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ABSTRACT. Vortex sheet motion is regularized by smoothing the initial data and solving the 
Navier-Stokes equations. The underlying flow is induced by a vortex sheet containing positive and 
negative circulation. Wake patterns are obtained which closely resemble previous experimental 
results and vortex blob simulations. 

1. Introduction 

A basic premise in fluid dynamics, due to Prandtl, is that a free shear layer converges 
to a vortex sheet in the zero viscosity limit. From this point of view, one can gain 
insight into shear layer dynamics at high Reynolds number by studying vortex sheet 
motion. 

The initial value problem for a vortex sheet is ill-posed in the sense of Hadamard, 
but an analytic solution exists locally (20]. Asymptotic analysis and numerical work 
indicate that the sheet develops a singularity in finite time (13, 16, 17 ,19]. Several 
methods of regularization have been proposed to extend the sheet's motion past 
the critical time, into the roli-up regime. The vortex blob method introduces an 
artificial smoothing parameter to regularize the Birkhoff-Rott integral (1,5,8,14]. 
Convergence of the smoothing process prior to the critical time has been established 
(6]. Numerical results indicate that past the critical time, the regularized solutions 
cc:mverge to a well-defined spiral when the smoothing parameter is reduced [14,15]. 

An important problem is to determine whether the physical regularization due to 
viscosity gives the same result as the vortex blob regularization. Numerical evidence 
indicates that the two regularizations do converge to the same limit for a vortex 
sheet with circulation of one sign, as in a mixing layer (21]. With vortex sheet initial 
data of this type, there also exists a global weak solution of the Euler equations 
(10,11]. 

Another way to regularize the vortex sheet problem is to replace the sheet by 
a layer of constant vorticity which evolves according to the Euler equations. The 
initial value problem for the layer is globally well-posed (4, 7]. Before the critical 
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time, the layer converges to the vortex sheet in the zero thickness limit H -+ 0 
[2,3]. It seems that past the critical time, the finite-thickness regularization does 
not converge to the same limit as the vortex blob and the viscous regularizations. 
However, the motion of a piecewise constant vorticity layer does resemble viscous 
simulation and experiment [12]. 

The present article concerns the case in which the underlying vortex sheet has 
circulation of both signs, as in a wake. This work was motivated by the experiments 
of Couder and Basdevant on the wake of a solid body in a thin soap-film [9]. 
They found that vortex couples form in a forced wake, with different patterns 
developing as the forcing parameters were varied. A previous article showed that the 
experimental wake patterns can be captured by varying the initial corn.lit.ions in the 
vortex blob method [15]. The present article extends the investigation by showing 
that similar patterns are also obtained by solving the Navier-Stokes equations with 
the vortex blob initial data. 

2. Numerical Method 

Let w(x, y, t) be the vorticity, 1/'(x, y, t)the stream function and v the viscosity. The 
2-d N avier-Stokes eq nations in vorticity/ stream form are 

Wt+u·'Vw=v~w, 

~lf,,=-w ' 

u= (1/;y, -1/'x). 

(1) 

(2) 

(3) 

The initial data is obtained from a vortex sheet (x 0 (a), y0 (a)) having circulation 
density lT( a). Let 6 be the artificial smoothing parameter. The Birkhoff-Rott integral 
[5] is regularized and differentiated to obtain the initial vorticity 

(
. ) , 211 

( cosh 2-rr(y - Yo( a))+ cos 21r(x - xo(a))) lT(a) da 
WQ X, y = ITU ·) ( ) '> 2 

0 ( cosh21r(y-y0 (a) -cos21r(x-x0 a )+6~) 
(4) 

The viscosity was v=10- 4 and the smoothing parameter was 6=10- 1 . With U =I l£Tll 00 =l, 
the Reynolds number based on initial layer thickness is 

U6 3 Re= - = 10 . 
v 

(5) 

The domain 0 '.S x :::; 1, -1 :::; y:::; 1 was discretized by a 256 x 512 uniform 
mesh. Central differences were used in space. Time integration was performed using 
the 4th order Runge-Kutta method with time step ~t = 10- 2 . The Poisson equa­
tion (2) was solved using a routine from FISHPACK [18] with periodic boundary 
conditions at x = 0, 1 and free-slip conditions at y = ±1. The integral in equation 
( 4) was evaluated by the trapezoid rule with increment ~a = 0·0025. The curve 
( xo( a), Yo( a)) was passively advected for diagnostic purposes. Bilinear interpolation 
was used to obtain the curve velocity from the fluid velocity on the mesh. To main­
tain the curve's resolution, additional points were inserted cl uring the computation 
[15]. 
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case xo(a) !lo (a) u( a) 
1 a 0.20 sin 21rn . ') 

SIU ~n:a 

2 n + O.lOsin 2n:a 0.20 sin 2n:a. sin 2n:a 
3 a+ 0.05 sin 4n:a 0.05 sin 4n:a sin 4n:a ; 0.0 Sa S 0.5 

-0.05 sin 4n:a -sin4n:a ; 0.5 Sa S 1.0 

TABLE I 
Initial data: vortex sheet (xo(a), yo(a)), circulation density u(a). 

3. Numerical Results 

Table 1 contains (xo, Yo) and u for the 3 cases computed. The initial conditions 
lie within a restricted class of sinusoidal perturbations. The various amplitudes 
were chosen t.o obtain close agreement with the experimental results [9]. Computed 
results on the time interval 0 :St :S 8 are shown iu Figures 1,2,3. The passive curve 
is plotted on the left. an<l vorticity contours are plotted on the right. 

4. Discussion 

The passive curves obtained here are in close agreement with experimental wake 
patterns [9] and vortex blob simulations [15]. This is consistent with the previously 
observed close agreement between the viscous and vortex blob regularizations for a 
vortex sheet with circulation of one sign [21]. Such results indicate that. the vortex 
blob method gives the physically correct extension of vortex sheet motion. Close 
agreement between these two regularizations can only hold for a finite time. The 
Navier-Stokes equations are dissipative and the circulation decays to zero as t---+ oo. 
On the other hand, the vortex blob method is conservative and the circulation does 
not decay. A more detailed study of these issues is in preparation. 
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Fig. 1. The initial curve cont.ains a· transverse sinusoidal perturbation. The curve rolls 
up int.o an array of counter-rot.at.ing vort.ice!' resembling the unforced experimental wake 
(9,15) 
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Fig. 2. A longitudinal perturbation has been added to the sha.pe of the initial curve. Vortex 
couples propagate into the region y > 0 as in a forced wake experiment [9,15]. 
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Fig. 3. The initial perturbation i~ reduced in scale and a reflection about y = 0 is added. 
Vortex couples propagate into the regions y > 0 and y < 0 as in another forced wake 
experiment [9,15]). 
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