SIAM J NUMER ANAL © 1991 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 308-320, April 1991 002

CONVERGENCE OF A POINT VORTEX METHOD FOR VORTEX SHEETS*

THOMAS Y. HOUT, JOHN LOWENGRUBY, AND ROBERT KRASNY%

Abstract. Based on the observation that a point vortex approximation can be made spectrally accurate
by using Van de Vooren’s desingularization, short time convergence of the point vortex method for both
vortex sheets and the Boussinesq approximation are proved using analytic data. The spectral accuracy of
the method allows a very simple proof to be obtained without using the Cauchy-Kowalewski theorem.
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1. Introduction. In this paper, we prove short time convergence of two vortex
methods for vortex sheets and the Boussinesq approximation of the Rayleigh-Taylor
problem, respectively. The first numerical method we consider is a point vortex method
for vortex sheets using staggered grid [2], [9], [11]. This method does not differ much
from the usual point vortex method formally, but it exhibits spectral accuracy in the
space discretization when the vortex sheet is analytic. The analysis of Caflisch and
Lowengrub [3], [8] is applicable in the case of this particular numerical method.
However, we have found a proof which does not rely on the Cauchy-Kowaleski
theorem and hence greatly simplifies the analysis.

The difficulty with vortex sheet calculations is due to the Kelvin-Helmholtz
instability and singularity formation. Typically, the error e(¢) at time ¢ will be amplified
by a factor of O(1/h) (h is the initial meshsize)

d c
—e(t)=—e(t)+r(t

2 C(O=p e()+r(),

where r(t) is the truncation error of the method. By the Gronwall inequality, this
would imply that

e(t)= J’t exp (c(t—s)/h)r(s) ds.

0

Our observation is that the spectral accuracy, i.e., r(s) =exp (—b/h) for some positive
constant b and 0=s= T, can dominate instabilities for short times, i.e.,

e(t)y=exp ((—b+ct)/h) Jl exp (—cs/h) ds<£,exp ((=b+ct)/h)>0 ash->0

for t<b/c. This allows us to obtain a short time convergence result without using the
Cauchy-Kowalewski theorem directly. It is worth noting that the method does not
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have to be spectrally accurate to apply this technique. It is enough that an approximate
equation can be constructed so that the numerical method is spectrally accurate with
respect to the approximate equation. It is based on this observation that we prove
convergence of the corresponding time discrete method, which is only first-order
accurate in time. This is in the spirit of Strang [14].

The second method we consider is for the Boussinesq approximation of the
Rayleigh-Taylor problem [13]. Due to the presence of gravity and the density difference,
circulation is generated in the process. This introduces additional difficulty in the
convergence study. Here, we use a staggered point vortex approximation for the
interface equation and a discrete spectral method for the circulation equation. Using
a similar analysis to that in the vortex sheet problem, we show that the method is also
spectrally accurate in the space discretization and converges with spectral accuracy
for short times. We believe that our techniques here could also be useful in analyzing
the full Rayleigh-Taylor problem.

2. A point vortex method for vortex sheets.
2.1. Derivation of the method. In the case of a periodic vortex sheet with period

2, where
z=z(y, ) =x(y, ) +iy(y, 1)
is the sheet position and z(y+2, t) = z(v, t), the Birkhoff-Rott equation becomes

dz*(y, t):LJ” Cot(Z(% N-z(y+&1)
dt dmi ) . 2

(1) ) ¢,  z(%,0)=z(y),
where z* is the complex conjugation of z, y is the Lagrangian circulation parametri-
zation along the sheet, and the integral is a principal value integral. The analyticity of
the sheet is guaranteed, for short times, by Theorem 1.

THEOREM 1 (existence and uniqueness). Let z(y, 0) = y+so(y), where so(y) is
analytic in the strip [Im y|= po. If [|Soy(*)|lcp = &, then there exists a unique solution
z=y+s(y,t) to (1) for 0=t<T, and

”SV(': t)”OO,p(t)é‘g
Jor p(t) = apy— Ct for any 0<a <1, where C = C(g, py, @), T. = ap,/ C and
1key = sup WL

[Im y|=p

We refer to Sulem et al. [15], Caflisch and Orellana [4], and Duchon and Robert

[5] for a proof.
We will now derive a spectrally accurate numerical method based on Van de

Vooren desingularization [16]. Van de Vooren noted that

-yt e\ L [T 2y)—z(y+&) . 1 £
@ LC‘“( 2 )d’f_I_w<°°t< 2 )+z7<v)°°t<2>>d§

due to the fact that (2) is a principal value integral. The integral of the right side is
now a bounded function with

. z(y)—z(y+$€) 1 &\ _zn(v)
3) lg‘i’é(mt( 2 >+zy<y>c°t<z>)‘z,<y>2'
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In fact, we shall see later that the integrand is an analytic function of & This is a
crucial observation.
If we call the right side of (2)

“ _— t)=4Lm.J’ﬂ (Cot<z()’)—;(y+§)>+z (ly) cot<§>) d¢,

-

then a trapezoidal rule approximation of it is

N-1 z(y)—z(y+jh) iz‘y‘y(’y)
(s) hlz1= r§N°t( 2 >+4wzxyf’

where h = 77/ N. The last term corresponds to j = 0. This extra term produces difficulties
for numerical schemes due to the presence of first and second derivatives. Fortunately,
this extra term can be eliminated by an appropriate linear combination of two grid levels:

I~h=2Jh—J2h

2h N1 — +h 2h N/271 — +2jh

LR Cot(Z(v) z(y ))_ s Cot(Z(v) z(y J))
47le=—N 2 4171 j=—N/2 2

(6) j=0 j=0

2h N/271 z(y)—z(y+(2j+1)h)

=— ) cos ,
47le=—N/2 2

which is the same as the midpoint rule approximation of I[z](y, t) with meshsize 2h.
Let z, = z(y,) where yk = kh. Then the numerical method becomes

d +2j+1 Y~ ~
(7 —_—Z <Z+) = I,[z], 2 (0) = zo(yi).

dt 2’

We denote by I,[z,] the corresponding discretization evaluated at the exact trajectory
positions z,’s:

h .
I,[ 2] =2—mZ CcoSs <—Zk 22k+2j+1> .
J

The ideas of using every other point and regularizing the integrand in a Cauchy
principal integral have been used by several authors in the literature. Baker [2] used
these ideas in water wave calculations, and he noted that the method was spectrally
accurate if the removable singularity could be evaluated spectrally. Roberts [9] also
used similar ideas to obtain a spectrally accurate method for interval waves. In the
context of studying vortex sheet singularity by vortex methods, Shelley [11] was the
first to use scheme (7) together with the filtering technique developed by Krasny [7].
Finally, the spectral accuracy of a midpoint rule approximation for a periodic singular
integrand has been analyzed by Sidi and Israeli [12].

2.2. Summary of results. We first introduce some notation. Define

Ifllp= sup |f(¥)], l|f||1w=mle|f(vk)l,

[Im y|=p

Wil = 170 e™,

where f is 2sr-periodic and
ﬂm=J f(x) €™ dx

are the Fourier coefficients. Then we have the following main result.
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Define T, < T, and p = ap,— CT, so that p >0, where C and « are defined as in
Theorem 1.

THEOREM 2 (convergence of the method). Let z(y, t) = y+s(v, t) be a solution of
the continuous Birkhoff- Rott equation for 0=t < T,, where T, is given by Theorem 1. If
2, (1) is the solution of (7), then

lz(-, ) =2(0)]|, =4C(T,) e~ ™" £2CTOV/"

for t=T=min (T,, (mp'/2C) —s) for any p'<p and s> 0. The constants are defined

as follows:
~ |z ) 1
C =4<max : : ; >
lz1=r [sin (2)7] ,Z‘(2J+1)2

r=a(1+|s,llw,)/2+h?
C =max

z(y)—z(y+") 1 :
: cot( 2 >+zy(y) cot <5>

We follow the standard vortex method arguments, and so we need the following

lemmas.
CONSISTENCY LEMMA. Let z(y, t)=y+s(v, t) be given by Theorem 1. Then

L'J’W cot<z(7)—z(’y+f)> dg_izcot(zk—zknjﬂ)
4ri 2 2§ 2

P

=4Ce ™" forp'<p,

-

i.e., the method is spectrally accurate.
STABILITY LEMMA. Suppose that |z —Z||, = h> for t = T*. Then for t = T*,

h Zk“Zk+2,+|> (Ek“5k+2j+1>>’ 2 ~ o
— t| ——22 ) —cot [ =) ) [ ==C)z-7), .
2m‘,z<°°< 2 co 2 p Clz =2l

We now present the proof of Theorem 2.
Proof. We assume the validity of the consistency and stability lemmas. Their
proofs will be given in the next two sections. We have

d o .
E (zZ—2)* = Iz ] - 1L[zZ]=[z]- L[z )+ (L[ 2] = I [ 2])-

Define T* by
T*=sup{t|0=t=T,|z—-Z| =h%}.

It follows from the consistency lemma that

[z - Llz]=4Ce ™"
for all 0=t =T. On the other hand, the stability lemma implies that

. 2 . .
[L[z]— L[] é; Cllz-2|.,

for t = T*. Therefore, we obtain for t= T* that

d 2 a
E||z—z~||,w§4Ce_"”/"+ZC||z—z||,w.

It follows from Gronwall’s inequality that

. 2Ch e
®) ”Z(t)—Z(l)”,wé C~ e~ (mp'=2C0/h
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fort=T*.ButT*=T= (wp’/Zé) — s by the assumption of Theorem 2. This implies that
20~ 20 =257 20",
Thus, for h small enough, we have
lz() = 2(0)]l = h*/2< .
Hence T* =T and (8) holds for 0= = T, which completes the proof of the theorem.

2.3. Proof of the consistency lemma. The main idea of our consistency argument
is to show that the integrand is analytic and that the trapezoidal rule is spectrally
accurate for periodic analytic functions.

LEMMA 1. Ifz(vy, t) = y+s(y, t) is analytic function of y in |Im y| = p and ||s, ||« , =

e =3, then
Cot<2(7)—;(7+§)>+ 7(17) ot(§>

is an analytic function in |Im ¢| =<
Proof. Note that for |£| <,

But

L‘Y);Z_(ﬁf_)‘< A+, o) =5 T+e)<m

for |£| = 7. Thus we have an expansion for

Cot<2(7)—2(y+§))= 2 z(y)—z(y+é) () -z(y+é)’
2 z(y)—z(y+¢&) 6 45
Since z(y) is analytic, it follows that the only nonanalytic term is

2

z(y)—z(y+§€)
It can be verified easily that

1 1

)2y 8 (ts)E 2itsy 0@
and

1 2 ¢ 3

zyCOt(g/z)_(1+s7)§ 3(1+s,) 0(£).

Therefore, we conclude that

z(y)—z(y+¢§) 1 &\
cot( 3 >+zy(y)00t(2> (1+ )2+0(§)

for £ near zero. Therefore ¢ =0 is a removable singularity and hence the function is
actually analytic in [Im ¢|=
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LEMMA 2. Let f(z) be 2m-periodic and analytic in |Im z| = p. Then we have
|fk)|=Ce,
Proof. Recall that

™

fk) =f f(x) e™ dx.

—m

Without loss of generality, we may assume k>0. Let [ =T, +T,+I5+T,.

A

Ty AT,

>

o7 0 r, 77

Since f(z) is analytic inside I" by assumption, we have
J e™ f(z) dz=0,
r

by the Cauchy integral theorem [10]. Note that periodicity of f implies

([, a0

f(2) e dz=—| f(z)e™* dz=e_""'[ f(x+ip) e™ dx.
1 I's -

Therefore we arrive at

J(r) = f
r
But f(z) is analytic, so |f(x +ip)|= C for |x|= 7. Therefore we have proved
|f(k)|= Cem?H.
LEMMA 3. Let f be analytic in |Im z| = p and periodic with period 2. Then,

[" srae—n 3" sim

—m

=2a|fll, e~

for any p' < p, where h= 1/ N.
Proof. By the Poisson summation formula (see, e.g., [6], [10])
N_

f f(x)dx—h ;;f(jh) =27 kéof(sz).

Moreover, we have

Y fREN)| = 3 |fQKN)| e 2N rIk2N
k#0 k=0

=e?™/" Y | fQKN)| e PN || £, e 72,
k#0

313
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We note that if f is analytic in |Im z| = p, then ||f]],- <o for any p’<p by Lemma 2.
This completes the proof of Lemma 3.

Proof of the consistency lemma. Direct applications of Lemmas 1-3 to I[z]—J,[z]
and I[z]—J,,[z], respectively, prove the consistency lemma.

2.4. Proof of the stability lemma. To prove the stability lemma, we consider

. h — . s 5
Ih[Zk]_Ih[ik]zz_TriZ(COt (-——Zk Z;”’“)—cot(———zk 22“2’“))

J

h Zk —Zk+2j+l> (Zk "‘2k+2j+1>)
= cot\————— ) —cot\ ——
21 ? ( ( 2 2
h Zk ‘Z~k+2j+1) <Z~k _Z~k+2j+1>>
+— cot| ————— ) —cot|{ ———) ).
2771'?( © ( 2 © 2

Recall that z(v, t) =y +s(v, t). Note that
|Zk - Zk+2j+1| = (2j+ l)h(l - ”37”00,9)‘

Without the loss of generality, we may assume |/ so, (- )|« =3. Then Theorem 1 implies
that ||s, ||c, =% Let yi; = 60(Zcrajs1— Zisaje1) With || = 1. By assumption, |y, ;| = h* for
t=T*. So we obtain

|2k = Zisayr + Y 1/222(2j+1)h/6—h* /2= (2j+1)h/8> 0

for h small enough. Thus we can apply the mean value theorem to get

h Zk_zk+2j+1> (Zk—5k+2j+1>)
il <°° ( 2 0 2

h d Zi = Zirgy 1 T Vi .
=——2 —-cot <—!—u (zk+2j+1 - Zk+2j+1)

2 Jj dZ 2
h -1 .
=1 . Z (Zk+2j+1 - Zk+2j+1)-
271 .2 (Zk_zk+2j+l+yi,j>
2sin” | —————=
2
Furthermore, note that
A
sin (z) 6

is analytic for |z| < ar. Therefore if ||s, ||, =3, then

2l _ 2]

max —; = - =
lz1=r [sin (2)] " |z1=+ [sin (2)]

G

for r=mw(1+|s||w,)/2+h>< . Now since

'Zk — Zk+2j+1 +yi,j|

2

= w(1+ |5yl )/ 2+ 1,

we get

1

. Zi = Zivojr1 T Vi
sin® (—————2’ i

h
2t
2

Izk+2j+1 T Zk+2j+1
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. h Ci
Sllze—Ziflo— X
” , k”®277' J zk_Zk+2j+1+yi,j

2

2

. 4
= ”Zk —Zk"OOC%h Z (2]+1)2h2
J

<4C% 1

h §(2j+1)2

2= 2],
Denote C =4C? Y., 1/(2j+1)°. Then, we have shown that

h 2k — Zk+2j+1) (zk - Z~k+2,+1>) 1 ~ o
— t\ ———— ) —cot| —————— =-C|z-
277;'?(‘:0 ( 2 «© 2 p Clz =2l

for t=T*. Similarly, we can show that

h Zk_5k+2j+1> <Z~k—2~k+zj+1>) 1 - -
- cot{ ———— ) —cot| ———— =—C|z-
2m’§< ( 2 © 2 p 12 =2l

for t = T*. This completes the proof of the stability lemma.

2.5. Convergence of the time discrete method. Our convergence analysis for the
semidiscrete method is based on the observation that the method is spectrally accurate.
When we discretize the method in time, however, the method is of at most finite order
accuracy in time. Thus, the analysis in previous sections does not apply directly to the
time discrete method.

The way to get around this difficulty is to compare the time discrete method with
an approximate equation to the Birkhofi-Rott equation. This approximate equation is
chosen in such a way that the time discrete method approximates this equation with
spectral accuracy. Thus, the techniques developed in the previous sections can be used
to obtain convergence of the time discrete method. This approach is inspired by Strang’s
argument [14]. "

A natural choice of the approximate equation to the Birkhoff-Rott equation is
the time discrete Birkhoff-Rott equation:

v*(y, (n+1)A1)—v*(y,nAt) 1 |7 v(y, nAt)—v(y+ & nAt)
At " ami cot 2 aé,

9)

v(y, 0) = zo(y).

Again, short time existence of (9) is guaranteed by analyticity of initial data.
THEOREM 3. Under the assumption of Theorem 1, there exists a unique solution
v(y, nAt) = y+5(y, nAt) to (9) for 0=t =T, satisfying

”§7( i) t)lloo,p(t) Se,
and
(10) Is(-, nAL)=5(-, nAD) s p0y = CAL

where p(t), C, and T, are defined as in Theorem 1, and y+ s(v, t) is a solution of (1).
The proof of Theorem 3 is almost identical to that of Theorem 1. We refer to [3]
and [8].
THEOREM 4 (convergence of the time discrete method). Let z(vy, t)=y+s(y, 1)
be a solution of the continuous Birkhoff- Rott equation for 0=t < T,, and Z}, is a solution
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to the time discrete point vortex method

e s h Zh = Zkaoi .
(11) =27 +At—2m_Zcot (———k 2k+2’+1), 29 = zo(i)-
J

Under the assumption of Theorem 2, we have
[2(-, nAt) =" = Cy e ™" <"+ CiAL,

for t=T =min (T, (mp'/2C) —s) for any p'<p and s> 0.
Proof. Let v(1, t) be a solution of (9). Arguing exactly as in the proof of Theorem
2, we can show that

(12) o(-, nAt)—2"|| = C, e ™" eS/",

On the other hand, it follows from Theorem 3 that

(13) lz(-, nAt)—o(-, nAt)|| = CsAt.
Therefore, (12) and (13) together prove convergence of the method.

3. The Boussinesq approximation of the Rayleigh-Taylor problem. We now show
how to apply these ideas to a slightly different problem: the Boussinesq approximation
of the Rayleigh-Taylor problem. Here there is an additional difficulty in that the force
of gravity and density differences cause the generation of circulation.

It is well known that in the limit as the Attwood number A0 and the gravity
constant g - oo with constraint Ag =1, the equations governing the interface z(v, t)
reduce to

(14) %:ﬁif ya+e t)cot(z(a’ ’)—;(“5’ ’)) de.
dy(a,t) ..
(15) i =i(z,—z¥).

Equations (14) and (15) are called the Boussinesq approximation [13]. Here we have
made the analytic extension z*(a, t) = Z(&, t) so that the equations are now analytic
in a.

As a prerequisite to our convergence theorem, we first state the existence result
for (14) and (15).

THEOREM 5. Let y(a, 0) =0 and z(a, 0) = a + so( @), where s, is analytic in the strip
IIm | = po. If ||Sou llcop, = € sufficiently small, then there exists a unique analytic solution
{z(a, 1), y(a, 1)} for 0=t =T, satisfying ||Sa||cpy =€ and ||yl =&, where p(t)=
Bpo—a~'t for any B <1 and a depends only on ¢ and p,.

Theorem 5 can be proved by a straightforward application of the abstract Cauchy-
Kowalewski theorem [1] to the system:

d (si‘(a, t)) [a r y(a+& 1) cot (S(“’ Hoslerd ’)—§> de
- = 47i 2
dt \ y(e, t)

—m

i(sa _St)

‘”(:j) m = [lulllo +lloll, -

with the norm



POINT VORTEX METHOD FOR VORTEX SHEETS 317

The estimates to show that this system satisfies the hypotheses of the Cauchy-
Kowalewski theorem are similar to those found in [3]. We omit the proof.

To introduce our numerical scheme for the Boussinesq approximation, we first
define the discrete Fourier transform:

Fo=3g T e

where f is assumed to be 27-periodic, h=#/N, and k=—N, -N+1,--- , N—-1. It
is easy to check the following inversion formula:

S = T FA0 e

We now define our numerical method, which is of spectral accuracy. Let w, ()~
z(ay, t) and n(t) ~ y(ay, t). Our method is

d h — Wk+2j+1
(16) —d;wk(t)*zz_ﬂ-i%:nk*'zfﬂ(t) COt(wk(t) V;k (t)>,
d N_l ..
a” a0 = L O =) e

THEOREM 6. Suppose {z(ay, t), y(ay, t)} is an analytic solution of the Boussinesq
approximation (14)-(15) for t = T,, and {w,(t), ni(t)} is a solution of (16)-(17). Under
the assumption of Theorem 5, we have

lw(t)=z(-, )], = C(T,) e™™"/* 2CT1/1,
In(6)=y(-, )|, = C(Ty) e 7/" 2T

fort=T=min (T, (7rp’/2C~‘) —s) forany p’<pands>0. Here T, < T,, and p is defined
as in Theorem 5.
Proof. First, we observe that

Jﬂ y(a+§&t) cot (z(oz, 2 —2z(a +§)> dé¢

:J w (’(”5’ ) °°t<2(a’ : —2z(a+§)) +Zf<ii)) cot (%)) d,

-

since the left side is a principal value integral. It is easy to see that the integrand in
the right side is analytic in ¢ Thus we can show by arguing exactly as in the proof of
the consistency lemma in § 2.3 that

1 . z(ay) —z(ap+ &) h Zie = Ziaoit
4771','1.,, v(ag+§€) COt( £ 2 . dg_m§7k+2j+100t %

=4Ce ™",

Next, we note that

()~ 3 2(jh) e
2N /

j==N

|2(k) = 2°(k)| =

H0-5s T 2‘(1)< b e"f‘“"‘)")

I=—c0 j=—N
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Since
(18) ¥ eij(k—l)h:{2N if 1= k mod 2N,
j=-N 0  otherwise,
we get
(19) 12(k)—29(k)|= 3 |2(k+2IN)|=||z]], e >™""
|=—co
10

for p’<p by Lemma 2. Therefore, we have

N-1 oo N-—-1
zo(kh)= X i jE(j) ™ =] ¥ i-ji() e = L i j(2(j) ™
j=—N j=—© J==
N-1
=| T i jEG)-24G) e + |2k
j=—N il=N-1

=Ce ™" forp'<p,

where we have used Lemma 2 and (19) in the last inequality. A similar result applies
to the term z*. This proves the spectral accuracy of the method.
To obtain stability estimates for the method, we use a discrete [, norm:

N-1 _\V2
IIZ”Iz:(h Z Zka) .
k=—N
Clearly, we have |z||_=h""?|z|,. Define

T*=sup {t| (=T, |2(-, )~ w(D)| =, [y(-, D =n(D)] = h?).

Splitting the stability error in z-equation into two terms, we have

h (Zk—zk+2'+1) h (Wk—wk+2'+1)
— i cot =) —— cot —
i %: Yi+2j+1 D) 2 i ? MNk+25+1 5

h Zk — Zk+2j+l> (Wk - Wk+2,+1>>
=— qlcot\ ———— ) —cot\ —————
27”.%: 'Yk+2,+1< ( ) 5

h Wi — Wiiai
+2 -2 (Vew2jer — Mi+2j+1) COt <———+2]+_1> =1, +1I,.
Tl 2

Using Young’s inequality and arguing almost exactly as in the proof of the stability
lemma in § 2.4, we can show that for ¢ < T*

C
I, = Iz, 0= w0l

For the term II,, since

cot (W"——v;’iz’—“)[ =C/h fort<T*,
Young’s inequality implies

N-1

h _
I =1y 0= ol max (5 3 feor (B W)[)
Kk 2w N 2

j=_

C
éle*y(',t)—n(t)llzz-
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We now turn to estimating stability errors in the y-equation. Denote e, = z, — w,.
The definition of the I, norm gives

N-1 2 1 N-1 N-1 . N-1 —
Hi=| Y i-jée™|| =— % ( Y i-jéf e”"")( Y (—i-j)éf e_"kh>
j=—N L 2N 22N \;=ON . j=—N
:L Nil Z ] é{ié_;ieik(j—l)h‘
2N k22N —N<jl<N-1 !
Interchanging the order of summations, we obtain
III=L 5 j lédé_;i Nil oikUi=Dh
2N _N<ji<N-1 T N )
Using (18), we get
_ . .ad pd 2N_1 ad Ad
I = Y Jjjé éf=N" y & é.
~N<j<N-1 j=—N

The discrete Plancherel identity [6] (which can be verified directly using (18))
N-1 N-1

_ 1 _
Ad Ad
Z e; e;, =—— Z e e;
J v 7
2N 2N ;"N

then implies
HI= N?|e|7.

Therefore we have proved

N-1

.. ijkh
Y o i-jélel

=Ee],.
j="N h™ ™

3

This completes the stability estimates. Thus Theorem 6 follows from the consistency
and stability estimates in the same way as in the proof of Theorem 2.

Remark. Convergence of the time discrete method can be proved in a similar
fashion as in § 2.5. We believe that the techniques developed here can also be used to
prove convergence of the vortex method for.the full Rayleigh-Taylor problem.
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