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An Ewald summation based multipole method
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We present a method for evaluating Coulomb interactions in periodic molecular systems. The real
space term in Ewald summation is accelerated using a tree code in which interactions between
clusters and distant particles are approximated by multipole expansions. The performance is
reported for water systems. ®000 American Institute of Physids$0021-9608)0)52333-2

I. INTRODUCTION fast multipole methot® and the particle—particle and

_ _ _ particle—mesh methot?~?In particular, the particle—mesh
One of the most challenging problems in computer simugyaid method 4 has been developed to speed up the com-

lation of molecular systems is to evaluate the Iong—rang%utaﬂOn of the reciprocal space p&t of the Ewald sum-
electrostatic interaction between charged partitMéth pe- mation.

riodic boundary conditions, the total electrostatic energy of a |, \what follows. we present a multipole method to speed
system ofN particles is up the computation of the real space paf? of the Ewald

1 N N 9.9 summation. The method is based on the techniques of the
E=5 > >y —— (1)  Ewald method and hierarchical tree cod&3-?°It involves
n =1iEL =L (i) direct evaluation of the reciprocal space sufin) tree

(assuming the simulation box is cubiovhereg; andr; are ~ construction to subdivide the particles into clusteiis) mul-
the charge and position of particle L is the size of the {iPOle expansion to approximate the real space interaction
simulation boxn= (n;,n,,ns), and the prime indicates that Petween a particle and distant clusters; &ugla divide-and-
thei=j terms are omitted when=0.2 The Ewald summa- CONquer strategy to evaluate the real space interacEdns
tion method has been widely used to handle the lattice surfecursively.
in Eqg. (1). In the method, the above-mentioned conditionally
convergent series is written as a sum of a consEAPt and
two rapidly convergent series, the real space $fh and || MULTIPOLE APPROXIMATION
the reciprocal space suf¥,

In this section, we develop the multipole approximation

E=EQ+EN+E®X, @ for p(x)= (Jm/2)erfc(x|)/|x|. Consider the Taylor expan-
where sion of ¢(x) aboutx,
DA B(x)= 3 DGR (x— ®)
E :__1/22 q; 3 K=o k! % ’

Where klzkl'kzlkgl, ||kH:kl+ k2+ k3, (X—Y)k=(Xl

1 NN qid; eI’fC(a|I"—I’<+LI"I|) Tk Tk Tk k_ okl K K K
EM=C_ E’ 2 E ) | , (4) —X1) UXp— X2)2(X3— X3) 3, Dy ="/ (X1 19X, 29X3"?).
2% == |ri—rj+ Ln| Referring to Fig. 1, consider a partidlen a clusterA and a
distant particlg. Let x;=ar; andx;=ar; be the scaled po-
oot o5 1 sitions of particles andj andx,= ar » be the scaled center
2L 770 |n|? of the clusterA. In Eq. (6), let x=x;—X; andx=Xx,—X;, we
5 have thepth order Taylor approximation for the real space

N .
217i : : .
29 eXp(Tn'ri) . (5 Interaction between particieand cluster,

i=1

71_2|n|2

_ N _ EN_S qiq; erfa|ri—ry|)
and « is a positive parameter chosen for computational AT |
efficiency?® For large systems, it has been shown that with b
optimal values ofr, the complexity of the Ewald summation _ 2a 2 2
method isO(N®?).* For further details of the Ewald method T nich Gid; #(Xi—X;) (7)
we refer the reader to Refs. 2-5.

Much effort has recently been devoted to improving the 2a P . }

efficiency of the Ewald summation method and developing *\/—— qj UDX(!)(XA_X])_Z 0i (X —Xa)

. i T |k[=0 K: ieA
alternative methods for large systefmsThese include the )

2a

. o _ }—m;amm ®
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A 3
] [X?DXb(x)+22 kixiDy ¢ (x)
s * .// 3
i P k— k-
X; R o A + 2, ki(ki =)D 4 (0 =xaD$(x)
SesIIIIIIIITTTTTT . XA
________ .
----------- X ~(ky=1)Dy ") =D}eh(x) (14
* as well as two more equations, which can be obtained by first
FIG. 1. Particlej and a cluster of particles. differentiating ¢(x) and (x) with respect tox, and Xs,

respectively. Dividing Eq(14) and the two others bk!,
recallinga,= (1/k!) D)‘ﬁqb(x), and simplifying, we have

wherea, = (1/k!) DEp(xa—x;) is the Taylor coefficient and 3 > X; 1

: . 2 _ 4 i
mE\:EXiEAqi(xi—xA)k is thekth multipole moment of clus- || ak+2i2’1 Xiak—e,+izl Ay 2¢ B¢ Ak—2¢,

ki ki
ter A. This equation computes the interaction between the J J

particlej and the multipoles of clustek.?! The force exerted =by, j=123. (19
on particlej is the negative gradient of the potentialraf Now multiplying Eq. (15) for j=1,2,3 byk,, ko, andks,
242 P respectively, summing the results, and collecting terms, we
F}’r)ﬁ — qu ) (ijak)m/k\ have the recurrence relation fag,
m [k[=0 3 3
sz » [ (DA [l xIZay + (201Kl = 1) 2 xiaie—q (1K= 1) 2 ay-z
S | e e © 1
K= = ,
T O (ket D, ‘

) ) wherea,=0 when any of the indices is negative. For com-
wheree; ,&;,e; are the standard Cartesian basis vectors. Weyytational efficiency, we obtain the following recurrence re-
note that the Taylor coefficients, in Egs.(8) and (9) are  |ations from Eq.(15)

independent of the number of particles in clusterThere-

fore, once the moments of each clustelf are obtained, the ﬁa N Ea B ﬁa N ia i i_1923
real space potential and the force ratcan be computed ki k=6 ki km2q7 ) Tkog T Tko2ep I=hes
cluster by cluster. . . (17)

Next we derive the recurrence relations for fast comput-

ing the Taylor coefficientsa,. Consider another function I_n practlc_e,ak is computed N the same order jg|. Equa-
1 -2 : tion (17) is used together with Eq16) for boundary cases.
Py(X)= € . Obviously,

AP(X) lll. TREE CONSTRUCTION AND RECURSIVE
+2X14(X)=0. (10 FuNCTIONS

1

The tree used here is the same as described in Ref. 20. It
consists of a hierarchy of nodéalso referred to as boxes or
D)‘i(/;(x)Jr2xlthell,/;(x)+2(kl—1)D)'j72614//(x)=0. clusters. The root node is the smallest rectangular box con-

(11 taining all the particles in the center simulation box. The root

is subdivided in each coordinate direction into a total of eight
children. Before any further subdivision, each child is shrunk
to the smallest rectangular box containing its particles. The
shrunken boxes define the next level of nodes in the tree. The
subdivision/shrinking continues until the number of particles
in a node is less than or equal to a specified vilye These

Using the Leibniz rule for differentiating a product, we have

Two more equations can be obtained by permuting the indi
ces. Now defindy, = (1/k!) DXy(x). Dividing Eq. (11) and
the two others bk!, we have the recurrence relations for the
Taylor coefficients ofy,

2 2
b+ —Xjb_e+ —by_2.=0, j=1,2,3, (12 nodes form the leaves of the tree. Several bookkeeping steps
Kj bk J are performed during the tree construction. The scaled par-
whereb, =0 when any of the indices is negative. ticle positions and weights are stored in a global array in

Now we shall follow the same procedure to obtain theSuch a way that the members of a cluster appear in consecu-
recurrence relation for the Taylor coefficientséf It can be tive array locations. Several attributes associated with a node

easily verified that are also computed including the particle moments up to a
chosen ordep, as well as the scaled center and radiusp
, 0(X) AP(X) (see Fig. 1L
|| P tX10(x)= PV 13 Having constructed the tree, the potential and force on a
X1 X1 particle j are computed by traversing the tréeThere are
Using the Leibniz rule again, we have three options at each step of the traverse: compdE}lj)gand
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compute_in_node(j, A) T T TS
; it 'fs ('2 4) o standard Ewald
i is a lea
3 compute EJ(Q and F;Q using the direct method; E
4 else g . é’
5 fori=1to 8 2 ?
6 compute_in_node(j, A.child[i]); o T
= I L A e [
7 else = 8
8 compute_out_node(j, A); 5
5
[&]
compute_out_node(j, A) §<J
1 if (Ais a leaf) o
2 compute E]('X and F;X using the direct method;
3 else
4 if (j and A are well separated)
5 compute EJ(;) and F;rA) using a multipole approximation;
6 else number of particles (N)
7 fori=1to8
8 compute_out_node(j, A.child[i]); FIG. 3. Execution time required by the standard Ewald and the new method

with the order of the approximatiop=6, 8, 10 for the computation of

FIG. 2. The two recursive functions,compute_in_node and  Coulomb potential energy and the forces.
compute_out_node

() 1o . ) i . center simulation box and its nearest neighbors are needed
Fia using the direct method, using the multipole approxima-q; the real space computation, but the complexit@{#N?).
tion, or descending the tree. The decision between these de- |, the implementation of the new method, the maximum
pends on the approximation acceptance criterion. The comsymper of particles in the leaf clusterg) is chosen to be
plete procedure is described in Fig. 2 and implementedq ang the separation parameteis taken to be 0.5. Cur-
using two recursive functions,compute_in_node(j,A) rently, they are selected on a trial and error basis.5.61L
and compute_out_node(j, A) The initial calls are 5.4 the same cutofis,=L/2 andn.=6 are used. The com-

compute_in_node(j, rootand compute_out_node(j, replic-  tation in the reciprocal space is done by the same code
a_images)We say thaj andA are well-separated if the ratio used for the Ewald method.

pa/R<s, whereR is the distance between the partigland The test data are a set of water molecules. The TIP4P
the center of cIusteA_andss_a_ separation parameter to be \yater model* was used and a 1.6 ps molecular dynamics
chosen for computational efficiency. simulation was performed to generate the configurations of

the water molecule®. The electrostatic potential and forces
are computed based on this set of data. The numerical results
for three values op are shown in Figs. 3 and 4. The relative
The Ewald summation based multipole method pre-error in the force is computed using
sented here was implemented in the C programming lan- N Lo\ 12
guage and tested on a 296 MHz Sun UltraSPARC-II work- Zis | Fi—Fi
SR ’

IV. NUMERICAL RESULTS

station. The standard Ewald summation method in double (18

precision is used as the benchmark for testing the perfor-

mance of the new method. In the implementation of thewhereF; is the correct force anf; is the approximate result
Ewald method, the potential is computed using the expressbtained by either the standard Ewald or the new method.
sions given in Eq(2) and the forces are evaluated using the  The following observations can be made from the nu-
expressions given in Ref. 5. The summation in real space imerical results(i) For large values oN, the new method is
carried out using the linked-cell method with a cutoff of significantly faster than the standard Ewald method. The
radiusr . .2° The reciprocal space summation is done using aspeed-up is about 7.3 fgg=8 and N=107,811.(ii) The
cutoff of radius n,. The complementary error function break-even point between the two methods is belw
erfc(x) is evaluated using power series for small arguments=10 000 forp=6 andp=38. It is about 15 000 fop=10.
and the asymptotic expansion for large arguméhihe po-  (iii) The observed CPU time complexity of the new method
tential and forces obtained using the standard Ewald summas consistent withO(N log N), as expected for a patrticle-
tion with a=6/L and very large cutoff radius,=L andn,  cluster tree cod& (iv) With p=8, the error for the new
=12 are used as correct results for testing the accuracy of theethod is slightly higher than the error for standard Ewald,
method. To demonstrate the performance, a set of commonlut with p=10, the error is lower(v) The relative errors in
used parametera=5.61, r,=L/2, n;=6 is used>® We the forces for the new method &(sP) asp increases; this
note that witha=5.6L, (i) the number of operations in the can be seen in Fig. 4 wit=0.5 and was also obtained for
reciprocal space computation is of ord®(N); (i) only the  s=0.4 ands= 0.6 (data not shown (vi) The relative error in
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