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Abstract This article reviews some recent simulations of vortex sheet roll-up using
the vortex blob method. In planar and axisymmetric flow, the roll-up is initially
smooth but irregular small-scale features develop later in time due to the onset of
chaos. A numerically generated Poincaré section shows that the vortex sheet flow
resembles a chaotic Hamiltonian system with resonance bands and a heteroclinic
tangle. The chaos is induced by a self-sustained oscillation in the vortex core rather
than external forcing. In three-dimensional flow, an adaptive treecode algorithm is
applied to reduce the CPU time from O(N?) to O(N log N), where N is the number
of particles representing the sheet. Results are presented showing the growth of
azimuthal waves on a vortex ring and the merger of two vortex rings.

Vortex blob methods discrete,

Applied to roll-up of a sheet,
Will persuade any cynic
That heteroclinic

Tangles give insights quite neat.

1. Introduction

Vortex sheets are commonly used in fluid dynamics to model thin
shear layers in slightly viscous flow. This article reviews some recent
simulations of vortex sheet roll-up in planar, axisymmetric, and three-
dimensional flow Krasny & Nitsche 2001; Lindsay & Krasny 2001. Vor-
tex sheet simulations encounter difficulties due to Kelvin-Helmholtz in—
stability and singularity formation Moore 1979 and the present work
deals with these issues by applying the vortex blob method Chorin &
Bernard 1973; Anderson 1985; Krasny 1987. This approach regularises

3

K. Bajer and H.K. Moffatt (eds.), Tubes, Sheets and Singularities in Fluid Dynamics, 3-12.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.



4 R. Krasny, K. Lindsay and M. Nitsche

the singular Biot-Savart kernel in the integral defining the sheet ve-
locity. As a result, the instability is diminished and the computations
can proceed past the singularity formation time into the roll-up regime.
A comprehensive review of vortex blob methods is given by Cottet &
Koumoutsakos (2000).

The article is organised as follows. The onset of chaos in planar and
axisymmetric flow is discussed in §2. A treecode algorithm for vortex
sheet motion in three-dimensional flow is described in §3 and results are
presented showing the growth of azimuthal waves on a vortex ring and
the merger of two vortex rings. A summary is given in §4.

2. The onset of chaos in vortex sheet flow

In planar flow, a vortex sheet is a material curve and it is represented
on the discrete level by a set of particles x;(¢) with scalar weights e, for
i=1,...,N. The particles are advected by the equations

]\7
dx, -
- = (Y,jK(s(Xl,Xj) . (1)
i

where N

B 2i (x 2y) 5 (2)
™ ({x —y|* +67)

is a regularised form of the 2-D Biot-Savart kernel. A similar approach

is used for axisymmetric flow Nitsche & Krasny 1994.

Figure 1 displays the roll-up of an initially flat vortex sheet in planar
and axisymmetric flow, yielding respectively a vortex pair and a vortex
ring Krasny & Nitsche 2001. At early times the roll-up is smooth, but
at late times the sheet develops irregular small-scale features; a wake is
shed behind the vortex ring arid gaps form between the spiral turns in
the spiral core in both cases. Figure 2 shows a close-up at the final time.
In the planar case, the irregular features are confined to a thin annular
band around the core. In the axisymmetric case, the irregular features
in the core are more dispersed and the sheet folds and stretches near the
rear. It should be noted that the computations are well-resolved. As
explained below, the irregular features are due to the onset of chaos.

It is well-known that the motion of material points in planar incom-
pressible flow is governed by a Hamiltonian system,

dz 0y dy oy ()
dt oy’ At oz’
where the stream function 4 (x,y,t) plays the role of the Hamiltonian.
A similar result holds for axisymmetric flow. Insights from dynamical

K(S(Xa Y) =
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Figure 1. Computed vortex sheet roll-up (§ = 0.2). (a) planar vortex pair; (b)

axisymmetric vortex ring.
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Figure 2. Close-up at final time. (a) planar, t=120; (b) axisymmetric, t=60.
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systems theory can then be used to shed light on the fluid dynamics Aref
1984; Ottino 1989.

One example especially relevant for the present work is the oscillating
vortex pair Rom-Kedar, Leonard & Wiggins 1990. The stream function
in this model has the form

7/1(357?/,75) =1/)0($,y)+€'(/J1(.T,’L,t), (4)

where 1y(z,y) is the steady flow defined by a pair of counter-rotating
point-vortices, 91(x,y,t)is a time-periodic perturbation strain field, and
¢ is the perturbation amplitude. The system is integrable for ¢ = 0
and chaotic for ¢ > 0. Figure 3 describes the dynamics of the model.
In particular, the perturbed system has chaotic orbits associated with
heteroclinic tangles and resonance bands Guckenheimer & Holmes 1983;
Wiggins 1992.

Returning to the vortex sheet flow, the first observation is that past
the initial transient the flow enters a quasisteady state. In this regime it
was found that the vortex core undergoes a small-amplitude oscillation
which is close to time-periodic. In other words, the stream function of the
vortex sheet flow is close to the form given in (4). Using the oscillation
frequency, a Poincaré section of the vortex sheet flow was constructed
and the result, shown in figure 4, has the generic features of a chaotic
Hamiltonian system. The resonance bands and heteroclinic tangle in
the Poincaré section are well—correlated with the irregular features in the
shape of the vortex sheet (compare figures 2 and 4). Hence the vortex
sheet flow resembles a chaotic Hamiltonian system, although the chaos
is induced here by a self-sustained oscillation in the vortex core rather
than external forcing. The oscillation resembles the periodic motion of
a strained elliptic vortex Kida 1981.

3. Azimuthal waves, vortex ring merger

In three-dimensional flow, a vortex sheet is a material surface and it
is represented on the discrete level by a set of particles x;(t) with vector-

valued weights w;, for ¢ = 1,..., N. The particles are advected by the
equations
dxi w
T :ZKJ(Xi,Xj) X Wy, (5)
j=1
where !
x J—
K;(x,y) = Y (6)

A (jx -y 2 4 52
is a regularized form of the 3-D Biot-Savart kernel Rosenhead 1930;
Moore 1972. Evaluating the sum (5) for ¢ = 1,..., N is an example of
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Figure 8.  Dynamics of an oscillating vortex pair Rom-Kedar, Leonard & Wiggins
1990. A Poincaré section is plotted schematically. (a) € = 0; (b) € > 0. 1:elliptic
point, 2: periodic orbit, 3: hyperbolic point, 4: homoclinic orbit, 5: heteroclinic tangle,
6: resonance band, 7: KAM curve.
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Figure 4.  Poincaré section of the vortex sheet flow. (a) planar; (b) axisymmetric.
The labels are the same as in figure 3. The vortex sheet flow has the generic features
of a chaotic Hamiltonian system (resonance bands, heteroclinic tangle, KAM curves).
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an N-body problem. The simplest evaluation procedure is direct summa-
tion which computes O(N?) particle-particle interactions per timestep.
Since new particles are inserted to maintain resolution as the sheet rolls
up, the CPU time quickly becomes prohibitive.

The present simulations used a treecode algorithm to reduce the cost
of evaluating the particle velocities Lindsay & Krasny 2001. The par-
ticles are divided into a nested set of clusters and the O(N?) particle-
particle interactions are replaced by a smaller number of particle-cluster
interactions which can be efficiently computed using a multipole approx—
imation. Treecode algorithms reduce the cost to O(N log N) Bames &
Hut 1986 or O(N) Greengard &; Rokhlin 1987. The algorithm used here
follows an approach developed for two-dimensional vortex sheet motion
and applies Taylor series in Cartesian coordinates to approximate the
regularized Biot-Savart kernel Draghicescu & Draghicescu 1995. The al-
gorithm implements several adaptive techniques including variable order
approximation, nonuniform rectangular clusters, and a run-time choice
between Taylor approximation and direct summation. The results pre-
sented below used up to N =~ 3.5-10° particles.

Figure 5 shows the growth of azimuthal waves on a vortex ring. The
initial condition is a circular-disk vortex sheet with a transverse az—
imuthal perturbation of wavenumber £ =9. Such waves have been ob-
served in experiments Lim & Nickels 1995; Shariff & Leonard 1992.

Figure 6 presents a simulation of vortex ring merger. Experiments
show that two vortex rings moving side by side in the same direction
draw close to each other and merge into a single ring Schatzle 1987.
This is a popular test case for numerical methods Cottet & Koumout-
sakos 2000 and there is much interest in this flow as an example of vortex
reconnection Kida & Takaoka 1994. In the present simulation, the rings
are formed by the roll-up of two initially flat circular-disk vortex sheets.
In figure 6, the material sheet surfaces are plotted in column (a) and the
associated vorticity isosurfaces are plotted in columns (b,c). The vortic-
ity was computed by differentiating the regularized Biot-Savart velocity
integral. Two isosurfaces are plotted, % (light gray) and % (dark gray) of
the initial maximum vorticity amplitude. The material surfaces repre-
senting the sheets approach closely but they do not actually touch. On
the other hand, the vorticity isosurfaces apparently cancel and reconnect
as the rings approach each other.

Figure 7 shows a closeup of the material surfaces in the ring merger
simulation at the final time. In the region where the two rings approach
closely the core radius is small. The irregular small-scale features appear—
ing in this region are artifacts of the graphics software; the simulation is
well-resolved. The core radius becomes larger away from this region.
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(a)

Figure 5. The growth of azimuthal waves on a vortex ring. The initial condition is
a circular-disk vortex sheet with a transverse azimuthal perturbation of wavenumber
k=9(3=0.1). {a) complete sheet; (b) section. Time increases going down the page,
t=0,24,6.
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(b6) ()

Figure 6. Simulation of vortex ring merger. Two rings are formed by the roll-up of
initially flat circular-disk vortex sheets. (a) material surfaces; (b, ¢) vorticity isosur-
faces (perspective, top view). Time increases going down the page, t =0, 1, 2, 3, 4.
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Figure 7. Closeup of material sheet surfaces in the ring merger simulation; ¢t = 4.5.
(a) complete surface; (b) section.

4. Summary

Simulations of vortex sheet roll-up using the vortex blob method were
presented. In planar and axisymmetric flow, the sheet develops irregular
small-scale features due to the onset of chaos. A Poincaré section of the
vortex sheet flow displays resonance bands and a heteroclinic tangle, the
generic features of a chaotic Hamiltonian system. The chaos is induced
by a self-sustained oscillation in the vortex core rather than external
forcing. In three-dimensional flow, a treecode algorithm is applied to
simulate the growth of azimuthal waves on a vortex ring and the merger
of two vortex rings. In the latter case, the vorticity isosurfaces cancel
and reconnect even though the material sheet surfaces do not touch.
The simulation is nominally inviscid and apparently it is the regularized
Biot-Savart integration that allows the vorticity to cancel. There is ev-
idence that vortex blob simulations provide a good approximation for
true viscous flow in certain cases Nitsche &; Krasny 1994; Tryggvason,
Dahm & Sbeih 1991, but it will be necessary to perform comparisons
with experiments and Navier-Stokes simulations to determine the phys-
ical validity of the present findings.
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