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Vortex Sheet Computations: 
Roll-Up, Wakes, Separation 

ROBERT KRASNY 

Abstract. Chorin's vortex blob method has been proposed as a way 
to extend vortex sheet motion past the singularity formation time, 
into the physically important roll-up regime. Basic questions are: 

1. Does the vortex blob method converge to an infinite spiral as 
the smoothing parameter tends to zero? 

2. Do vortex blob computations approximate real fluid motion? 
This paper will present and discuss three computations which are 

relevant to these issues: a) periodic roll-up, b) wake patterns in a 
thin soap film, c) separation at a sharp edge. 

1. Introduction. Coherent vortex structures occur in many types of 
fluid flow such as wakes, jets, and boundary layers. To make progress in the 
analysis of these flows, one may consider simpler models in which various 
physical effects are assumed to be small. In the vortex sheet model, a thin 
shear layer is replaced by a surface across which the tangential component 
of the fluid velocity has a jump discontinuity. The mathematical study of 
vortex sheets has advanced in recent years, but many important questions 
are still open. Vortex sheet motion belongs to the larger field of vortex 
dynamics, one of the main approaches to understanding fluid turbulence. 

Careful numerical experiments have played a key role in advancing the 
analysis and application of the vortex sheet model. Difficulties arise in 
computing vortex sheet motion due to short wavelength instability, singu­
larity formation, and spiral roll-up. Chorin's vortex blob method [10,11], 
in which the vortex sheet's velocity is desingularized, has been proposed to 
deal with these difficulties. Basic questions concerning this approach are: 

1. Does the vortex blob method converge to an infinite spiral as the 
smoothing parameter tends to zero? 
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2. Do vortex blob computations approximate real fluid motion? 
The aim of this paper is to discuss some recent applications of the vor­

tex blob method to vortex sheet motion, and to see how they bear on the 
foregoing questions. The vortex sheet evolution equation is presented in 
§2. Numerical evidence demonstrating convergence of the vortex blob ap­
proximation, for the case of periodic vortex sheet motion, is reviewed in 
§3. In §4, vortex blob calculations are compared with experimental wake 
patterns in a thin soap film due to Couder et al. [14,15]. An extension 
of the vortex blob method to compute vortex sheet separation at a sharp 
edge is presented in §5. The method is applied to compute the motion of 
a thin jet being expelled from a box through a narrow outlet. Finally, §6 
summarizes the results. 

2. The Vortex Sheet Evolution Equation. A vortex sheet is defined 
by a curve z(r, t) in the complex plane, where r is the circulation parameter 
and t is time. The evolution equation is, 

(2.1) /:)z j - -at (f, t) = K(z(r, t)- z(f, t))df 
1 

K(z)= -
2 
.. 

11"ZZ 

The Cauchy principal value of the integral is taken. The limits of inte­
gration and the initial shape z(r, 0) depend upon the problem considered. 
The normal component of the induced velocity field is continuous across 
the sheet, but the tangential component has a jump. Equation (2.1) says 
that a point on the vortex sheet moves with the average of the two limiting 
velocities, defined by approaching the curve on either side. This is a special 
case of the Biot-Savart law, which expresses the velocity as an integral over 
the vorticity in incompressible flow [2]. This formulation of the initial value 
problem for vortex sheet motion is due to Birkhoff [5] and Rott [28]. 

A flat vortex sheet of constant strength, defined by z(f, t) = r, is an 
equilibrium solution of (2.1). Linearized stability analysis of this solu­
tion shows that short wavelength perturbations can grow arbitrarily fast, a 
phenomenon known as "Kelvin-Helmholtz instability" in the fluid dynam­
ics literature. Mathematically speaking, this implies that the initial value 
problem is ill-posed in the sense of Hadamard. However, Sulem et al. [31] 
have proven that if the initial perturbation is an analytic function of r, 
then the sheet z(f, t) remains analytic for a positive time interval. 

Moore [25] performed a formal asymptotic analysis for small perturba­
tion amplitude e. The results indicate that the vortex sheet loses analyt­
icity at a finite critical time tc(e), due to the formation of a branch point 
in z(f, tc), as a function of r. Computational studies [23,18,30] support 
Moore's conclusion and rigorous validity of his approximation for t < te 
has been proven [8]. 

3. Vortex Sheet Roll-Up. Pullin conjectured that for t > tc, the 
vortex sheet rolls up into a spiral that grows larger with increasing time 
[private communication, 1983]. By analogy with self-similar vortex sheet 
roll-up [27], the spiral should vanish in size as t - te +, but for any t > te, 
it should have an infinite number of turns. 

Chorin's vortex blob method has been applied to test this idea [10,11,19]. 
In this method, the singular kernel in (2.1) is replaced by a smoothed 
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approximation ](6, such that I<6(z)·- K(z) as 6-+ 0. For example, in 
free space one can use, 

(3.1) 
, lzl2 

li6(z) = K(z) jzj2 + 62 

Using this kernel in the evolution equation yields a smoothed approxima­
tion to the exact vortex sheet. The curve is discretized into a finite number 
of "vortex blobs" Zj(t), and the desingularized integral is approximated by 
a quadrature rule, 

(3.2) 

The ordinary differential equations (3.2) are integrated in time to obtain 
the motion of the vortex blobs. In this way, solutions of the desingularized 
vortex sheet equation can be obtained in which the discretization error is 
negligible. For fixed 6 > 0, the solutions can be computed past the vortex 
sheet's critical time tc. If the smoothed solutions converge for t > tc as 
6 -+ 0, then the limit is a candidate extension of the vortex sheet past the 
critical time. 

Figure 3.1* shows the evolution over one period in r for 0 ~ t ~ 1, using 
the smoothing parameter value 6 = 0.03. The initial perturbation is a 
growing linear eigenfunction of amplitude f = 0.01, for which the critical 
time is tc "' 0.375 [18]. Computations using 6 = 0 do not yield smooth 
curves fort > tc, in contrast to the rolling up spiral shown in Figure 3.1. 
The roll-up begins on a small scale, slightly before time t = 0.5, and the 
spiral becomes larger and tighter at later times. 

Figure 3.2 documents convergence of the desingularized solutions at time 
t = 1, over the interval 0.03 ~ 6 ~ 0.25 [19]. In Figure 3.2a, the x-axis 
intercepts of one spiral branch are plotted as a function of 6. More spiral 
turns appear as the value of 6 is reduced, but each x-intercept lies on a 
smooth curve having a well-defined limit. Figure 3.2b shows a closeup of 
the spiral core for 6 = 0.03. These data indicate that the desingularized 
solutions converge uniformly to a spiral as 6 -+ 0. 

The 6 = 0.03 solution was computed in single precision arithmetic, using 
a Fourier filter to control roundoff error [18]. The computation took about 
2 minutes of cpu time on a CRAY YMP computer. Calculations using 
the smaller value 6 = 0.02 become inaccurate at time t = 1, due to the 
amplification of spurious roundoff error perturbations. The Fourier filter 
prevents this from happening at short times, but it is ineffective at time 
t = 1. Higher precision arithmetic, or a new idea, will be needed in order 
to compute accurately with smaller values of 6 at late times. 

This work for the periodic problem, as well as similar results for a vortex 
sheet with elliptic circulation distribution [20], support Pullin's conjecture 
that the vortex sheet rolls up into a spiral for t > tc. The vortex blob 
method therefore gives one possible extension for the vortex sheet's motion 

*FIGURES APPEAR AT THE END OF THIS PAPER. 
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past the singularity formation time. An outstanding question is whether or 
not the limit depends upon the particular way that the vortex sheet equa­
tion is desingularized. Alternative approaches using finite thickness [4], the 
vortex-in-cell method [33], and viscosity [34], are being investigated. Some 
steps towards analyzing these limits have been taken [9,16], but more work 
is needed to sort out the issues of convergence and uniqueness, especially 
past the critical time. 

In practice, vortex blob computations are performed using a fixed value 
of o and then one wants to know whether the results correspond in some 
way to real fluid motion. The next section is concerned with this issue. 

4. Wake Patterns. At moderate Reynolds number, the wake behind 
a bluff body in a streaming flow forms a regular Karman vortex street, 
consisting of two staggered rows of oppositely-signed vortices. Such vortex 
streets are observed in "natural" experiments, where no explicit forcing 
is introduced. Forced wakes, in which the solid body undergoes periodic 
oscillations at specific amplitude and frequency, are also studied experi­
mentally. 

Couder et al. [14,15] have investigated the wake behind a solid cylinder 
in a thin two dimensional soap film. They found that various different 
vortex street patterns can form in the cylinder's wake when the forcing 
parameters are varied. The unforced wake is a classical Karman vortex 
street, but the forced wakes are dominated by vortex couples (i.e. counter­
rotating vortex pairs), which propagate away from the wake's centerline. 
The fact that small amplitude forcing can affect the resulting wake patterns 
in this manner is an important finding. 

A computational study of this problem would be very ambitious if it 
were to include the unsteady separation process on the solid "body and the 
wake's downstream development. Couder and Basdevant [14] performed 
psuedo-spectral calculations for the two dimensional Euler equation with 
a super-dissipativity term included. The calculations showed how vortex 
couples can arise from the destabilization of a Karman vortex street, in 
agreement with experimental results. They also studied the structure and 
collision of vortex couples, finding conditions under which couples form 
whose vorticity and stream function are linearly related. In the present 
work, the vortex blob method was applied to compute the development of 
wake patterns from specific initial perturbations, for a periodic analog of 
the experiment. 

Consider flow past a bluff body with two separation points, each con­
tributing a shear layer to the wake. Each layer contains circulation predom­
inantly of one sign. Previous studies have typically ,employed either two 
arrays of point vortices, two vortex sheets, or two layers of constant vortic­
ity to model such wakes [3,6,7,22,26]. However, the experiments of Couder 
et al. [14,15] suggest that in some instances the wake can be modeled more 
economically by a single vortex sheet carrying both positive and negative 
circulation. This might be the case when the two separation points are 
very close to one another. In effect, the flow sees a single separating shear 
layer whose circulation density alternates in sign along the layer. With 
this in mind, the present computations use a single vortex sheet, with si­
nusoidal circulation density, to represent the wake. This contrasts with the 
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Kelvin-Helmholtz computations in §3, for which the circulation density was 
positive all along the vortex sheet. 

Experimental Apparatus and Computational Setup. In the experiments 
of Couder et al. [14,15], a rectangular wire frame was used to support 
a two-dimensional soap film. The wake was created by towing a solid 
cylinder through the film. In the experiments reproduced below from [14], 
the cylinder moved from left to right. The system was forced by causing 
the cylinder to oscillate in the streamwise direction at a specific frequency. 

In the vortex blob computations, the wake is represented by a vortex 
sheet (x(a, t), y(a, t)), which is periodic in the Lagrangian variable a. The 
circulation density along the curve is a given function u( a) = df / da. The 
Table gives the initial vortex sheet shape and circulation density for the 
three cases presented. One spatial period was computed (0 ::5 a ::5 1), 
but six periods are plotted in the Figures. In each case, the initial shape 
(x(a, 0), y(a, 0)) and circulation density u(a) was chosen to simulate a par­
ticular experimental wake pattern from [14]. These computations used the 
value 8 = 0.3 for the smoothing parameter. 

Table. Initial vortex sheet shape (x(a, 0), y(a, 0)} and circulation den­
sity u(a) for the computations in §4. 

Figure x(a,O) y(a, 0} u(a) 

4.1 a 0.2sin27ra sin27ra 

4.2 a+ 0.1 sin27ra 0.2 sin27ra sin27ra 

4.3 a + 0.05 sin 47ra 0.05 sin47ra sin47ra , 0 ::5 a ::5 0.5 
-0.05 sin 47ra - sin47ra, 0.5 ::5 a ::5 1 

Comparison of Computation with Experiment. Figure 4.1b shows the 
Karman vortex street created by towing the cylinder at uniform speed, with 
no explicit forcing. The experimental wake consists of an array of counter­
rotating vortices which are staggered on either side of the centerline. The 
circulation density for the computation was taken to be u(a) = sin 27ra. 
The vortices' staggered position was obtained by putting a transverse sinu­
soidal perturbation into the vortex sheet's initial shape. The computation 
in Figure 4.1a shows the development of a regular vortex street which re­
sembles the experiment. 

In Figure 4.2b, the experimental wake was forced at the natural shedding 
frequency. This resulted in an array of vortex couples that propagate away 
from the centerline on one side, at an oblique angle. A similar-looking 
array of computed vortex couples is displayed in Figure 4.2a. In this case, 
the initial vortex sheet shape of Figure 4.la was modified by including a 
longitudinal perturbation. 

The experimental wake in Figure 4.3b was forced at close to the natural 
shedding frequency. The resulting vortex couples propagate away from the 
centerline on both sides. For the computation in Figure 4.3a, the circulation 
density and initial shape were obtained by patching together two scaled 
copies of the functions from Figure 4.2a. One copy was reflected about 
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the line y = 0 in order to cause half of the vortex couples to propagate 
below the centerline. The computed vortex structures closely resemble the 
experimental ones. 

Couder et al. also presented results at higher Reynolds number showing 
the destabilization of these patterns and the formation of a cloud of vortex 
couples [14,15]. Vortex blob simulations of such results would be a good 
deal more expensive than the present computations. 

Discussion. The initial shapes and circulation densities used in the com­
putations are simple sinusoidal functions, or a patched combination in the 
case of Figure 4.3a. It should be noted that a small amount of trial and 
error went into choosing these specific initial perturbations. Furthermore, 
it is not clear how to make a definite connection between the initial per­
turbations in the computations and the forcing parameters in the exper­
iment. Even so, it is significant that within a restricted class of initial 
conditions, the desingularized vortex sheet model yields good qualitative 
agreement with experiment. Although the smoothing parameter o does 
not correspond precisely to a physical mechanism such as viscosity or finite 
thickness, these results show that vortex blob computations can capture 
important features of real flows. The desingularized vortex sheet model 
displays a sensitivity to small perturbations similar to that observed in the 
experiment. 

An interesting detail is that the initial shape in Figure 4.3a has a sharp 
corner (i.e. a slope discontinuity) at the parameter values a = 0 and 
a = 0.5. These singularities lie on a portion of the curve which is being 
stretched and as a result, the corners are smoothed out at later times. This 
finding is relevant to analytical studies of singularity formation in vortex 
sheets [8]. 

A vortex-dipole sheet model for a wake has previously been proposed 
[21]. In that work, computational vortex-dipoles were used to represent 
the oppositely-signed vorticity that originates in boundary layers, upstream 
from a single separation point. This effect is not included in the present 
work. The oppositely-signed vorticity here represents two free shear layers 
that originate at nearby separation points on a bluff body. 

A serious deficiency of the present vortex sheet model is the artificial 
nature of- the initial and boundary conditions. An important and difficult 
challenge is to incorporate the unsteady separation process on the solid 
body and the spatial growth of the wake. Along these lines, a method for 
treating vortex sheet separation at a sharp edge has been developed and is 
described in the next section. 

5. Separation at a Sharp Edge. Boundary layer separation affects 
the pressure distribution and forces felt by a solid surface in the flow. 
Therefore, applications in aerodynamics and ship hydrodynamics require 
a modeling capability for unsteady separation. This section begins by dis­
cussing the flow around a fiat plate which is impulsively set into uniform 
motion in the direction normal to the plate. The fluid is taken to be ideal, 
i.e. incompressible, inviscid and irrotational, apart from the presence of 
embedded vortex sheets. 
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Background. There are two possible ideal flows which are consistent with 
the impulsively started normal motion of a flat plate. The first possibility 
is steady flow in a frame moving with the plate, with a bound vortex sheet 
on the plate. The fluid velocity is infinite at the edges, no vorticity is shed 
and the flow has no wake. Experiments show however that thin shear layers 
are shed at the edges of a moving plate [32]. Therefore, this first example 
of ideal flow is a poor approximation to the real flow behind an impulsively 
started plate. 

It is important to realize that fluid viscosity, however small, would pro­
duce vortex shedding at the plate's edges. This effect is implicitly accounted 
for in the second example- unsteady ideal flow containing free vortex sheets 
that emanate from the plate's edges. This flow is a candidate asymptotic 
outer solution to the corresponding viscous flow problem, in the zero viscos­
ity limit. Such ideas go back to Prandtl, although full justification remains 
to be accomplished. 

Several issues arise in computing vortex sheet separation at a sharp edge: 
- satisfying the flow tangency condition on the plate. 
- implementing the unsteady Kutta condition at the edges. 
-initiating vortex shedding. 
Previous numerical studies have used the point vortex method to rep­

resent the free vortex sheets, (e.g. [29], see also the review by Graham 
[17]). Recent computations using the vortex blob method have not ob­
tained smooth spiral roll-up [12,13,24]. The present work seeks to develop 
an improved vortex blob algorithm for the problem. In particular, one cri­
terion is that the method should converge with respect to refinement in the 
mesh size and the smoothing parameter. 

Numerical Method. The plate coincides with the interval-! ~ z ~ 1 for 
timet < 0, and it moves vertically with speed 1/2 for timet> 0. The flow 
contains a bound vortex sheet on the plate and free vortex sheets emanating 
from each edge of the plate. The free vortex sheets are represented by 
vortex blobs, in order to capture their roll-up into spirals. To accurately 
satisfy the flow tangency condition on the plate, the bound vortex sheet 

"is represented by point vortices. The free vortex sheets are generated by 
shedding vortex blobs from the edges at each time step. 

Let ( z i, Yi) be the position of a vortex element (either a vortex blob or 
a point vortex) having strength ri. The induced velocity at one of the 
elements is given by, 

(5.1) 

The sum in (5.1) is taken with the understanding that 6 is set equal to zero 
when the index k corresponds to one of the bound point vortices. 

The bound vortex sheet strength u(z, t) satisfies a Cauchy singular inte­
gral equation of the 1st kind along the plate, 

(5.2) 1 11 
u(x, t)dx ( ) 

2~ ( -) =- v z, t . 
" -1 z- z 
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The right side in (5.2) is the normal velocity on the plate which is induced 
by the free vortex sheets. The reason for using point vortices on the plate is 
that equation (5.2) could not be solved for a general right side if the kernel 
were smoothed. To provide better resolution at the edges, the bound point 
vortices are placed at x; =cosO;, 0; = j-rrfn, and equation (5.2) is satisfied 
at the midpoint of each interval. The total amount of bound and free 
circulation is set to zero in accordance with Kelvin's theorem. The linear 
system of equations for u( xi, t) is solved by Gaussian elimination. 

The total circulation f(t) in each free vortex sheet is determined by the 
unsteady Kutta condition, 

(5.3) df 1 2 2 -dt = 2' (U_- U+) = U · u, 

where U _ and U+ are the one-sided velocities at the edge, U is the average 
velocity, and u is the vortex sheet strength at the edge. The average velocity 
U is induced by the free vortex sheets, and u """' .6.f / .6.x is calculated by 
a finite difference formula applied to the bound circulation. The one-sided 
edge velocities only contribute if they correspond to separating (rather 
than attached) flow. This is responsible for initiating the vortex shedding 
at timet= 0. 

The ordinary differential equations (5.1,5.3) were solved by the fourth 
order Runge-Kutta method with a variable time step. An adaptive mesh 
parameter controlled the insertion of new points where required due to 
curve stretching. 

Results. Figure 5.1 was obtained using the smoothing parameter value 
6 = 0.2. 1i'he free vortex sheets roll up smoothly. At short times, the 
vortices are circular in shape but by timet= 8, the outer turns have been 
deformed due to the strain field of the neighboring vortex. Figure 5.2 is a 
similar result obtained with the smoothing parameter value 6 = 0.1. With 
a smaller amount of smoothing, the curve rolls up more tightly. 

Figure 5.3 shows the computed velocity field at timet= 8 in a frame of 
reference that is moving with the plate. The velocity vectors are plotted on 
a regular grid with a small square at the base of each vector. The vortex 
blobs and point vortices representing the free and bound vortex sheets are 
plotted as a sequence of points. A pair of counter-rotating vortices forms 
in the recirculating region behind the plate. Two stagnation points occur 
along the centerline- one at the center of the plate and one at the end of 
the wake. 

Validation. In order to validate the algorithm, a comparison with Pullin's 
[27] computation of self-similar vortex sheet roll-up past a semi-infinite flat 
plate has been performed. Pullin formulated the problem in self-similar 
variables and solved for the vortex sheet shape numerically. This avoids 
the difficulties and expense associated with solving the initial value prob­
lem. Pullin used point vortices to represent the free vortex sheet, a single 
point vortex to represent the inner spiral turns, and conformal mapping to 
determine the strength of the bound vortex sheet. 

Figure 5.4 shows the vortex blob results obtained over the time interval 
0 ~ t ~ 1, with smoothing parameter values 0.025 ~ 6 ~ 0.1. Figure 5.5 
compares the 6 = 0.025 calculation at timet = 1 with Pullin's result. It 
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may be checked by superimposing the results that the vortex sheet shapes 
and positions computed by the two methods agree quite well. Figure 5.6a 
plots the total amount of circulation shed as a function of time, and Figure 
5.6b shows the trajectory of the vortex core. The straight lines plotted 
describe the self-similar solution. As 6 becomes smaller, there is better 
agreement between the unsteady vortex blob result and the self-similar 
solution. A more detailed comparison will be presented elsewhere. 

Instability of a Jet. In order to demonstrate potential applications of 
the method, a calculation was set up to compute the motion of a jet being 
expelled from a box. The jet exits through a narrow outlet on the top of 
the box. A line of passive markers, initially lying across the outlet, is also 
tracked in time. The jet is driven by two point sources, in the lower left 
and right corners of the box, which were turned on at time t = 0. 

The calculated results are shown in Figure 5.6. A starting vortex forms 
and propagates away from the outlet, leaving behind a thin straight jet. 
Eventually, a wave forms along the jet and rolls up into a vortex, which 
catches up to and propagates through the starting vortex. The same pro­
cess is being repeated further behind in the last frame. Note that no explicit 
perturbation is needed to generate the sec~ndary vortices- they apparently 
result from the thinning of the jet where it meets the starting vortex. 

Discussion. The method is capable of simulating vortex sheet roll-up at 
a sharp edge, although the innermost turns in any particular computation 
depend upon the value of the smoothing parameter. Further testing to 
determine the effect of numerical parameters is desireable. Still, the good 
agreement with Pullin's self-similar solution is encouraging. 

The desingularized vortex sheet model for separation at a sharp edge 
does not explicitly mention fluid viscosity. The effect of viscosity is im­
plicitly accounted for by shedding vorticity via the unsteady Kutta condi­
tion. A more familiar separation model consists of the Navier-Stokes equa­
tions, with the no-slip boundary condition along solid surfaces. However, 
the Navier-Stokes model becomes numerically intractable at high Reynolds 
number, due to increased computational costs. The reason for pursuing the 
desingularized vortex sheet model is the possibility that it may provide a 
useful alternative to complement the Navier-Stokes model. Comparison of 
numerical solutions and laboratory experiment is needed in order to assess 
this possibility. 

6. Summary. Strong numerical evidence indicates that the vortex blob 
method converges past the vortex sheet singularity formation time, as the 
smoothing parameter tends to zero. The limit curve is a tight spiral with 
an infinite number of turns. Rigorous proof of this assertion is an open 
problem. 

Periodic vortex blob computations can capture important dynamical fea­
tures seen in real wakes. In order to bring the model closer to laboratory 
experiment, a method for computing vortex sheet roll-up past a sharp edge 
was presented. Good agreement with Pullin's self-similar solution was ob­
tained. The method is applied to compute the wake behind an impulsively 
started flat plate and the instability of a thin jet. 
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FIGURES 

T=O.O 

Figure 3.1 Desingularized vortex sheet evolution, computed using the 
smoothing parameter value 8 = 0.03. One period is plotted for times 
0:::; t:::; 1. 

o.25r:a:---------------, 

. . . . . . . . . . . . . . . . ............ . . ···--···. 

· . 

O.OOL_... _____ _._ _____ __, 

Figure 3.2 Convergence as 8 ......,. 0 at time t = 1. a) The x-axis inter­
cepts of one spiral branch are plotted against values of the smoothing 
parameter in the interval 0.03 :::; 8 :::; 0.25. b) A closeup view of the 
spiral obtained using 8 = 0.03. 
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a T=O 

Figure 4.1 a) Vortex blob computation using a transverse sinusoidal 
perturbation in the initial shape. b) With no explicit forcing, a regular 
Karman vortex street forms (experiment reproduced from Couder and 
Basdevant [14]). 
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a T=O 

Figure 4.2 a) Computation including transverse and longitudinal per­
turbations in the initial shape. b) Forcing at the natural shedding fre­
quency produces an array of vortex couples (experiment reproduced from 
Couder and Basdevant [14). 
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a T=O 

Figure 4.3 a) Computation using patched sinusoidal functions for the 
initial shape. b) Forcing at slightly different than the natural shedding 
frequency causes the vortex couples to propagate on both sides ( experi­
ment reproduced from Couder and Basdevant [14]). 
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4 

G) 2 

G 
t=O 

Figure 5.1 Desingularized vortex sheet roll-up due to the motion of a 
flat plate, computed using 6 = 0.2. 

4 

2 

t=O 

Figure 5.2 Desingularized vortex sheet roll-up due to the motion of a 
flat plate, computed using 6 = 0.1. 
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Figure 5.3 Velocity field for the 6 = 0.2 computation at time t = 8, in 
a frame of reference moving with the plate. The free vortex blobs and 
bound point vortices are plotted as a sequence of points. 

c5=0.100 c5=0.050 c5=0.025 
T=O.OO 

____,C) ®) (j) T=0.25 

___® ~ ~ T=0.50 

~~~T=0.75 

~~~T=1.DO 

Figure 5.4 Self-similar vortex sheet roll-up past a semi-infinite flat plate. 
Computed solutions are presented for 0 $ t $ 1 and 0.025 $ 6 $ 0.1. 
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b 
a 

0< 

Figure 5.5 a) Pullin's computed result for self-similar roll-up (repro­
duced from (27]). b) Vortex blob result at t = 1 using 6 = 0.025. These 
plots may be superimposed to verify that they agree quite well. 

o.o:.,_o..-o.2-~-;;---"------,;o. 1 

Figure 5.6 a) The total amount of shed circulation vs. time (log­
log plot). b) The trajectory of the vortex core. The calculations used 
6 = 0.1, 0.05, 0.025. The straight lines are self-similar scaling laws (27]. 

Figure 5.7 Computation of a jet being expelled from a box. 
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