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1. Introduction 

In this article we shall review some recent developments for computing vortex sheet 
roll-up. A vortex sheet is an asymptotic model of a free shear layer in which the transition 
region between the two fluid streams is approximated by a surface across which the tan- 
gential velocity component  is discontinuous. A common theme in fluid dynamics is that 
the vortex sheet model can be useful in understanding the dynamics of coherent vortex 
structures observed in laminar and turbulent flows. If this goal is to be realized, reliable 
methods for computing vortex sheet evolution must be developed. 

At present, numerical methods are available for studying the initial value problem in 
two space dimensions. For example, detailed analytical phenomena such as singularity 
formation in the shape of an evolving periodic vortex sheet can be studied with existing 
methods. The complex roll-up process and the interaction of several spiral vortices has 
also been investigated numerically. These calculations have been stimulated by recent 
theoretical results about  vortex sheets and by progress in the convergence theory of general 
vortex methods. 

First, results for the periodic vortex sheet will be reviewed. Then an application to 
some vortex sheet problems occurring in aerodynamics will be discussed in more detail. 
Finally, some open questions and directions for further research will be summarized. 

2. The Vortex Sheet  Evolution Equation 

A vortex sheet in two dimensional ideal flow can be described by a curve in the complex 
plane, z (F , t )  = x(F, t )  + iy (F , t ) ,  varying with time t. The Lagrangian parameter  F 
measures the circulation contained between a base point and an arbitrary point along the 
vortex sheet [4]. The vorticity associated with a vortex sheet is in the form of a delta 
function with support  on the curve. The  vortex sheet strength a = IOz/OF] -1 is the jump 
in the tangential velocity component  across the curve. 

The vortex sheet evolution equation is, 

f 
= / - 

J 
(1) 

In this equation, z --- z(F, t ) ,  ~ = z (F , t ) ,  K ( z )  = I/2~riz is the Cauchy kernel and the 
Cauchy principal value of the integral is taken. The bar over the time derivative on the 
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left denotes the complex conjugate. The evolution equation is supplemented by an initial 
condition for the vortex sheet z ( r ,  0). 

This basic evolution equation takes other forms depending upon the particular geom- 
etry and initial conditions under consideration. The simplest class of problems concerns 
a vortex sheet which is periodic in the x-direction. In this case, the integrand used is 
K ( z )  = cotOrz)/2i  and the circulation parameter  F runs over a single period [0, 1]. The 
initial condition takes the form z(P,0) = F + p( r ,0) .  The function p(F, t) is periodic 
in l" and it describes the perturbation away from the equilibrium solution z(I ' ,  t) = F, 
corresponding to a flat vortex sheet of constant strength. 

A straightforward method of discretization was introduced by Rosenhead [19] in 1931. 
Consider a finite number of point vortices per wavelength which approximately interpolate 
the vortex sheet at equidistant values of F. Thus the point vortices' positions are zj(t)  ,,~ 
z( r j ,  t) where r j  = j A F  and AF = N -1. The point vortices evolve according to the 
following system of ordinary differential equations, 

= N _  1 E K ( z j  - (2) 
dt kej 

By neglecting the singular term k = j ,  the sum appearing on the right side of equation (2) 
is formally an O ( N  -~) approximation to the principal value integral in equation (1). The 
initial point vortex positions interpolate the exact initial vortex sheet zj(0) = z(Fj,0).  
The viewpoint adopted here is that in order to study properties of the vortex sheet, one 
must determine whether solutions of the point vortex equations converge as the dimension 
N ---* ~ .  The next section reviews the theoretical results and numerical evidence relating 
to this issue. 

3. S i n g u l a r i t y  F o r m a t i o n  in a P e r i o d i c  V o r t e x  S h e e t  

The vortex sheet model does not include any physical mechanisms to stabilize the 
short wavelength modes. In fact, the linearized initial value problem for perturbations of 
a flat, constant strength vortex sheet is subject to the Kelvin-Helmholtz instability [41. 
Just as in the classical example, i.e. the Cauchy problem for the Laplace equation, the 
linearized vortex sheet initial value problem is not well-posed in the sense of I-Iadamard. 
However, if the initial perturbation p(F, 0) is an analytic function of F then the nonlinear 
vortex sheet problem has an analytic solution in some time interval [21,5]. Anatyticity of 
the solution is equivalent to controlling the amplitude of the short wavelength modes. 

These Cauchy-Kovaleski results for the periodic vortex sheet actually were preceded by 
an asymptotic  analysis of the nonlinear problem by Moore [16]. For an initial perturbation 
consisting of a single Fourier mode of amplitude e, Moore's analysis indicates that  a 
singularity forms in the vortex sheet at time to(e) ",~ loge -1. Meiron, Baker & Orszag 
[13] studied the vortex sheet's Taylor series in time around t = 0 and obtained a similar 
comclusion. At the critical time, the vortex sheet strength has a .finite amplitude cusp and 
the curvature has an infinite jump discontinuity at isolated points. However, the sheet's 
slope remains bounded and its tangent vector is continuous. 

Previous numerical studies of this problem using Rosenhead's point vortex approxi- 
mation have experienced difficulty in converging when the number of point vortices was 
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increased [4]. Explaining the source of this difficulty and providing a remedy for it have 
been longstanding issues [17,18,20]. 

In a numerical solution of the point vortex equations (2) one can examine the discrete 
Fourier transform ~'~ of the computed perturbation quantities pj = zj - r j .  Using this 
discrete Fourier analysis to diagnose the solution, it was shown that computer roundoff 
error is responsible for the irregular point vortex motion that occurs at a smaller time 
as the number of points is increased [9]. This source of computational error can be 
controlled either by using higher precision arithmetic or by using a new filtering technique. 
The numerical evidence indicates that the point vortex approximation converges as N 
ec up to but not beyond the time of singularity formation in the vortex sheet. Good 
agreement is obtained with Moore's relation for the critical time's dependence upon the 
initial amplitude. 

4. Rol l -Up Past  the Critical Time 

When a singularity forms in the solution of a nonlinear evolution equation, it may 
still be possible to extend the solution beyond that time in a way which ensures that the 
extension has physical significance. A classical example is shock formation and the theory 
of weak solutions to nonlinear hyperbolic equations [12]. Even though the shock solution is 
a discontinuous function, it serves as a useful approximation to a viscous profile. One can 
ask whether a similar theory can be constructed for the vortex sheet evolution equation. 

One approach to extending the vortex sheet solution past the critical time is mo- 
tivated by Chorin's "vortex blob" method [6,1]. The singular kernel K ( z )  appearing 
in the vortex sheet equation (1) is replaced by a smooth kernel K6(z) which depends 
upon an artificial smoothing parameter 5. For example, in free space one can choose 
Ks(z)  = K(z)]z] 2/(]zl 2 + 5 2) as the desingularized kernel. For 5 > 0 the solution of this 
"b-equation" is a curve which approximates the vortex sheet. The proposal is to view the 
vortex sheet as the limit of these desingularized solutions as the smoothing parameter 5 
tends to zero. To discretize the &equation, one simply uses the smooth kernel K,(z )  in 
place of K ( z )  in the system of ordinary differential equations (2). For 5 > 0 therefore the 
point vortex is replaced by a "vortex blob". 

This approach has been applied to the periodic vortex sheet problem [10]. Linear 
stability analysis shows that the vortex sheet's short wavelength instability is diminished 
when 5 > 0. The resulting ordinary differential equations are numerically more tractable 
since the computer roundoff error difficulty is not as severe. Solutions of the 5-equation 
are obtained for a fixed value of 5, at a fixed time t > tc by integrating the vortex blob 
equations and converging to the limit N ~ ee. Detailed numerical convergence studies 
also indicate that the sequence of solutions of the 5-equation converges pointwise in F 
as 5 ~ 0 and that the error has an asymptotic expansion in powers of 5. These results 
suggest that in this weak sense, as a limit of smooth curves, the vortex sheet rolls up into 
a double-branched spiral past the critical time. 

There are other possible ways of desingularizing a periodic vortex sheet to obtain 
candidate weak solutions. Baker and Shelley [3] study the dynamics of a layer of constant 
vorticity in the limit of vanishing thickness. A key question is whether this sequence 
converges to the same object that solutions of the &equation converge to, particularly 
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Figure 1. Periodic vortex sheet roll-up [10]. Two periods of the circulation parameter  are 
plotted. The  value of the smoothing parameter  is 5 = 0.5. 
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Figure 2. Roll-up of the vortex sheet shed by an elliptically loaded wing [11]. The vortex 
blob positions are plotted on the left and an interpolating curve is plotted on the right. 
The value of the smoothing parameter is 6 = 0.05. 
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Figure 3. The  effect of the smooth ing  parameter  6 upon  the tip vortex [11]. These 
solutions are a t  t ime t = 0.1. There  are 23 complete turns  present  in the ~ = 0.003 case. 
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past the critical time. Tryggvasson [22] shows that  vortex-in-cell calculations can yield 
solutions which resemble those of the vortex blob method. In these calculations the 
smoothing is provided by the interpolation procedure which passes information between 
the point vortices and an underlying Eulerian grid. 

A long-time vortex blob calculation using the value ~ -- 0.5 is shown in figure 1. 
These results were obtained using an adaptive point insertion technique and they extend 
a calculation in [10]. The plotted curve represents two periods in the circulation parameter  
and is shown from time t = 1 to t = 10 in steps of At = 1. The initial perturbat ion was an 
eigenfunction of the linearized equation of amplitude e = 0.01. With this initial condition, 
a singularity forms in the vortex sheet (~ = 0) near t ime tc -'- 0.375. The curve in figure 1 
rolls up into a double-branched spiral whose outer turns are elliptically deformed as time 
progresses. At late times, the outer turns are captured by neighboring vortices and thin 
filaments travel into the adjacent periods. Over the times plotted, a compact core region 
consisting of concentric turns stays within its initial period. 

5. V o r t e x  S h e e t  R o l l - U p  in t he  Tre f f t z  P l a n e  

The desingularization approach has also been applied to the vortex sheet shed by 
a finite-span wing [11]. Neglecting the wake's streamwise variation leads to an initial 
value problem in the two-dimensional Trefftz plane, perpendicular to the line of flight. 
The loading on the wing's trailing edge is incorporated into the vortex sheet's initial 
circulation distribution. The two problems that have been studied are elliptical loading 
and a simulated fuselage-flap loading. 

In this geometry it is advantageous to use the change of variable F -- F(a)  where 
a E [0, 7r]. Therefore, in the evolution equation (1) the element dr' is replaced by r'(a)da. 
The vortex sheet's initial condition is z(a,  0) -- cosa, corresponding to the wing's trailing 
edge. The circulation distribution for elliptic loading is F(a)  = sins.  For the simulated 
fuselage-flap loading, the circulation distribution is a spline function, having local extrema, 
that  has been used in previous studies [2,8]. 

For elliptic loading the initial vortex sheet is not an analytic function of the circulation 
parameter.  In fact, z(F,0)  .~ F 1/2, near the wing tips a = 0 and a -- lr. The induced 
velocity on the initial vortex sheet is actually uniform across the span, i.e. u = 0, v = - 1 / 2  
for 'x E (0,1). One possible solution is that  the vortex sheet simply translates downward 
at speed 1/2, preserving its flat initial shape. However, the velocity of the surrounding 
irrotational fluid diverges as x --* - 1 - ,  x --* 1 +. A second solution is possible in which 
the vortex sheet rolls up at both tips instantaneously for t > 0. This nonuniqueness is 
only present when ~ = 0; for 8 > 0, the initial vertical velocity is not uniform and actually 
v > 0 in a small neighborhood of the sheet's tips. As will be demonstrated below, when 

---* 0 the desingularized solutions converge for t > 0 to the rolling-up solution rather 
than to the translating flat vortex sheet. 

Calculations for the elliptically loaded wing using the point vortex approximation do 
not converge for any t > 0 as the number of points increases [14]. We at t r ibute this to the 
singularities present at the tips of the initial vortex sheet. The approach taken here is the 
same as was described above for the periodic vortex sheet. The 8-equation is discretized 
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Figure 4. The effect of roundoff error when 6 = 0.003 [11]. a) single precision arithmetic. 
b) double precision arithmetic. 

using vortex blobs and the resulting ordinary differential equations are integrated using 
the fourth order Runge-Kut ta  method. 

A solution for the ellipticaUy loaded wing using 6 = 0.05 is shown in figure 2. The 
left side shows the centers of the vortex blobs and the right side is an interpolating curve. 
The curve rolls up smoothly at both tips and propagates downward. Convergence studies 
documented in [11] show that  the time and spatial discretization errors are negligibly small. 
This can be accomplished for 6 > 0 apparently because the solution of the 6-equation is 
sufficiently smooth. 

For smaller values of 6 the curve rolls up sooner and more turns are present. Conver- 
gence as 6 --* 0 has also been documented in [11]. Figure 3 shows the tip regions obtained 
at t = 0.1 for several smoothing parameter  values in the interval 0.003 < 6 < 0.015. The 

= 0.003 solution in figure 3 has 23 turns present; close examination of the core region 
showed that  the curve does not intersect itself. In fact, this particular solution is in good 
agreement with Kaden's  asymptotic spiral (see [20]). 
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Figure 5. Roll-up of the trailing vortex sheet for a simulated fuselage-flap loading [11]. 
The value of the smoothing parameter is ~ = 0.1. 
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Figure 6. Closeup views of the right half-span region for the simulated fuselage-flap 
loading at successive times [11]. 

Figure 4 compares two solutions using 6 = 0.003 computed in single and double pre- 
cision arithmetic. In the single precision calculation, small waves appear on the curve's 
outer turn. As in the periodic vortex sheet calculations, we attribute these waves to spuri- 
ous perturbations introduced by computer roundoff error. The waves are absent from the 
double precision calculation since the perturbation amplitude is lower. Such calculations 
actually provide an empirical way of determining stability properties of the vortex sheet. 
For example, figure 4 indicates that the sheet's outermost turn is less stable to small am- 
plitude, short wavelength perturbations than the rolling-up core region. This conclusion is 
consistent with Moore's finding [15] that sufficient stretching in the core region stabilizes 
the vortex sheet. 
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Figure 5 shows a calculation for the simulated fuselage-flap problem computed using 
6 = 0.1. In these calculations an adaptive point insertion technique was used to maintain 
accuracy without incurring unacceptable expense in run time. The computation in figure 
5 took two hours to run in single precision arithmetic on a VAX 8600 computer. 

Several vortices form in each half-span region due to the local extrema present in the 
initial spanwise circulation distribution. There is a single-branched tip vortex and two 
double-branched vortices further inboard. The flap vortex is the strongest in each half- 
span region and it has the same sense of rotation as the tip vortex. These two like-signed 
vortices tend to rotate around each other. The fuselage vortex has the opposite sense of 
rotation, which causes the entire half-span structure to propagate outward like a vortex 
dipole. At time t -- 4 portions of the curve are very highly stretched. The outer turns of 
the tip and flap vortices have been captured by the neighboring vortex in a way that is 
similar to the periodic vortex sheet (figure 1). 

As the calculation proceeds past t = 4 the curve becomes quite complicated due to a 
sequence of vortex interactions. Closeup views of the curve in the right half-span region 
are shown in figures 6a-d. In these figures, the solid (resp. dotted) portion of the curve 
denotes positive (resp. negative) vortex sheet strength. 
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At time t = 5 (figure 6a) the tip vortex has entered the jet region between the two 
larger oppositely rota t ing vortices. The  outer turns of all three vortices are quite distorted. 
Between times t = 5 and t = 6, as the tip vortex is swept around the strong co-rotat ing 
flap vortex, it will collide with the fuselage vortex and carry away a port ion of this vortex. 

The  outcome is shown in figure 6b. A dotted port ion of the curve is separated from the 
fuselage vortex core by the tip vortex. It should be emphasized that  the curve is a material 
line and it does not break or intersect itself. This is so even under  close examination of 
various regions in which par ts  of the curve move very close together. It can be seen in 
figure 6b that  the curve develops regions of high curvature,  possibly even cusps. 

Fur ther  snapshots  at times t = 7 and t = 8 are given in figures 6c,d. Three core regions 
are still discernible, a l though the outer turns have been str ipped away and can no longer 
be associated with a part icular  core. Long one-dimensional fronts are formed which consist 
of many  closely spaced distinct portions of the curve. Notice how the fuselage vortex has 
traveled around the flap vortex in this sequence of pictures. At time t = 8 (figure 6d) 
the positions of these two strong vortices are such as to produce propagat ion inward, in 
contrast  to the previous outward propagat ion which occurred up to time t = 4 (figure 5). 
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It should be emphasized that the results presented are accurate solutions of the 6- 
equation for the particular values of 6 chosen. Many questions arise. What features of 
the 6 > 0 results are preserved in the limit 6 --~ 07 Does any region of the curve become 
fractal? Do new types of singularities form perhaps as suggested by DiPerna and Majda 
in their theory [7] of measure-valued solutions of the Euler equations? What would change 
if viscosity, boundaries or three-dimensionality were incorporated into the model? These 
are some of the possible directions for further research. 
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