approach converges with respect to refinement in the mesh-size and the 
smoothing parameter. For elliptic loading, the computed roll-up is in good agreement 
with Kaden’s asymptotic spiral at early times. Some aspects of the solution’s 
instability to short-wavelength perturbations, for a small value of the smoothing 
parameter, are inferred by comparing calculations performed with different levels of 
computer round-off error. The tip vortices’ deformation, due to their mutual 
interaction, is shown in a long-time calculation. Computations for a simulated 
fuselage-flap configuration show a complicated process of roll-up, deformation and 
interaction involving the tip vortex and the inboard neighbouring vortices. 

1. Introduction 
An important problem in aerodynamics is to determine and control the structure 

of an aircraft’s wake. Not only is the wake important because of the induced drag 
on the generating aircraft, but also because it can pose a hazard for a following 
aircraft. The physical phenomena involved are complicated and simplifying assump- 
tions must be made in order to achieve progress. The present work studies a 
commonly used model in which the shed vorticity in the wake is replaced by a vortex 
sheet, i.e. a surface across which the tangential velocity component is discontinuous. 
A further simplification is to replace the spatial coordinate in the aircraft’s line of 
flight by a time coordinate. This changes the steady three-space-dimensional 
free-boundary-value problem into an initial value problem for the vortex sheet’s 
evolution as a curve in two space dimensions (the Trefftz plane). The physical process 
by which vorticity enters the wake at the wing’s trailing edge is accounted for by 
specifying an initial spanwise circulation distribution along the vortex sheet, 
corresponding to a particular loading on the wing. Two problems will be considered 
here : elliptic loading and the loading for a simulated fuselage-flap configuration. For 
background information on the vortex sheet/Trefftz plane model of an aircraft wake 
see Batchelor (1967, 57.8). Some possibilities and limitations of the model are 
reviewed by Smith (1986). 

The aim of this work is to present a computational method for studying the vortex 
sheet’s evolution. Even though the model under consideration is conceptually simple, 
the computational difficulties encountered are quite challenging. A numerical method 
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must be capable of accurately approximating the roll-up phenomenon, i.e. the 
formation in the vortex sheet of single- and double-branched spirals having an infinite 
number of turns. Another computational difficulty is that spurious perturbations 
introduced by computer round-off error can be amplified in regions where the vortex 
sheet is unstable. It is hoped that gaining a deeper understanding of these issues in 
the present context will lead to progress with more realistic wake models. 

Kaden (1931) derived an asymptotic expression for the rolling-up spiral that forms 
at  the tip of an elliptically loaded wing (see also Moore 1975; Guiraud & Zeytounian 
1977; and Saffman & Baker 1979). Pullin (1978) and Pullin & Phillips (1981) have 
studied similarity solutions for this tip vortex using numerical methods, obtaining 
good agreement with Kaden’s solution. These studies of asymptotic and self-similar 
solutions deal with a semi-infinite vortex sheet, in order to focus attention upon the 
basic roll-up process. Since the interaction between the two tip vortices is neglected, 
these results are valid for the finite-span evolution problem during a short time 
interval, before the two tip spirals grow significantly in size. There have also been 
many previous attempts to compute the time evolution of the finite-span vortex 
sheet. We shall briefly review some of the work on the elliptically loaded wing problem 
(see Saffman & Baker 1979; Hoeijmakers 1983, 1986; and Smith 1986 for further 
references). 

The earliest numerical study was by Westweter (1935), using the point-vortex 
approximation of Rosenhead (1931). The vortex sheet was approximated by a finite 
number of point vortices and the ordinary differential equations for the point 
vortices’ motions were integrated numerically in time. Later investigators (Takami 
1964 ; Moore 197 1 ) found that using larger numbers of point vortices and more accurate 
time integration methods did not lead to convergent results for the elliptically loaded 
wing problem. Instead, the point vortices moved in an irregular manner with the 
consequence that an interpolating curve drawn through them became tangled and 
developed self-intersections. 

Various approaches have since been investigated in order to obtain more reliable 
vortex-sheet results. One approach has been to replace the inner turns of the 
rolling-up spiral by an isolated point vortex. Any other point vortex that moves to 
within a specified distance of this isolated point vortex is removed from the 
calculation and its strength is added to that of the isolated point vortex. Moore 
(1974) showed that such a tip amalgamation procedure removed the small-scale 
irregular motion of the point vortices. Besides using an isolated point vortex to 
represent the inner spiral turns, Fink & Soh (1978) reset the other point vortices’ 
positions at every time-step so that they were equally spaced in chord length, and 
Hoeijmakers & Vaatstra (1983) used a second-order panel method to compute the 
velocity induced by the continuous part of the curve. These studies succeeded in 
obtaining computed curves that had up to four smooth outer turns of the tip spiral. 

Another approach was taken by Chorin & Bernard (1973) who replaced the point 
vortex ’ singular velocity field with a bounded velocity field in a small neighbourhood 
of the singularity. Kuwahara & Takami (1973) smoothed the point-vortex velocity 
field by letting it evolve in time according to the linear diffusion equation. Compu- 
tations showed that these devices stabilize the calculation although neither work 
carefully studied the computational accuracy obtained. 

The numerical methods mentioned thus far have in common that the computed 
velocity is obtained by discretizing an integral over the vortex sheet. Another 
approach has been to use the vortex-in-cell method (Baker 1979; Murman & Stremel 
1982) in which a point vortex’ velocity is computed approximately by solving a 
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Poisson equation on an underlying regular grid. Interpolation formulas transfer 
information between the grid and the point vortices. The cost per computational 
element for this method is significantly less than for the previously mentioned 
quadrature-based methods and consequently, the vortex sheet may be represented 
by a larger number of points. However, both studies concluded that while the vortex 
sheet’s large-scale properties could be correctly computed by this method, the fine 
structure was computed inaccurately. 

The present computational work seeks to study vortex-sheet evolution with greater 
accuracy and for longer times than has been achieved in the previous investigations. 
The approach taken is a refinement of the ideas expressed by Chorin & Bernard 
(1973). The key element in our computational approach is to desingularize the Cauchy 
principal value integral which defines the velocity of a Lagrangian point on the vortex 
sheet. The desingularized evolution equation is characterized by a smoothing 
parameter and the exact vortex-sheet evolution equation is recovered when that 
parameter is set to zero. DiPerna & Majda (1987a, b)  have recently begun a rigorous 
mathematical study of such limit processes. Numerical evidence will be presented 
here indicating that solutions of the desingularized equation converge to the vortex 
sheet as the smoothing parameter converges to zero. Outside a neighbourhood of the 
vortex sheet’s spiral centre, the convergence is uniform and the error behaves like 
an asymptotic series in powers of the smoothing parameter. 

The purpose of introducing the smoothing parameter is to make the problem 
computationally tractable. One effect of this desingularization is that the infinite 
spiral vortex sheet is approximated by a continuous curve having only a finite number 
of turns. As opposed to the exact solution, such an approximating curve can be well 
resolved using a sufficiently large, but finite, number of computational elements. By 
reducing the smoothing parameter, more turns are represented and the rolling-up 
spiral can be more closely approximated, within the limits imposed by the available 
computing resources. This desirable situation contrasts with what occurs when using 
the straightforward point-vortex approximation for the present problem (Takami 
1964; Moore 1971). In that case, refining the computational mesh does not lead to 
a better approximation of the vortex sheet. The desingularization used here also 
effectively diminishes the vortex sheet’s short-wavelength instability. An important 
practical consequence is that the computational inaccuracy arising from the growth 
of short-wavelength perturbations introduced spuriously by computer round-off 
error can be controlled. The harmful effect that round-off error can have upon the 
computational accuracy will be demonstrated. 

Previous numerical studies have not carefully examined the issue of computational 
accuracy. The present work will numerically demonstrate that, at a fixed moderate 
time, the desingularization approach converges with respect to refinement in the mesh 
and smoothing parameters. Several calculations, using relatively large values of the 
smoothing parameter, will also be presented which follow the evolution to times at 
which, due to computational expense, the numerical convergence has not been 
extensively documented. In  these cases, we shall strive to make the effect of the mesh 
size negligibly small. These results therefore depend upon the specific value of the 
smoothing parameter used in the calculation. It is fair to question the extent to which 
such long-time results describe the vortex sheet’s actual evolution. The long-time 
results should therefore be viewed cautiously. It is believed that they correctly reflect 
large-scale properties of the vortex sheet such as overall spiral shapes, sizes and 
relative positions. However it is not known to what extent they accurately describe 
the small-scale structure. The long-time results are presented with the hope of 
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FIGURE 1. (a) Circulation f, (b) initial vortex-sheet strength u (plotted as functions of the spanwise 
coordinate 5). Dashed line : elliptically loaded wing ; solid line : simulated fuselageflap 
configuration. 

stimulating thought and providing possible clues about the true nature of vortex-sheet 
evolution. 

The paper is organized as follows. The governing equations and numerical method 
are presented in $2. Computations for the elliptically loaded wing and the simulated 
fuselage-flap configuration are given in $3 and $4. The results are discussed and 
conclusions are given in $5.  

2. Problem description and numerical method 
2.1. Governing equations 

The vortex sheet is defined by a curve z(T, t )  = z(T, t )  + iy(T, t )  in the complex plane 
(z is the spanwise coordinate). The variable r is a Lagrangian parameter along the 
curve which measures the circulation contained between a base point and any other 
point on the sheet. The variable t is time. The vortex-sheet strength c = -ciT/ds, 
where s is the arclength, is the jump in the tangential component of velocity across 
the sheet. For the problems considered here, it is convenient to make a change of 
variable r = r(a), where 0 < a < IT. The conditions r(0) =  IT) = 0 will be imposed 
so that the values a = 0,n correspond to the wing tips. The evolution equation for 
the vortex sheet is 

(1) - = K(2-Z) r(&) da" 

(Birkhoff 1962 ; Rott 1956). In this equation z = z(r(a), t ) ,  Z = z(T(b), t )  and 
K(z) = - 1/27tiz is the Cauchy kernel (Stein & Weiss 1971). The slash on the integral 
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sign indicates that the Cauchy principal value of the integral is taken. The bar over 
the time derivative on the left denotes the complex conjugate. The vortex sheet's 
initial condition is z(f(a),O) = -cosa so that it coincides with the straight line 
segment - 1 < x < 1. The problem's definition is completed by specifying the 
circulation distribution r(a). 

Figure 1 shows the circulation r and the corresponding initial vortex-sheet 
strength cr plotted as functions of the spanwise coordinate x for the two problems 
studied in this paper. The first problem is for elliptic loading, 

T(a) = sin a. (2) 

In this case, the initial velocity &/at of a point on the vortex sheet is -+i if 1x1 < 1. 
One might conclude from this that for t > 0,  the vortex sheet translates steadily 
downward without changing shape from its initial flat state. Note however that the 
initial vortex sheet strength CT = x( 1 -x2)-:  has algebraic singularities at x = & 1. On 
the horizontal axis y = 0, the sheet's velocity becomes infinite aa z + l  from above 
and as x+- 1 from below. Also, it is commonly accepted that for t > 0 the two ends 
of the vortex sheet roll-up into counter-rotating spirals. This suggests the possibility 
of non-uniqueness of solutions to this initial-value problem. Presumably the rolling- 
up vortex sheet is the physically relevant solution although the existence of such 
a solution has not yet been rigorously proven. 

The second problem to be studied here uses elliptic loading for 0.7 < 1x1 < 1 but 
has a circulation distribution away from the wing tips which simulates the presence 
of a fuselage and deployed flaps. In  each interval 0 < 1x1 < 0.3 and 0.3 < 1x1 < 0.7, 
r is defined to be a cubic polynomial in 1x1. The polynomials' coefficients are chosen 
so that r and cr are continuous at  the points 5 = 0, k0.3, f0.7. Finally, there is a 
maximum value r = 2 a t  1x1 = 0.3 and a local minimum value r = 1.4 at x = 0. 
Donaldson, Snedeker & Sullivan (1974) asserted that for each local maximum that 
is present in the absolute value 1cr1 of the initial vortex-sheet strength, a spiral forms 
during the sheet's evolution. Besides the single-branched spiral a t  each tip, double- 
branched spirals form inboard, taking their sense of rotation from the sign of the 
initial vortex-sheet strength at the local maximum of la]. This problem was studied 
numerically by Baker (1979), Murman & Stremel(l982) and Hoeijmakers & Vaatstra 
(1983). 

2.2. Desingularization 
In preparation for desingularizing the vortex-sheet equation, we consider a more 
familiar singular integral operator, the Hilbert transform Hf(z) of a function f(x), 

Hf(x) = lim 1 
€4 Z+6l.E ,4 s QO(x-s)  f (s)ds = lim & , ( x - s ) ~ ( s )  ds. (3) 

The kernel Q,(x) = x/n(xa+y2) is called the conjugate Poisson kernel. The first limit 
in (3) is the definition of the integral's Cauchy principal value. The second limit 
expresses Hf(x) as the boundary value of a function which is harmonic in the upper 
half-plane {(x, y) : y > O}. Both expressions are useful in studying the Hilbert 
transform's properties. The point in mentioning this is that the second expression 
provides heuristic motivation for considering a desingularized approximation to the 
vortex-sheet evolution equation (1). 

Let 6 > 0 be an artificial smoothing parameter and consider the '&equation', 
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where K&) = K(x) (Izl2//lzl2++S2). Since K,(O) = 0 if 6 > 0, the integrand vanishes 
when a” = a and the integral is proper. For a given value of S > 0 the solution of the 
&equation (4) is a curve which approximates the vortex sheet. As S - t O  the 
desingularized kernels K,(z) converge to the Cauchy kernel K(z)  for z =l= 0. It may 
therefore be expected that the solution of the &equation converges to the solution 
of the vortex-sheet equation (1 ). Numerical evidence supporting this hypothesis will 
be presented below. This issue has also recently been studied for a periodic vortex 
sheet (Krasny 1986b) and for an interface separating fluids of slightly different 
densities (Anderson 1985). 

2.3. Discretization 

Straightforward discretization techniques will be applied to solve the 6-equation 
numerically. Let zj(t) = x,(t)+iyj(t) be an approximation to the vortex sheet’s exact 
positionz(r(a,), t)atequidistantparametervaluesaj = n(j- l ) /2N,j  = 1, ..., 2N+ 1.  
The integral in (4) is approximated by the trapezoidal rule, yielding a system of 
ordinary differential equations for the points’ motion, 

The quadrature weights are defined by wk = r “ ( a k )  n / 2 N ,  k = 1, . . . , 2 N +  1 (wl and 
w ~ ~ + ~  have the appropriate extra !j factor). The initial point positions are given by 
zj (0)  = - cos aj. If 6 is set to zero and the k = j term is omitted from the sum, the 
system (5) describes the evolution of a set of point vortices. For 6 > 0 the basic 
computational element is called a ‘vortex blob ’ since it amounts to making a smooth 
approximation of a point vortex. Our computations used the fourth-order Runge- 
Kutta method with a fixed time-step At to integrate the real and imaginary parts of 
the system (5). 

The computations took advantage of several symmetries in order to reduce the 
computational expense. The problems studied are symmetric about a = fn, allowing 
a reduction by in the number of computational elements. A further factor off was 
gained by using the fact that K,(z,-zk) = -K,(z,-z,). The computations were 
performed on VAX 8600 and CRAY computers. Vectorizing the code for the CRAY 
was straightforward. 

As occurs for point vortices, the vortex-blob equations ( 5 )  form a Hamiltonian 
system with the Hamiltonian function given by 

In the computations, the invariance of H was used to check the time integration’s 
accuracy. Another invariant of the point-vortex equations is 

the lateral position of the centre of circulation on each side of the symmetry plane 
x = 0. This quantity is also invariant when 6 > 0 and in our calculations X was 
conserved to more significant digits than was H .  It should be noted that both Hand 
X as defined above are discretizations of analogous conserved integrals of the 
continuous &equation (4) for 6 >, 0. 
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We emphasize that the calculations necessarily use a finite set of different values 
for N, At and 6. Since we are interested in the vortex sheet we shall draw conclusions, 
based on this collection of numerical experiments, about the limiting behaviour when 
N + m ,  At-tO and S + O .  Some of these conclusions will be supported by extensive 
numerical documentation of the limiting behaviour. Other conclusions about the 
vortex sheet, based upon a small number of long-time calculations with a relatively 
large value of the smoothing parameter, are more speculative since they have not 
been thoroughly validated, owing to the restrictions imposed by computing resources. 
However, care was taken to ensure that the discretization error in these long-time 
calculations is negligible. This narrows the uncertainty to the only remaining 
approximation, namely the effect of using a non-zero value for the smoothing 
parameter 6. 

The strategy adopted is to fix a value of 6 and then to choose the mesh parameters 
(N-l and At) small enough so as to obtain an accurate solution of the continuous 
&equation (4) over the desired time interval. Previous investigators (Moore 1971 ; 
Takami 1964) found that point-vortex calculations for the elliptic loading problem 
do not converge as the mesh parameters are refined. By contrast, it  will be 
demonstrated that for fixed 6 > 0, numerical solutions of the vortex-blob equations 
( 5 )  do converge under mesh refinement to a smoothly rolling-up curve. Furthermore, 
the solutions obtained for different values of 6 converge to a limit curve as S+O. This 
limit curve can then be interpreted as a weak solution of the original vortex-sheet 
evolution equation (1 ). 

3. The elliptically loaded wing 
3.1. Early stage of the roll-up 

Figure 2 shows the computed curve’s evolution over the time interval 0 G t G 4 for 
the elliptically loaded wing problem. The value 6 = 0.05 was used for the smoothing 
parameter, with the values N = 200 and At = 0.01 for the mesh parameters. It will 
be demonstrated shortly that this numerical solution of the bequation (4) has 
converged to within plotting accuracy with respect to refinement in the mesh 
parameters N and At. This computation was performed in single-precision arithmetic 
and took less than half an hour to run on a VAX 8600 computer. The vortex-blob 
positions are plotted on the left side of figure 2 and a trigonometric interpolating 
polynomial in the variable a is plotted on the right side. The vortex-blob positions z, 
approximate the vortex sheet at the equally spaced parameter values a, and the 
coefficients of the interpolating polynomial are simply the discrete Fourier cosine 
coefficients of the 5. 

The curve in figure 2 rolls-up smoothly, forming two counter-rotating spirals each 
with 13 complete turns at time t = 4. Plotting the interpolating curve helps to bring 
out details of the computed solution which may not be apparent from the vortex-blob 
positions alone. Each tip vortex travels upward for a short time, until the far-field 
effect of the other tip vortex becomes strong. Thereafter, the entire spanwise 
structure moves downward, propagating roughly like a vortex dipole. As time 
progresses, there is also a slow drift inward of each rolling-up core, toward the 
symmetry line z = 0. Both the horizontal and vertical dimensions of the curve 
increase with time, as does the curvature at the midpoint z = 0. 
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FIQURE 2. Early stage of the roll-up (0 < t < 4). Time sequence of the solution computed using 
6 = 0.05, N = 200 and At = 0.01. The vortex-blob positions are plotted on the left and an 
interpolating curve is plotted on the right. 

X 

3.2. Convergence with respect to mesh re$nement 
Figure 3 shows a closeup of the interpolating curve in the tip region a t  time t = 4 
for computations using values of N equal to 50, 100 and 200. The time-step for these 
calculations (At = 0.01 as in figure2) was sufficiently small that the time- 
discretization error in the plotted curves is negligible. It is clear that the solution 
converges as the value of N increases, with the curve's outer turns converging fastest. 
Each frame in figure 3 has a small plus sign ( + ), a circle (0 ) and a box (0 ) drawn 
at the computed curve positions corresponding to the three parameter values 
a = in,$ and in. More detailed information about the convergence at these 
representative values of a is given in figure 4 which plots the computed x-coordinate 
as a function of N-' for several values of N in the range 40 < N < 800. The 
convergence is non-monotonic as N increases. The computed x-coordinates have 
already converged to within three significant digits when N = 200. 
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FIGURE 3. Convergence aa N +  GO. Closeup view of the tip region at t = 4. The interpolating curve 
is plotted for computations using N = 50, 100 and 200. The values 6 = 0.05 and At = 0.01 were 
used, as in figure 2. +, a = $t; 0, @; 0, in. 

The effect of changing the time-step is shown in figure 5 which plots the interpo- 
lating curves at t = 4 that were computed using At = 0.16,0.08 and 0.04. A smooth 
curve appears as the time-step is reduced, with the outer turns converging fastest. 
The value N = 200 was used in each case so that, as already noted, the a-discretization 
error in the plotted curves is negligible. The Hamiltonian values HAt, (6 ) ,  that were 
computed using several choices of At are plotted in figure 6 (a) over the time interval 
0 < t < 4. For large values of At, the computed Hamiltonian decays significantly in 
time. However, with At = 0.01 (as in figure 2), HA, is conserved to machine precision. 
The increase in the computed values of H,,,, for t > 0.5 is not significant; figure 6 (b) 
shows that for At < 0.16, the computed values HA, at t = 4 converge like (At)4,  the 
asymptotic order of accuracy for the RungeKutta method. 

Figures 3-6 establish the numerical method’s ability to accurately solve the 
&-equation (4) for a fixed value of 6 > 0. Maintaining a specified level of accuracy 
for longer times or with a smaller value of S is more expensive, requiring larger N 
and smaller At. Care was taken to ensure that the results presented in the remainder 

. 
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FIGURE 4. The x-coordinate of the computed curve at t = 4 corresponding to the three parameter 
values a = in (+), a = an (0) and a = i n ( 0 )  plotted as a function of N-’ in the range 
40 < N < 800. The values 8 = 0.05 and At = 0.01 were used, as in figure 2. 

of this paper have negligible discretization error in time t and in the curve parameter 
a. 

3.3. Convergence with respect to the smoothing parameter 

In order to document the method’s convergence as 6+0, results were obtained at  
t = 4 over the range of smoothing parameter values 0.03 < S < 0.4. Views of the tip 
region for 6 = 0.2, 0.1 and 0.03 are plotted in figure 7 (see also 6 = 0.05, plotted in 
figure 3). The solution is most sensitive to 6 in a neighbourhood of the tip where there 
is a small ‘hook’, similar to that seen in the work of Murman & Stremel (1982). The 
number of complete turns in the computed curve increases as S becomes smaller. 
Figure 8 shows a closeup view of the 6 = 0.03 case in which 30 complete turns are 
present. This calculation used the values N = 1200 and At = 0.01, and took 17 hours 
of C.P.U. time to run in single-precision arithmetic on a VAX 8600 computer. 

Data was collected for values of S in the interval 0.05 < 6 < 0.4. Owing to the high 
computational expense of resolving the solution for small values of 6, only two smaller 
values, 6 = 0.04 and 6 = 0.03, were also computed. Using this set of computed curves, 
detailed information about the nature of convergence as S+O, at the fixed time t = 4, 
is given in figures 9-1 1.  

Figure 9 contains information about how the overall size of the computed curve 
depends on 6. Figure 9(a) plots the curves’ maximum z-coordinate (zmax) and the 
maximum and minimum y-coordinates (y,,,, ymin), as functions of 6. Figure 9(b) 
plots the U-values (azmax7agmax) at which the maximum 2- and y-coordinates are 
attained (the a-value corresponding to ymin is not plotted since, by symmetry, it 
always occurs at a = in). Nothing is plotted for ymax and aymax in the interval 
0.35 < 6 < 0.4 because, with such large values of the smoothing parameter, the 
computed curve did not contain a complete turn a t  t = 4. The small circles in figure 9 
are the data values for 0.03 < 6 < 0.4, in intervals of A6 = 0.01. The solid lines in 
figure9 are quadratic polynomials in 6 whose coefficients were determined by 
least-squares fitting to the data values. The horizontal and vertical dimensions of the 
computed solution increase monotonically as 6 becomes smaller. It may be inferred 
from the good fit obtained that limiting values of these various quantities exist as 
S + O  and that the convergence is like an asymptotic power series in 6, e.g. 

Xm,,(S) = z,a,(o)+c,6+c,s~+ ... . 
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FIQURE 5. Convergence iw At+-0. Closeup view of tip region a t  t = 4. The interpolating curve is 
plotted for computations using At = 0.16, 0.08 and 0.04. The values 6 = 0.05 and N = 200 were 
used, in figure 2. 

In  particular, the limit curve’s outer dimensions are fairly insensitive to the precise 
value of 6. Similar convergence waa also observed in a study of a periodic vortex sheet 
(Krasny 19863). 

Figure 10 shows the variation with 6 of the computed 2-coordinates for the three 
curve parameter values a = in ( + ), +@ (0) and (a). The data values in each frame 
have been connected by a straight line interpolant for clarity. Some of the 
corresponding physical points have already been plotted in figure 3 and figure 7. The 
oscillations appearing in figure 10 are due to the fact that for fixed a, the 
corresponding physical point travels around the endpoint a = x as 6 decreases. For 
large enough 6, the curve has no turns at all (the right side of the &equation (4) 
vanishes as 6 becomes large). As 6 is reduced, more turns appear in the curve and 
the physical point corresponding to a fixed value of a appears on successive turns. 
The extrema of the oscillations in figure 10 occur when the computed curve has a 
vertical tangent since this is the condition that the physical point’s x-coordinate 
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FIGURE 6. (a) Values of the Hamiltonian HAt,  (6), plotted vs. time over the interval 0 Q t Q 4, for 
computations performed with several values of At. These computations used 6 = 0.05 and N = 200. 
(a) Log-log plots of the computed error at  t = 4, ~HM-H, , .o l~  vs. At. The straight line has slope 4, 
the asymptotic convergence rate for the fourth-order Runge-Kutta method. 

changes direction. Thus for each value of a in figure 10, the number of complete cycles 
in the graph is also the number of the turn, counting from the outermost turn, on 
which the physical point is located. For example, with a = gn (figure lob) there are 
5 complete cycles and the physical point, denoted by a circle (O), is located on the 
fifth turn of the 6 = 0.03 solution in figure 8. A related feature is that the oscillation 
amplitude in figure 10 becomes smaller as a increases. This is because larger values 
of a are closer to n, the computed curve's endpoint, and hence are located on inner 
turns of smaller radius. For each value of a, the oscillations have a characteristic 
wavelength h which also depends upon 6. If the wavelength h vanished with the 
smoothing parameter 6, it would imply that the physical point travels infinitely often 
around the endpoint. This cannot occur if the physical point ultimately lies on a 
particular turn of the limit spiral. Consequently, it is proposed that for each curve 
parameter value 0 < a < n, the oscillation wavelength h remains strictly positive as 
&+ 0. 

Figure 11 plots, as a function of 6, (a) the 2-coordinates (to the right of the endpoint 
a = n) at which the curves have a vertical tangent and (b) the corresponding a-values. 
Only the eight outermost turns are included in this plot since too few data points 
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RQURE 7. Views of the tip region at t = 4 for smoothing parameter values 6 = 0.2, 8 = 0.1 and 
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were available for the inner turns. Again, small circles show the data values for 
0.03 < 6 d 0.4, in steps of A8 = 0.01, and the solid lines are least-squares quadratic 
polynomials in 6. The good fit obtained indicates that, away from the spiral centre, 
the error due to smoothing behaves like an asymptotic series in powers of 6, (8). The 
convergence of the x-coordinates in figure 11 is monotonic and occurs faster away 
from the limit spiral’s centre. 

Qualitatively similar behaviour in the limit 8+0 was observed at other times. To 
illustrate this, closeup views in figure 12 show the tip region at t = 0.1, over the range 
0.003 < 6 < 0.015. The 6 = 0.003 solution contains 23 turns. Except for the smaller 
scale, figure 12 resembles the longer time, larger 6 results in figure 7. In the next 
subsection we use the 6 = 0.003 calculation to examine some aspects of the solution’s 
instability to short-wavelength perturbations. 

3.4. Instability for a small value of 6 
The 6 = 0.003 computation shown in figure 12 at t = 0.1 used N = 2000 and 
At = 0.0005. We reiterate that the discretization error in this solution is negligible. 
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FIGURE 8. Closeup view of the tip region at t = 4 for S = 0.03. Thirty complete turns are 
present. +, a = 4plr; 0, #n; O,@t. 

However, as the value of the smoothing parameter is reduced, the solution becomes 
less stable and as a result, spurious short-wavelength perturbations introduced by 
computer round-off error can amplify and damage the computational accuracy. 
Examining these inaccurate computations actually yields useful information about 
the genuine solution’s stability. This is illustrated in figure 13 which compares the 
results obtained using 7-digit arithmetic (VAX single precision) and 14-digit 
arithmetic (CRAY single precision). The VAX 8600 calculation took 23 hours of 
C.P.U. time and the CRAYl calculation took less than half an hour. The computed 
curves for 0 f x < 0.7 were quite flat and so only the interval 0.7 f x f 1 is plotted 
in figure 13. Short-wavelength, small-amplitude waves appear on the curve’s outer 
turn in the 7-digit computation, but they are absent from the 14-digit result. If the 
single-precision computation in figure 13 (a) was allowed to proceed, the waves would 
roll-up into small double-branched spirals and concurrently, these structures would 
be convected into the core. 

A similar phenomenon occurred in computations for a periodically perturbed 
vortex sheet (Krasny 1986 a, b). The computer’s finite-precision arithmetic introduces 
spurious perturbations into the calculation at the amplitude of the round-off error. 
These perturbations are amplified in the region where the solution is unstable, leading 
eventually to the appearance of waves as in figure 13(a). In the periodic case, it  was 
shown using linear stability analysis of a flat constant-strength vortex sheet that for 
each value of 6 > 0, there is a maximum growth rate w S-’ for a wave of wavelength 
w 6. Depending on the perturbation amplitude (i.e. the round-off unit) and the 
time interval over which the solution is computed, these waves may destroy the 
calculation’s accuracy. This source of computational error should be distinguished 
from discretization (or ‘truncation’) error whose effect was examined in figures 3-6. 
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FIQURE 9. Dependence on the smoothing parameter 8 at t = 4. (a) Extreme values zmax, ymax, ymin. 
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is always a = jn, owing to symmetry. The small circles are the computed values for 0.03 < 8 < 0.4, 
in steps of A8 = 0.01. The solid lines are quadratic polynomials in 8 whose coefficients were 
determined by least-squares fitting to the data values. 

It is also interesting to examine the solution’s ‘vorticity ’ w(z,  t ) .  If z denotes a point 
in the complex plane, the expression on the right side of the &equation (4) defines 
the complex-conjugate velocity (u-iv) (2 ,  t ) .  For 8 > 0, this velocity field is not a 
solution of the Euler equations, but it is divergence-free. It is natural to define the 
approximate vorticity by 

The scalar quantity w is related to the circulation r around a closed curve by Green’s 
theorem, = $udx+vdy = jj wdxdy. Figure l4(a) is a contour plot of the 
computed U-values for the S = 0.003 solution. A log-linear plot of w v8. x on the 
horizontal line through the core’s centre is shown in figure 14(b). The global 
maximum value w x 500 occurs at the core’s centre and there are local peaks in w 
on the curve’s outer turns. The magnitude of w decreases rapidly away from the core. 
The smoothness of w in figure 14 is due to the integration by which it is defined. Note 
also from the definition that as S-+O,w(z,t)  either becomes infinite or vanishes, 
depending upon whether or not z lies on the limit curve. 

Moore (1974) found that an instability similar to the one in figure 13 (a) can occur 
for point-vortex/tip-amalgamation computations. He quoted a suggestion of 
Professor P. G. Saffman that the instability occurs near a local maximum of the 
vortex-sheet strength. Our results are consistent with this. In figure 14(a) ,the 
magnitude of w on the curve has a local maximum in the interval 0.75 < x < 0.95, 
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FIQURE 10. Dependence on the smoothing parameter 8 at t = 4. The 2-coordinate of the physical 
point corresponding to three fixed values of a is plotted. (a) +, a = $t; (b) 0, a = Ex; (c) 0, a = ix.  
The small symbols in each frame are the computed values over the interval 0.03 < 8 < 0.4. A 
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away from the rolled-up core (note the narrow contour region at level w = 25 in this 
2-interval). An analysis by Moore (1976) indicates that the rolling-up spiral is linearly 
stable to small perturbations. Close examination of the core in figure 13(a) showed 
no spurious waves, thus providing support for Moore’s conclusion. 

3.5. Comparison with Kaden’s solution 
We shall compare the solution computed using S = 0.003 with the following aspects 
of Kaden’s spiral. Iff denotes the fraction of circulation contained at time t between 
the spiral’s centre and the outermost point of vertical tangency thenf e d (see Moore 
1974). At any instant of time, Kaden’s spiral is described by r x (2Ar): and r e 8-f, 
where r is the radial distance from the spiral’s centre, r is the circulation contained 
between the spiral’s centre and the point at radius r ,  and 8 is the polar angle. The 
constant h cannot be obtained from Kaden’s analysis, but Pullin (1978) gave the 
value h e 2 based upon numerical solutions for the semi-infinite, self-similar vortex 
sheet. In  deriving Kaden’s expressions, the effect of one core on the other is neglected 
(see Moore & Saffman 1973 for a simple derivation). Therefore, our comparison is 
performed for t < 0.1, when the interaction between the two tip vortices can be 
expected to be small. 

The computed circulation fraction fws. time t is plotted on log-log scales in 
figure 15(a). Also plotted is a straight-line segment of slope f ,  the exponent from 
Kaden’s expression. Figures 15(b and c) pertain to the computed curve at  time 
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FIGURE 11. Dependence on the smoothing parameter 6 at t = 4. (a) x-coordinates to the right of 
the endpoint 01 = x at which the curve haa a vertical tangent. (b)  Corresponding a-values. The small 
circles are the computed values for 0.03 < 6 < 0.4, in steps of A6 = 0.01. The solid lines are 
least-squares quadratic polynomials in 8. The numerical 1 refers to the outermost turn and the 
numeral 8 refers to the eighth inner turn. 

t = 0.1 (see figure 12, S = 0.003). The turns of the computed curve are visually circular 
and we would like to determine an approximate ‘ centre ’ of the rolled-up region in 
order to measure the curve’s radial coordinate. The tip point (a = x )  was found to 
be a poor choice for the centre owing to the presence of the small spurious hook. 
Instead, two line segments normal to the curve were constructed at horizontal and 
vertical tangency points for a portion of the curve which is less sensitive to the value 
of 6. The approximate centre z, was taken as the intersection of the two normal line 
segments. This enabled us to compute the curve’s radial coordinate, r! = lz,-zcl. 

Log-log plots of the computed circulation f v8. radius r ,  and radius r V.S. polar 
angle 0 are shown in figures 15(b and c). The figures omit small values of r, where 
the solution depends most strongly on S, and also large values of r, where Kaden’s 
solution is not valid. The computed data presented correspond to the 17 outermost 
turns of the curve. The straight lines in figures 15(b and c) have slopes f and - 5  
respectively, the exponents from Kaden’s expressions. 

An estimate for the constant A in the relation r = (2Ar)t was obtained as follows. 
The two vortex-blob indicesj, = 120 andj, = 530 encompass the 17 outermost turns 
under consideration (counting j= 1 as the curve’s right endpoint and 
j = N +  1 = 2001 as the curve midpoint, at x = 0). The log-log data in figure 15(b) 
have slope m M 0.508, obtained using the divided difference associated with j, and 
j,. For each vortex blob z, with index j, < j < je, the computed values of r, and r, 
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FIQURE 12. Views of the tip region at t = 0.1 for several smoothing parameter values in the 
range 0.003 Q 8 Q 0.015. There are 23 complete turns present in the 6 = 0.003 case. 

yield an estimate A, via the relation r, = ( 2 4  r,)m. The estimates so obtained satisfied 
1.89 < A, < 2.08. 

The computed results for the finite-span vortex sheet are in good agreement with 
Kaden’s solution for the exponents, and with Pullin’s (1978) result for the constant 
A. The computed radial DS. polar-angle dependence (figure 15c) behaves like r x 8-c 
over a large interval with a value of C slightly greater than t. The small discrepancy 
with Kaden’s expressions and Pullin’s result may be due to either the non-zero value 
of 6 being used, or to the imprecision in determining the coordinates of the computed 
spiral’s centre. 

3.6. Late stage of the roll-up 
Figure 16 shows the results of a long-time calculation computed with the value 
6 = 0.2. The reason for using a relatively large value of S is practical; it  is expensive 
to accurately compute solutions for small values of 6 over a long-time interval. It 
was already noted however that the curve’s overall shape at t = 4 depends contin- 
uously on S (figure 9). The extent to which this remains true at t = 50 has not been 
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FIGURE 13. The effect of round-off error. Solution using 6 = 0.003, N = 2000 and At = 0.0005, plotted 
at t = 0.1. (a) 7-digit arithmetic (VAX single precision). (a) 14-digit arithmetic (CRAY single 
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documented. Nonetheless, these results may be useful in giving a hint about the 
vortex sheet’s actual long-time behaviour. 

The main features that were observed at early times in figure 2 are continued here 
in figure 16 - roll-up of the tip regions and propagation downwards of the entire 
spanwise structure. In figure 16, the cores gradually slow their lateral approach. A t  
t = 50, the curve’s endpoint a = x has the 2-coordinate 0.81, which is close to the 
lateral invariant of motion X % 0.79, (7). The curve continues to grow in size M it  
evolves. At late times, the curve portions closest to the line 2 = 0 become flattened. 
The curve’s inner turns remain quite circular but the outer turns become non-circular. 
It is clear from comparing the computational points’ separation at consecutive times 
that the curve’s outer turn is highly stretched. At late times, the curve shows some 
resemblance to the streamline pattern of a steady solution of the two-dimensional 
Euler equations (Batchelor 1967, $7.3). Quantifying this observation may be an 
interesting topic for future study. 

4. The simulated fuselagc+flap configuration 
This problem’s evolution can be divided, somewhat arbitrarily, into early, middle 

and late stages, roughly corresponding to increasing degrees of interaction among the 
vortices in each half-span. The vortices form in the early stage (0 < t < 1), remaining 
small and well-separated during this time interval. They maintain their individual 
identity in the middle stage (1 < t < 4) but interact more strongly through rotation, 
propagation and strain-induced elliptical deformation. These interactions continue 
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FIGURE, 14. (a) Contour plot of the computed vorticity o, (9), in the tip region of the d = 0.003, 
t = 0.1 solution. The vortex-blob positions are also plotted. A thin contour region near the flat part 
of the curve contains a local maximum at level o x 25. ( b )  A log-linear plot of o w.s. z on the 
horizontal line through the core’8 centre. 

into the late stage ( t  > 4) and are then also accompanied by even stronger interactions 
in which the vortices lose some of their individual identity. 

4.1. Early stage 
Results at t = 0.1,0.3 and 0.5 for the simulated fuselageflap configuration are shown 
in figure 17. A 6 = 0.1 calculation (N = 200, At = 0.02) is shown in figure 17 (a )  and 
a S = 0.02 calculation (N = 1000, At = 0.002) is shown in figure 17 (b). Three vortices 
form in each half-span region : a single-branched tip vortex and two double-branched 
spiral vortices further inboard. Adjacent to the tip vortex, and having the same sense 
of rotation, is the ‘flap vortex’. Further inboard and having the opposite sense of 
rotation is the ‘fuselage vortex’. Such structures were predicted to form by 
Donaldson et al. (1974). The tip vortex rolls-up first, followed closely in time by the 
flap vortex, with the fuselage vortex rolling up some time later. At t = 0.5, the flap 
vortex is the largest of the three vortices. With S = 0.1, the roll-up proceeds slowly 
and the fuselage vortex has still not formed at t = 0.5. By contrast, with 8 = 0.02 
the roll-up is quicker and more of the tightly wound spiral structure is evident. The 
positions of the vortices are in good qualitative agreement with what has been found 
by previous numerical investigations (Hoeijmakers & Vaastra 1983 ; Murman & 
Stremel 1982; Baker 1979). 

Single- and double-precision computations using the value 6 = 0.005 are shown in 
figure 18. The single-precision calculation (figure 18a) shows a clumping of vortex 
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in each frame haa slope given by the exponent in Kaden’s expressions. The computed solution in 
(a) and (c) corresponds to the 17 outermost turns of the curve. 

blobs and the formation of spurious waves. Consistent with our previous remarks on 
instability and round-off error for computations with a small value of 6, the waves 
are absent from the double-precision calculation (figure 18b). Notice that the flap 
vortex has begun to roll-up on a small scale at t = 0.1 unlike in the larger 6 
calculations of figure 17. Figure 18 (c) contains a closeup view of a genuine wave which 
is believed to roll-up for t > 0.3 into a double-branched spiral vortex with the same 
sense of rotation as the tip and flap vortices. The formation of this fourth vortex may 
be due to the discontinuous slope in the initial vortex-sheet strength at 2 = 0.7 (see 
figure 1). A fourth vortex was not seen in the previous numerical investigations and 
it is not predicted by the criterion for vortex formation given by Donaldson et al. 
(1974). Since its growth would be inhibited by the stretching which occurs between 
the tip and flap vortices, the fourth vortex may not significantly affect the dynamics 
of the solution. Further study of this new phenomenon, though desirable, would 
strain our present computational resources. 
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FIQURE 16. Solution over the time interval 10 < t < 50 using S = 0.2. The vortex-blob positions 
are plotted on the left and an interpolating curve is plotted on the right. 

4.2. Middle stage 

The values 6 = 0.1 and 6 = 0.05 will be used to examine the long-time dynamics. 
Figure 19 shows the evolution over the time interval 1 < t < 4 with the value 6 = 0.1. 
In  the closeup views of figure 20, the portion of the curve which had negative 
(positive) initial vortex-sheet strength is plotted with a dashed (solid) line. Each 
closeup view in figure 20 is a square with side 1.5 units, shifted so that the vortices 
are centred in the plot. This calculation used an adaptive point insertion technique 
that will be described below. The number of vortex blobs was initially N = 200 and 
it had reached N = 971 at t = 4. 

The dynamics in this stage may be heuristically explained by analogy with simpler 
vortex structures. The tip and flap vortices rotate around each other as expected for 
like-signed vortices. There is a tendency for the structure in each half-span to 
propagate as a vortex dipole due to the presence of oppositely rotating vortices. The 
fuselage vortex, even though it has the opposite sense of rotation, also tends to rotate 
around the stronger flap vortex. The combination of rotation and propagation causes 
the structures to spread laterally more than occurred for the elliptically loaded wing. 
As time progresses, each vortex undergoes elliptical deformation due to the strain 
field induced by its neighbours. 
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Throughout this stage it is still possible to think of each half-span structure as 
consisting of three individual vortices connected by stretched curve segments. The 
numbers of turns in each vortex increases with time as the roll-up proceeds. The 
vortices are eventually brought into close proximity and some portions of the curve 
that were previously distant approach one another closely. The curve at t = 4 
(figure 2 0 4  has two small intervals of extremely large curvature on the outer turns 
of the tip and flap vortices. 

The results in figures 19 and 20 could have been obtained without using a point 
insertion technique only by using a much larger fixed value of N, at greater 
computational expense. For example, figure 21 (a) shows the result at t = 4 using the 
fixed value N = 1OOO. Even with this large value of N, a difficulty occurs on the 
curve’s most highly stretched portion, between the tip vortex and the flap vortex. 
This part of the curve is depleted of vortex blobs as time progresses and eventually, 
the computed curve intersects itself as shown in figure 21 (a). To overcome this loss 
of resolution, the following procedure was adopted. A mesh parameter B wm given 
as input. The condition ~z,-z,+J < 6 was enforced at every time-step by inserting a 



146 R . Krasn y 

I 

- 1.0 1 .o 

Y '.;iW 0.3 
-0.6 L 8 I 

- 1.0 1 .o 

0.5 0.8 
X 

FIGURE 18. Computed solution for 8 = 0.005 at t = 0.1 and 0.3. (a) 7-digit arithmetic (VAX single 
precision). (b)  14-digit arithmetic (GRAY single precision). (c) Closeup view of the wave shown in 
the box of ( b ) ,  suggesting the formation of a fourth vortex spiral. 

new computational point into any interval that had stretched enough to violate the 
condition. The inserted point was chosen to correspond to the curve parameter value 
a = f(a, + a,+1) and its coordinates were determined by cubic polynomial interpola- 
tion with respect to a, using the four neighbouring vortex blobs. The interpolating 
curve that appears in this section's figures is a plot of this piecewise cubic polynomial. 
We chose this interpolant here because it requires only that the curve be continuous 
in the parameter a. Higher-order spline interpolation is not called for a t  this stage 
of the investigation since it requires a certain degree of smoothness in the underlying 
curve, which may not actually be attained. 

It was checked that convergent results are obtained by decreasing the value of E. 

This is illustrated in figure 21 (b) which plots the curve at t = 4 that was obtained 
using the value E = 0.2 with N = 200 initially. This should be compared with the 
solution in figure 19 for which e = 0.04. The point insertion technique enabled us to 
control the a-discretization error for a long time, at reasonable computational 
expense. For example, the computation shown in figure 19 took about 2 hours to run 
in single-precision arithmetic on a VAX 8600 computer. Computations beyond t = 4, 
presented below, used double-precision arithmetic, not because of amplification of 
round-off error perturbations as occurs for smaller values of 8, but because some 
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intervals were bisected so many times that the a* values describing the endpoints were 
separated by less than the single-precision round-off unit. 

In  figure 22 we present closeup views of the solution computed over the time 
interval 1 < t < 4 using S = 0.05, half the previous smoothing parameter value. The 
relative sizes, shapes and positions of the vortices are quite similar to those in 
figure 20, computed using the larger value 6 = 0.1. The main difference is that at a 
given time, each vortex has more turns in the S = 0.05 calculation than in the 6 = 0.1 
calculation. Also, the curve computed with the smaller value of 6 develops large 
curvature sooner (e.g. compare figures 20c and 22c, at t = 3). In  both calculations 
at t = 4 (figures 20d and 22d) the curve portion connecting the flap and fuselage 
vortices is very strongly stretched. Also, the outer turn of the tip vortex is beginning 
to be wrapped around the flap vortex. A similar feature occurred in contour-dynamics 
calculations for the merger of like-signed regions of constant vorticity (Overman & 
Zabusky 1982). 
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FIQURE 20. Closeup views of the right side for the 6 = 0.1 calculation. The point insertion parameter 
was set to E = 0.04. (a) t = 1, N = 254. ( b )  t = 2, N = 455. (c) t = 3, N = 711. (d )  t = 4, N = 971. The 
dashed (solid) portion of the curve corresponds to points which had negative (positive) initial 
vortex-sheet strength. 

4.3. Late stage 
The capture by a vortex of a previously remote portion of the curve signals the start 
of more complicated interactions. Figure 23 shows the evolution using the value 
S = 0.1 over the time interval 5 < t < 8. Closeup views of the right side are given in 
figure 24. At t = 8 the solution contains N = 10604 vortex blobs and the h a 1  time 
step (At = 0.02) of the calculation took about 7 hours to run on a VAX 8600 
computer. A 16 mm film of the evolution was made and viewing it helped to sort out 
the dynamics. The processes occurring are not presently well understood ; here we 
shall attempt to describe in words some important features of the dynamics depicted 
in figures 23 and 24. 

The tip vortex completes more than one full revolution around the flap vortex 
between t = 5 and 8. The fuselage vortex also rotates from its position below the flap 
vortex a t  t = 4 (figure 2 0 4  to above the flap vortex a t  t = 8 (figure 24d). This change 
in relative position causes the flap and fuselage vortices to propagate inward at late 
times, t,owards the symmetry line x = 0 (figure 23). Thus, the structure's lateral 
extent stops increasing during the late stage, in contrast to the steady increase that 
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occurred for 1 < t < 4 (figure 19). However, if one includes the line segment 
connecting the two half-span regions, then the structure’s vertical extent increases 
steadily during the entire evolution. 

The tip vortex plays an important role in splitting off a portion of the fuselage 
vortex between times t = 5 and 6. The tip vortex is swept around the larger flap 
vortex and near t = 5 it collides with, and begins to strongly deform, the fuselage 
vortex (figure 24a). The aftermath, shown in figure 24(b) at t = 6, is that the tip 
vortex separates the fuselage vortex core to its right from another region of dashed 
lines to its left. This latter region becomes further separated from the fuselage vortex 
core at t = 7 (figure 24c). Throughout, the curve remains continuous although various 
portions are highly stretched. 

At  t = 8 (figure 24d), the tip vortex core is greatly reduced from its size at t = 5. 
The flap and fuselage vortex cores are also smaller, although each can still be 
identified as substantial regions of roughly concentric turns. The reduction in core 
size occurs because each vortex has been stripped of its outer turns. A large portion 
of the curve in figure 24(d) lies away from the cores, in long sweeping roughly 
one-dimensional fronts. These fronts consist of many distinct almost parallel curve 
portions that are very closely spaced. 

Figure 25 shows a closeup view of the 6 = 0.05 calculation at t = 5.  Here, the 
collision of the tip vortex with the fuselage vortex is more advanced than with 6 = 0.1 
at t = 5 (compare with figure 24a). With the smaller value of S, the rotation rate 
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FIQURE 22. Closeup views of the right side for the 6 = 0.05 calculation. The point insertion 
parameter was set to E = 0.013. (a) t = 1, N = 1078. (a) t = 2, N = 2403. (c) t = 3, N = 3680. (d) 
t = 4, N = 5659. The dashed (solid) portion of the curve corresponds to points which had negative 
(positive) initial vortex-sheet strength. 

around the strong flap vortex is larger, causing the tip vortex to travel faster. The 
tip vortex also accelerates near t = 5, owing to the local jet-like flow created by its 
two oppositely rotating neighbours. This 6 = 0.05 computation used the time-step 
At = 0.0125 and the point insertion parameter value E = 0.013. The solution started 
with N = 200 vortex blobs, increasing to N = 8838 at t = 5. The computation used 
about two hours of C.P.U. time on the CRAYZ computer. Computations over longer 
time intervals with smaller values of S are certainly desirable and feasible, although 
significantly more C.P.U. time would be required. 

It is emphasized again that the plotted results have negligible discretization error 
and that what is being seen here are the true dynamics of the &equation for these 
particular values of 6. As already mentioned, the late-time results should be viewed 
as possible hints about the actual vortex sheet’s evolution. If here too, as documented 
at t = 4 for the elliptically loaded wing problem, the computed curve converges as 
S+O, then these results at least describe the overall vortex-sheet shape and the 
relative vortex positions. Even with the relatively large values of 6 used in the late 
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FIQURE 23. Late stage. Evolution over the time interval 5 Q t Q 8 for the S = 0.1 computation. 
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FIQURE 24. Closeup views of the solution with S = 0.1 (figure 23). The point insertion parameter 
was set to 8 = 0.04. (a) t = 5 , N  = 1422. (a) t = 6 , N  = 2580. (c) t = 7 ,N  = 5395. (d) t = 8, 
N = 10604. The dashed (solid) portion of the curve corresponds to points which had negative 
(positive) initial vortex sheet strength. 

stage, quite small scales develop as time progresses. The relation between this h e  
structure and what actually occurs in the limit 6+0 is a matter for speculation at 
present. We note however that DiPernrt & Majda (1987a, 13) have recently begun to 
study such questions in the context of measure-valued solutions of the Euler 
equations. They discuss a new concentration phenomenon occurring for the Euler 
equations and suggest that it may be illustrated in the present computation where 
separate portions of the curve become tightly packed, away from the vortex cores. 
This interesting possibility deserves further study. 

5. Closing remarks 
A method for computing vortex-sheet evolution in the Trefftz plane has been 

presented. Results were obtained for the elliptically loaded wing problem and for a 
simulated fuselage-flap configuration. The key idea is to  desingularize the Cauchy 
principal value integral which defines the velocity of a Lagrangian point on the vortex 
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FIQURE 25. Closeup view of the solution with S = 0.05 at t = 5 ( N  = 8838). The point insertion 
parameter was set to E = 0.013. 

sheet. The approach was heuristically motivated by considering that another Cauchy 
principal value integral, the Hilbert transform, can be alternatively defined via the 
boundary values of a harmonic function in the upper half-plane. The desingularized 
vortex-sheet equation is numerically tractable and the discretization was demonst- 
rated to converge under mesh refinement for a fixed value of the smoothing parameter 
6 > 0. The smoothing parameter controls the amount of detail that is present in the 
computed solution. Numerical evidence was also presented indicating that the 
desingularized solutions converge to a well-defined spiral as S + O .  Away from the 
spiral’s centre, the convergence is uniform and the error behaves like an asymptotic 
power series in the smoothing parameter 6. These conclusions about convergence are 
based on experimental computational evidence and it is certainly desirable that they 
be placed on a more rigorous footing in the future. 

The desingularization used here was chosen for heuristic mathematical reasons and 
numerical convenience. Its physical significance is unclear at  present. Physically 
motivated desingularizations such as the Navier-Stokes equations with Reynolds 
number Re,  and the Euler equations for a vorticity field characterized by a thickness 
d, may also be considered (e.g. Weston & Liu 1982). It is not known whether the three 
limits S + O ,  Re-l+O and d+O coincide for the type of problem considered here. It 
would be interesting to know how closely these sequences approach one another (or 
how quickly they diverge) for non-zero smoothing-parameter values. Clearly, the 
practical significance of our results would be enhanced if it could be shown that the 
solution of the &equation with 6 > 0 approximates in some sense a solution of either 
the Navier-Stokes equations with some Re-’ > 0 or the Euler equations with d > 0. 

A significant consideration for the present method is its expense - with N vortex 
blobs, the computational work per time-step is O(N2). Even so, highly resolved 
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solutions over long time intervals were obtained and new details of the vortex sheet’s 
evolution were suggested which had not appeared in previous numerical studies. Care 
was taken to ensure that the time and spatial discretization error in the computed 
results was negligible. In accomplishing this, it was important to place the compu- 
tational elements where they were needed. Uniformly spacing the vortex blobs in the 
parameter 01 crowds them towards the tip, which is useful for the elliptically loaded 
wing. For the fuselage-flap problem i t  was better to insert points adaptively in regions 
where the curve was stretching. The spatial discretization and time-stepping 
strategies used here are simple to program and we have demonstrated their ability 
to yield accurate solutions. Increasing the computational efficiency is a topic for 
future research and several possibilities have been recently proposed (e .g. Anderson 
1986 ; Carrier, Greengard & Rokhlin 1986; Tryggvason 1987). 
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