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ABSTRACT 

The vortex-blob method is extended to compute vortex 
sheet separation at a sharp edge. A smoothing parameter con­
trols the amount of detail occuring in the rolled-up spiral. Cal­
culations are presented for the case of vortex sheet roll-up due 
to an impulsively started flat plate. 

INTRODUCTION 

Unsteady separation is an important process in fluid dy­
namics. Separation refers to the process by which a boundary 
layer leaves the vicinity of a solid surface and enters the interior 
of the flow field as a free shear layer. Boundary layer separa­
tion changes the pressure distribution and thus also affects the 
drag and lift felt by solid surfaces in the flow. An improved un­
derstanding and capability for modeling separation would have 
important applications in areas such as aerodynamics and ship 
hydrodynamics. 

Many different types of numerical methods have been used 
to study flow separation, including finite difference, finite el­
ement, spectral and vortex methods. The present paper dis­
cusses an extension of the vortex-blob method to study a par­
ticular example of unsteady separation: vortex sheet roll-up 
due to the impulsively started motion of a flat plate. This 
work represents a step towards developing a general numerical 
method for vortex sheet motion, which could be used to study 
unsteady separation and the dynamics of free shear layers. 

In the model considered here, the vorticity field consists 
of a bound vortex sheet on the plate and free vortex sheets 
emanating from the edges of the plate. In order to make the 
roll-up problem for the free vortex sheets numerically tractable, 
an artificial smoothing parameter is inserted into the evolution 
equation. The smoothing parameter enhances the stability of 
the free vortex sheets and controls the rate at which they roll 
up. The flow tangency condition along the plate is used to 
solve for the strength of the bound vortex sheet. The unsteady 
Kutta condition is used to calculate the circulation shedding 

rate at the edges of the plate. Numerical results presented 
here demonstrate the method's ability to model vortex sheet 
separation and roll-up at a sharp edge. 

BACKGROUND 

Consider a flat plate at rest which coincides with the hor­
izontal line segment -1 ~ x ~ 1, y = 0 for time t < 0. The 
fluid which is also at rest for t < 0, is assumed to be incom­
pres~ible and inviscid. At t == 0, the plate impulsively starts 
to move in the vertical direction (u = 0, v = 1/2). For t ?: 0, 
the flow is required to be tangent to the plate. The problem 
formulated - impulsively started motion of a flat plate in an 
incompressible, inviscid fluid - has two possible solutions. The 
boundary condition enforced at the edges of the plate deter­
mines which of the two solutions is realized. 

One possibility is a continuous potential flow, i.e. an ideal 
flow with no free vortex sheets. The fluid velocity becomes 
infi~ite near the edges of the plate, but it remains continuous 
away from the plate. In a frame of reference moving with the 
plate, the flow is steady and symmetric with respect to reflec­
tion across the line containing the plate. No vorticity is shed 
in this flow and consequently, there is no wake. Experimen­
tal flow visualization documents the separation of thin shear 
layers at the edges of a flat plate moving normal to the flow 
(1,2). The ideal flow is therefore a poor approximation to the 
real flow that occurs behind an impulsively started plate. 

The second possibility is a discontinuous potential flow, 
i.e. a flow with free vortex sheets emanating from the edges 
of the plate. We would like to think of this solution as the 
zero viscosity limit for solutions of the viscous flow problem. 
Fluid viscosity, no matter how small, produces boundary layer 
separation at the edges of the plate. In the limit of vanishing 
viscosity, the boundary condition that should be enforced at 
the edges of the plate is called the "unsteady Kutta condition" . 
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This condition says that circulation is shed at precisely the rate 
needed to keep the fluid velocity finite near the edges of the 
plate. The two shed vortex sheets roll up into counter-rotating 
spirals, amounting to a particular wake model for the real flow 
behind a moving plate. 

The possibility that a free vortex sheet results from tak­
ing the zero viscosity limit, in the presence of a sharp-edged 
boundary, goes back to Prandtl. This idea has great appeal, 
although satisfactory justification is not yet available. As a 
step in this direction, the work described here is concerned 
with developing an improved numerical method for computing 
vortex sheet roll-up at a sharp edge. 

Previous computations have used the point vortex method 
to represent the free vortex sheets (3,4,5,6,7). The literature 
has been reviewed by Graham (8) and his paper contains other 
references as welL Many of these studies have encountered 
difficulty in obtaining smooth spiral roll-up of the free vortex 
sheets. The present work seeks to overcome these difficulties by 
applying Chorin's vortex-blob method (9,10). We shall briefly 
review some recent work related to this approach. 

Putting aside for the moment issues concerned with solid 
boundaries, difficulties arise in computing vortex sheet roll-up 
in free space because of Kelvin-Helmholtz instability (11). The 
instability causes a singularity to form in an evolving vortex 
sheet at a finite critical time t = t e (12,13,14). At the critical 
time, the sheet has infinite curvature --at some point, but the 
sheet's slope remains bounded and there is no sign of roll-up. It 
has been found that the point vortex approximation converges 
as the number of points is increased, as long as the vortex sheet 
remains an analytic curve. However past t e , the numerical 
evidence indicates that the point vortex approximation does 
not converge. 

Chorin's vortex-blob method has been applied to overcome 
this obstacle and to capture the physically important roll-up 
phenomenon (15,16). In this method, an artificial smoothing 
parameter 8 > 0 is introduced to desingularize the vortex sheet 
equation. The resulting equation is called the "8-equation" 
and the exact vortex sheet equation is formally recovered in 
the limit 8 ~ o. On the discrete level, the basic computa­
tional element becomes a vortex-blob, Le. a smoothed point 
vortex. Convergence of this method, before the critical time, 
has been proven by Caflisch and Lowengrub (17). The particu­
lar smoothing used does not correspond precisely to a physical 
mechanism. However, linear stability analysis shows that the 
8-equation does not exhibit a short wavelength instability. 

The 8-equation is numerically tractable and its solutions 
exhibit regular spiral roll-up for t > teo Numerical evidence in­
dicates that, past the critical time, in the limit 8 ~ 0, the 
smoothed solutions converge to a tight spiral with an infi­
nite number of turns (15,16). Similar results for t > t e have 
also been observed in vortex-in-cell calculations by Tryggva­
son (18). The conclusion from these studies is that vortex 
sheet roll-up past the critical time can be captured by taking 
an appropriate limit of smoothed approximations. Another al­
ternative, suggested by Baker and Shelley (19), is to consider 
a layer of constant vorticity in the limit of increasing vorticity 
and vanishing layer thickness. 

The work described above deals with vortex sheet roll-up 
in free space. A natural problem is to extend the 8-equation 
methodology to compute vortex sheet separation and roll-up 

past the sharp edge of a flat plate. Two issues arise : 
1) satisfying the flow tangency condition on the plate, 
2) enforcing the unsteady Kut ta condition at the edges of 

the plate. 
Many different numerical approaches to these issues have 

been investigated in the past (8). Prior work on this topic 
using the vortex-blob method has been done by Chou (20). 
These previous studies have not obtained smooth spiral roll­
up, and the effect of the various numerical parameters has not 
been well documented. The goal of the present work is to find 
a 8-equation model for improved calculations of vortex sheet 
roll-up past a sharp edge. 

NUMERICAL METHOD 

The flow contains a bound vortex sheet on the plate and 
free vortex sheets emanating from the edges of the plate. The 
free vortex sheets are represented by a collection of vortex­
blobs, whereas the bound vortex sheet is represented by a col­
lection of point vortices. The strength of the bound vortex 
sheet a(x, t) adjusts to satisfy the flow tangency condition on 
the plate. Some previous studies have used a conformal map­
ping to determine the strength of the bound vortex sheet, but 
the present method instead solves an integral equation of the 
first kind for a(x, t). Each complete time step contains the 
following sub-steps: 

1) The free vortex-blobs are convected. 
2) New vortex-blobs are shed at each edge 01 the plate. 
3) The total amount of shed circulation is updated using 

the unsteady Kutta condition. 
4) The bound vortex sheet strength is computed. 
In more detail, let (x j, Yj) be the position of a vortex ele­

ment (either a point vortex or a vortex-blob) having strength 
r j. The velocity of the j th vortex-blob is given by, 

(dxj, dYj) = L (-(Yj - Yk), (Xj - Xk))r" (1)
dt dt k:#j 27r((xj - Xk)2 + (Yj - Yk)2 + 82 ) • 

The quantity 8 is the artificial smoothing parameter which al­
lows the free vortex sheet to roll up into a smooth spiral. The 
sum in equation (1) is taken over all vortex elements, with the 
understanding that 8 is set equal to zero when the index k 
corresponds to one of the bound point vortices. 

The bound vortex sheet strength a(x, t) satisfies a singular 
integral equation of the first kind along the plate,2-11 

a(x,t)dx _ ( )
-) - -v x, t . (2)

27r -1 ( X - X 

The right hand side in equation (2) is the normal velocity at a 
point x on the plate, that is induced by the free vortex sheets. 
One reason for representing the bound vortex ~heet by point 
vortices, instead of vortex-blobs, is to accurately satisfy the 
flow tangency condition on the plate. Another reason is that 
the integral equation could not be solve for a general right 
hand side if the kernel were desingularized. The bound point 
vortices are placed on the plate at positions x j = cos (}j, (}j = 
j 7rIn and the integral equation is discretized by collocation 
at the midpoint of each interval. The total amount of bound 
circulation is set equal to the negative of the total amount 
of free circulation, in accordance with Kelvin's theorem. The 
system of linear eqtlations for the strength of the bound point 
vortices is solved by Gaussian elimination. 
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Fig. 1 Time evolution of smoothed vortex sheet roll-up. 
(0 ~ t ~ 8, smoothing parameter 8 = 0.2) 

The total circulation r(t) in each free vortex sheet is de­
termined by the unsteady Kutta condition, 

dr 1 2 2)­- = -(U - U+ = UO' . (3)
dt 2 ­

Here, U_ and U+ are the one-sided limiting velocities at the 
edge, IT is the average of these velocities, and 0', the vo~ex 
sheet strength, is the difference. The average velocity U is 
induced by the free vortex sheets and 0' ~ 6.r/ 6.x is approxi­
mated by a finite difference formula applied to the bound cir­
culation. 

The fourth order Runge-Kutta method was used to solve 
the ordinary differential equations (1) and (3), for the motion 
of the vortex-blobs and the total shed circulation. Computer 
cpu costs were reduced by using a variable time-step size. Ac­
curacy in the sheet's shape was maintained by inserting new 
vortex-blobs when the curve was sufficiently stretched. Vor­
tex shedding was initiated using the one-sided velocity at the 
edges of the plate. Further description and validation of the 
numerical method, including a comparison with Pullin's study 
of a self-similar vortex sheet (21), will be presented elsewhere. 

T= 8 
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T= 2 

(§ @) T= 1 
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Fig. 2 Time evolution of smoothed vortex sheet roll-up. 
(0 ~ t ~ 8, smoothing parameter 8 = 0.1) 

NUMERICAL RESULTS 

In these computations the plate moves vertically with uni­
form speed v = 1/2. Figure 1 was obtained using the smooth­
ing parameter value 8 = 0.2. Counter-rotating vortices are 
shed and roll up smoothly at the two edges of the plate. As 
time progresses the vortices grow in size, forming a wake be­
hind the plate. The outer turns of the curve become elliptically 
deformed due to straining by the neighboring vortex. Figure 
2 shows the results obtained with the smoothing parameter 
value 8 = 0.1. The overall shape and size of the solution is 
only slightly changed with this smaller amount of smoothing. 
However, with 8 = 0.1, the vortex sheet rolls up more quickly 
and more tightly than with 8 = 0.2. 

Figure 3 is a plot of the computed velocity field at time t = 
8 in a frame of reference that is fixed at infinity. The velocity 
vectors are plotted on a regular grid with a small square at the 
base of each vector. Also plotted, as a sequence of points, are 
the point vortices and vortex-blobs that represent the free and 
bound vortex sheets. The plate pushes away the fluid in its 
path. The counter-rotating vortices behind the plate create a 
jet that is directed at the rear of the plate. Velocity magnitudes 
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Fig. 3 Velocity field in a frame of reference fixed at infinity. Fig. 4 Velocity field in a frame of reference moving with 
the plate. 

in this jet exceed the uniform plate velocity v = 1/2. Figure 4 is 
a plot of the computed velocity field in a frame of reference that periment is needed in order to assess the validity of the vortex 
is moving with the plate. The velocity field has two stagnation sheet model for separation at a sharp edge.
points along the wake centerline (x = 0) in this reference frame 
- nne at the center of the plate and one at the back of the wake. 
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