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VORTEX SHEET ROLL-UP 
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ABSTRACT 
The equation governing vortex sheet motion is regularized by Chorin's vortex­

blob method. Two computed examples of vortex sheet roll-up are presented 
and discussed. The first example is the Kelvin-Helmholtz problem in which a 
periodically perturbed vortex sheet rolls up into a double-branched spiral. The 
second example is an axisymmetric vortex sheet which rolls up at the edge of a 
circular tube, forming a vortex ring. 

1. Introduction 
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A basic idea in fluid dynamics going back to Prandtl is that a free shear 
layer converges to a vortex sheet in the zero viscosity limit. From this point of 
view, the investigation of vortex sheet motion sheds light on the structure of high 
Reynolds number fluid flow. A prominent feature of vortex sheet motion is "roll­
up", i.e. the formation of a spiral in the shape of an evolving vortex sheet. The 
roll-up phenomenon. continues to challenge mathematical analysis. In this article, 
I will discuss some recent computational work dealing with vortex sheet roll-up. 

According to linear theory, a fiat vortex sheet of constant strength exhibits 
the short wavelength Kelvin-Helmholtz instability. To study the sheet's nonlinear 
motion, one must solve an integro-differential equation4 

oz f at (r, t) = K(z(r, t) - z(r', t)) dr' , (1) 

where z(r, t) is a complex-valued function representing the vortex sheet, r is the 
circulation parameter along the sheet and t is time. For a periodically perturbed 
vortex sheet, the kernel is 

1 
K(z) = 

2
i cot 7rZ • (2) 

Since K(z) is singular, the integral is understood as a Cauchy principal value. 
Equation (1) is solved subject to an initial condition z(r,o) = r + p(r,o). If the 
initial perturbation p(r, 0) is an analytic function of r, the sheet z(r, t) remains 
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analytic in r for a finite time6 •26 • Asymptotic analysis by Moore18 indicates that 
a branch point singularity forms in the vortex sheet at a critical time tc > 0. 
Although the sheet's curvature at the branch point is infinite, roll-up has not yet 
occurred at the critical time. 

2. Spiral Formation 

It is natural to try to extend vortex sheet motion past the critical time. 
According to a basic theoretical result, the 2-d incompressible Euler equations 
have a weak solution for all t > 0, if the initial velocity corresponds to a vortex 
sheet with circulation of one sign8 •10 • This result applies to the Kelvin-Helmholtz 
problem, but it does not provide information about the shape of the vortex sheet 
fort> tc. 

Pullin20 conjectured that the sheet rolls up immediately for t > tc into a 
double-branched spiral with an infinite number of turns. This idea is motivated 
by the study22 •23 of self-similar vortex sheets which are initially flat and possess a 
branch point singularity of the form r ,..., xP. For t > 0, these sheets have a spiral 
shape determined by the value of the parameter p. Pullin suggested20 that this 
example of self-similar vortex sheet roll-up provides a model for what happens past 
the critical time in the Kelvin-Helmholtz problem. The self-similar spiral sheets 
exist for parameter values in the range 0 < p < 1, although for p-+ 1 there is some 
degeneracy23 . Moffatt17 has suggested that for a certain value of the parameter 
p, the self-similar spiral vortex sheet may display Kolmogorov's spectral energy 
decay rate. It is not known apriori which value of p (if any) should arise in the 
Kelvin-Helmholtz problem. 

The first vortex sheet computation was performed by Rosenhead24 using 
the point vortex approximation. The sheet is replaced by a finite set of point 
vortices {z;(t) , j=l, ... , N} whose motion is determined by the equations 

-- N 
dz· 
d: = L K(z; - zk)N-1 

A:=l 
~,t.j 

(3) 

Rosenhead's method has been the subject of controversy4 but it is now known5 •13 

that for t < tc, the point vortex approximation converges as N -+ oo. In order to 
extend the sheet's motion for t > tc, it is necessary to take a different approach. 
The key idea is to regularize Equation (1). In Chorin's vortex-blob method1•7 •14 , 

the singular kernel K(z) is replaced by a smooth approximation K6(z). One choice 
used for free-space problems is 

(4) 
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Fort > tci the vortex sheet is defined to be the limit of the regularized solutions 
as the smoothing parameter Ii tends to zero. Using vector and parallel processors, 
filtering to control roundoff error, and adaptive mesh techniques, solutions of the 
regularized vortex sheet equation have been obtained for smaller values of Ii than 
in previous investigations15 •16• Figure 1 shows the evolution of a perturbed vortex 
sheet computed by the vortex-blob method. 
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Figure 1. Roll-up of the Kelvin-Helmholtz vortex sheet, computed by the vortex­
blob method. The critical time is tc "' 0.37. The values of the smoothing 
parameter are: (a) Ii= 0.10, (b) Ii= 0.03. 

The numerical evidence14•15 supports Pullin's conjecture. At a fixed time 
t > tci the regularized solutions converge to a well-defined spiral in the limit Ii --+ 0. 
The results also indicate that the core of the spiral behaves like 

r"'r r "' 9-1 
' 

(5) 

where r, r, (} are measured from the spiral center. This imples that the spiral which 
forms in the Kelvin-Helmholtz problem resembles a self-similar solution with pa­
rameter value p = 1. It should be noted that Hobson11 obtained a different value, 
p ,...., 0.8. The numerical evidence supporting p = 1 will be presented in a forthcom­
ing article16 • A p = 1 spiral can be thought of as arising in the Kelvin-Helmholtz 
problem from the linear circulation distribution r ,...., x in the unperturbed vortex 
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sheet. However, this finding requires further clarification since p ___.. 1 is a singular 
limit for the self-similar family studied by Pullin23 • 

Another topic of current interest is the effect of different methods of regu­
larization. Baker and Shelley3 studied the motion of a layer of constant vorticity. 
They observed that in the limit of zero thickness, the layer converges to the vor­
tex sheet for t < te. For t > te, the shape of the layer does not seem to match 
the spiral found using the vortex-blob method. Jacobs and Pullin12 studied the 
motion of several superimposed layers of constant vorticity. Their results were 
in qualitative agreement with other simulations and experimental visualization of 
rolling-up shear layers. Tryggvason, Dahm and Sbeih27 compared solutions of the 
Navier-Stokes equations to vortex-blob simulations and obtained good agreement 
for the shape of the spiral. Their work suggests that for the Kelvin-Helmholtz 
problem, the zero smoothing limit of the vortex-blob method agrees with the zero 
viscosity limit of the Navier-Stokes equations. 

The computational work discussed above is helping to clarify the issue of 
spiral formation in the Kelvin-Helmholtz problem. However; most of the numerical· 
findings are not yet supported by rigorous proof, especially in the roll-up regime. 
In practice, one wants to know whether vortex-blob results computed with S > 0 
are close to an actual viscous flow. This issue has been addressed b_y using the 
vortex-blob method to simulate a laboratory experiment, as discussed in the next 
section. 

3. Axisymmetric Vortex Sheet Roll-Up 

Didden9 performed an experiment in which a piston ejects fluid from a 
circular tube, leading to the formation of a vortex ring. Nitsche19 simulated the 
experiment using an axisymmetric vortex-blob method which incorporates sepa­
ration at the edge of the tube. Figure 2 shows the results of the simulation. In 
the experiment, the piston velocity was held constant until time t = 1.6, when the 
piston stopped moving. Before the shutoff time, the piston pushes fluid from the 
tube and a primary vortex ring travels away from the edge of the tube. Past the 
shutoff time, a secondary vortex ring forms and travels slowly upstream inside the 
tube. The primary ring continues to travel away from the edge. 

The results in Figure 2 agree well with Didden's flow visualization9 . The 
main discrepancy between simulation and experiment is in the initial circulation 
shedding rate. This is attributed to the neglect of viscous effects in the simu­
lation. The simulation did reproduce other detailed features of the experiment. 
In particular, both simulation and experiment found that the trajectory of the 
vortex ring before the shutoff time is curved, Xe ~ t 312 , re ~ t213 • Here, Xe, re 
are the axial and radial coordinates of the ring center, measured from the edge 
of the tube. On the other hand, 2-d similarity theory21 •25 predicts that the tra­
jectory is a straight line, Xe ~ t 213 , re ~ t 2 / 3 • Auerbach2 listed several factors, 
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among them viscous effects, which could explain this discrepancy. However, the 
agreement between simulation and experiment seems to eliminate the possibility 
that viscous effects cause the ring trajectory to depart from the predictions of 
2-d similarity theory. Still, there is currently no theoretical explanation for the 
observed behaviour Xe ,..., t 312 • 

0.21 0.63 1.04 

2.28 t - 3 .31 

Figure 2. Roll-up of an axisymmetric vortex sheet at the edge of a circular 
tube. These results are reproduced from Nitsche's simulation19 of Didden's 
experiment9. 
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4. Conclusion 

The vortex-blob method has been used to extend vortex sheet motion past 
the critical time, into the physically important roll-up regime. For the Kelvin­
Helmholtz problem, the regularized solutions converge to a well-defined spiral. 
Good agreement between computation and experiment has been obtained for the 
case of axisymmetric vortex sheet roll-up at the edge of a circular tube, 

The numerical results presented here deal only with laminar flow. Experi­
mental evidence indicates that turbulent flow contains large-scale coherent vortex 
structures which evolve deterministically. It is tempting to speculate that these 
structures could be modeled as evolving vortex sheets. Testing this idea will re­
quire further development of numerical methods for vortex sheet roll-up. 
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