Treecode Algorithms for Computing
Nonbonded Particle Interactions

Robert Krasny and Zhong-Hui Duan *

Department of Mathematics
University of Michigan, Ann Arbor MI 48109-1109, USA;
krasny@math.lsa.umich.edu, zduan@math.lsa.umich.edu

Abstract. Two new algorithms are described for computing nonbonded particle
interactions in classical molecular systems, (1) a particle-cluster treecode for the real
space Ewald sum in a system with periodic boundary conditions, and (2) a cluster-
cluster treecode for the total potential energy in a system with vacuum boundary
conditions. The first algorithm treats electrostatic interactions and the second al-
gorithm treats general power-law interactions. Both algorithms use a divide-and-
conquer strategy, adapted rectangular clusters, and Taylor approximation in Carte-
sian coordinates. The necessary Taylor coefficients are computed efficiently using
recurrence relations. The second algorithm implements variable order approxima-
tion, and a run-time choice between Taylor approximation and direct summation.
Test results are presented for an equilibrated water system, and random and sparse
particle systems.

1 Introduction

Consider a molecular system described by a set of particles {x1(t),...,x~(¢)} and
a potential energy function V' (x1,...,xx). In molecular dynamics simulations the
particles evolve by Newton’s equations,
d*x;
m; dtgj :fj(xla---ny) 5 (1)
where m; is the mass of the jth particle and f; = —Vx,V is the force field. To

investigate the physical properties of a given system, it is necessary to solve the
differential equations (1) using numerical methods. This approach is widespread in
biomolecular modeling [1-3].

The potential energy function and force field typically have terms accounting
for bonded and nonbonded particle interactions [4]. In this article we are concerned
with the efficient computation of the nonbonded interactions. The force exerted on
a given particle due to nonbonded interactions with the other particles is assumed
to have the general form,

N
fj(xlv---ny):ZquJK(xﬁxj)) (2)

%
* This work was supported by NSF grants DMS-9506452 and DMS-9973293, a

University of Michigan Rackham Faculty Fellowship, and Michigan Life Sciences
Corridor grant #1515.

where ¢; is a scalar weight associated with particle x; and K(x;,x;) is the pairwise
force function. Note that the interaction is assumed to be separable, i.e. the coef-
ficient of interaction between particles x; and x; is expressed as the product g;q;
of weights associated with each particle. In the case of the electrostatic potential,
¢; is the partial atomic charge; Lennard-Jones interactions can be treated using
combination rules for different types of atoms [5].

Evaluating the force f; in (2) for j = 1,...,N is an example of an N-body
problem and the computational cost is a serious issue [6]. The simplest evalua-
tion method is direct summation, but this requires O(N?) operations which is
prohibitively expensive when N is large. Much effort has been devoted to over-
coming this obstacle [7,8]. One remedy is to simply omit interactions outside a
specified cutoff radius [5]. However, a serious difficulty arises in biomolecular sim-
ulations because the electrostatic potential decays slowly in space and the cutoff
procedure may introduce artifacts in the simulation. Various other methods have
been developed to reduce the operation count while maintaining accuracy. Particle-
mesh methods transfer information between the particles and a regular mesh. The
particle-particle/particle-mesh method (P3M) uses direct summation for nearby in-
teractions and a fast Poisson solver for distant interactions [9]. The particle-mesh
Ewald method (PME) [10,11] and the fast Fourier-Poisson method (FFP) [12] use
the fast Fourier transform (FFT) to gain efficiency; PME is popular in biomolecular
simulations and we shall refer to it again below. A recent implementation of Ewald
summation uses a multigrid Poisson solver in place of the FFT [13]. Multilevel
summation techniques have also been developed [14-18].

The present article concerns an alternative class of methods, treecode algorithms,
that rely on multipole expansions. In a treecode algorithm, the particles are divided
into nested clusters (or cells) and the force f; on a given particle x; is expressed as
a sum of particle-cluster interactions,

Zqﬂh‘ K(xi,xj) =Y Y aig; K(xi, %)) 3)

i A x;€EA

where A = {x;,i = 1,...,Na} denotes a cluster of particles. The first treecode
algorithms used a monopole approximation for the particle-cluster interaction and
a divide-and-conquer strategy to choose the clusters; the basic idea is that the
approximation is accurate when the particle x; and cluster A are sufficiently well-
separated [19,20]. The Fast Multipole Method (FMM) is a more elaborate procedure
that uses a higher order multipole approximation and a technique for evaluating
the approximation by converting it to a local series [21]. These methods reduce the
operation count to O(N log N) or O(N) and they are quite important in biomolec-
ular simulations [22-31]. However, there is great interest in further optimizing the
performance of treecode algorithms [32-40].

This article describes two new treecode algorithms for computing nonbonded
particle interactions. The first algorithm is a particle-cluster treecode for the real
space sum in the Ewald summation method; this applies to computing potential
energy and particle forces due to electrostatic interactions in a system with periodic
boundary conditions [41]. The second algorithm is a cluster-cluster treecode for the
total potential energy; it treats general power-law interactions in a system with vac-
uum boundary conditions [42]. Both algorithms use a divide-and-conquer strategy,

adapted rectangular clusters, and Taylor approximation in Cartesian coordinates to
evaluate particle-cluster and cluster-cluster interactions. The necessary Taylor co-
efficients are computed efficiently using recurrence relations. The second algorithm
implements variable order approximation, and a run-time choice between Taylor
approximation and direct summation based on empirical estimates of the required
CPU times. Our approach was motivated by recent developments in computational
fluid dynamics [43-45]. The algorithms and test results are described in §2 and §3.
A summary and conclusions are given in §4.

2 Particle-Cluster Treecode for Ewald Summation

Periodic boundary conditions are commonly used in molecular dynamics simula-
tions to avoid surface effects. Here we assume that the particles are contained in a
cube that is replicated periodically in space. In this case, the electrostatic potential
energy of the system is

!
V(xi,.oxy) =3 ZZZ I —Z;qj+ Ln| ’ @

n =1 j=

where the index n = (n1,n2,n3) runs through the periodic images of the cube,
the prime indicates that the i = j term is omitted when n = 0, ¢; is the partial
charge of particle x;, and L is the length of the side of the cube. The individual
terms in (4) decay slowly as |n| — oo and the series is conditionally convergent.
This implies that the value of the energy depends on the order in which the terms
are summed. It is natural to assume that the limit is taken over finite spheres of
increasing radius and that each sphere is surrounded by a medium with dielectric
constant €5. In this case, the value of the energy depends on the dipole moment of
the basic cube [46].

2.1 Ewald Summation

The Ewald summation method splits the point charge on a particle into a singular
short-range term that is treated in real (physical) space plus a smooth long-range
term that is treated in reciprocal (Fourier) space [5,46,47]. Assuming the surround-
ing medium is a conductor (s = 00), this leads to the following expression for the

energy, .
Vv=v"4y® _ye (5)

where V) is the real space sum,

!

N N
Z Z Z qiq; erfc (a]x; —x; + Ln)|) ()
— |xi — xj + Ln]| ’

V® is the reciprocal space sum,

v —

N | =

2

N
1 1 k| 2mi
k) — _ X
Vi = 27TL1§ e exp< 202 Z;qj exp(7 k xJ)) (7
im

and V() is a constant self-energy term,

N
VO L3 g ®
VT~

Equation (5) is exact for any value of the Ewald parameter a > 0; the role this
parameter plays will be discussed below. For convenience we recall the definition of
the complementary error function,

erfe(z) = % / Tt 9)

Note that erfc(0) = 1 and erfc(z) decays rapidly as ¢ — oo. Hence the real space
sum (6) is a screened version of the electrostatic potential (4). In our discussion we
refer mainly to the potential energy; the forces are obtained by analytically differ-
entiating V") and V*) with respect to the particle positions [47], and essentially
the same numerical techniques apply.

The advantage in expressing the energy as in (5) is that the real and reciprocal
space sums are rapidly convergent with respect to the indices n, k. The classical
Ewald method uses cutoffs 7., k. to evaluate V") and V® i.e. only terms satisfying
|xi — x; + Ln| < r. and |k| < k. are retained in the computation. The magnitude
of the Ewald parameter « controls the relative rates of convergence of the real
and reciprocal space sums. When « is large, v converges rapidly and can be
evaluated to a given accuracy in O(N) operations using an appropriate cutoff r;
however in this case V*) converges slowly and O(N?) operations are required since
the cutoff k. must be large enough to attain the desired accuracy. The situation
is reversed when « is small, and so in either case, the classical Ewald method
requires O(N?) operations. The cost can be reduced to O(N*?) by optimizing
the parameters a, r¢, k. as a function of N [48,49]. The PME method reduces the
operation count to O(N log N) [10,11]. This is accomplished by choosing a large
value for «; the real space sum is computed in O(N) operations and the cost of
evaluating the reciprocal space sum is reduced from O(N?) to O(N log N) using a
particle-mesh interpolation procedure and the FFT.

Our approach is based on the observation that after cutoff, evaluating the real
space sum (6) is a standard N-body problem for a screened electrostatic potential.
Like PME, our algorithm reduces the operation count to O(Nlog N), but it is
complementary to PME in that it chooses a small value for the Ewald parameter «;
the reciprocal space sum is computed in O(NN) operations and the cost of evaluating
the real space sum is reduced from O(N?) to O(N log N) using a treecode [41]. The
details of this approach are explained below.

2.2 Particle-Cluster Interaction

Consider a particle x; and cluster A = {x;,i =1,...,Na} as in Fig. 1 (here and
in other figures, a two-dimensional schematic is shown instead of the full three-
dimensional structure). In the context of Ewald summation, a particle-cluster in-
teraction is given by

; q; erfe(alx; — x;1)

P i 10

xj,A ‘ |Xi_xj| ()
x; €

Fig. 1. A particle x; and cluster A = {x;,7 =1,..., Na}. xa: cell center; ra: cell
radius; R: distance from particle to cell center.

We employ Taylor expansion in Cartesian coordinates to approximate the screened
electrostatic potential,

erfc(alx|) (x—%
= f Z X", (11)

[In||=0

where ||n|| = n1 + n2 + n3, Tn(X) is the nth Taylor coefficient about an arbitrary
base point X, and (x —X)" = (z1 — T1)"* (x2 — T2)"?(z3 — T3)"3. Substituting (11)
into (10), truncating the series, and rearranging the terms, we obtain a pth order
Taylor approximation for the particle-cluster interaction,

P
T 2 n
Vx(j,)A ~ ﬁ qj E Ta(xa—xj)mi , (12)

where

Z qz Xi — XA (13)

is the nth moment of the cluster. Note that for « = 0 (no screening), the Taylor
expansion (11) reduces to the classical multipole expansion of the electrostatic
potential in Cartesian coordinates [4].

In practice, the approximation is employed only if the following multipole ac-
ceptance criterion (MAC) is satisfied,

—A<s

<s, (14)
where 74, R are the cell radius and particle-cell distance defined in Fig. 1, and
s is a user-specified parameter for controlling the computational accuracy [20,36].
If the MAC is not satisfied, the code examines the subcells of the given cell; this
reduces the cell radius, making it more likely that the MAC will be satisfied. This
divide-and-conquer strategy is characteristic of treecode algorithms and the details
will be explained below in §2.5.

2.3 Recurrence Relations

Before proceeding to the tree construction, we explain how the Taylor coefficients
are computed. Explicit formulas for the coefficients can be developed, but we found
it simpler and more efficient to use recurrence relations instead. First introduce the
Taylor expansion of the following Gaussian-type function,

o0

Cesp(—alx?) = 3 Sa@®(x-%)" . (15)

[In||=0

It can be shown that the Taylor coefficients Sy, Tw satisfy a coupled set of recurrence
relations,

3 3
0| Sn +20° > " 2i Sa-e; +20° > Snze; =0, (16)
i=1 i=1

3 3
Il |x* T + 2l = 1) Y 2 Tae; + (0]l =1) > Taze; =0 Su , (17)
i=1 i=1

where e; denotes the ith Cartesian basis vector, and Sn = Sa(x), Tn = Ta(x). It is

understood that S, = T, = 0 whenever an index n; is negative. The derivation of

(16),(17) is straightforward using Leibniz’ rule for differentiating a product of two

functions [41]. To evaluate the particle-cluster approximation (12), the recurrence

relations are applied with x replaced by x4 — x; for the given particle x; and cell
center x4. Figure 2 shows the associated stencil.

n,

n,

Fig. 2. Stencil (o) of the recurrence relations (16),(17). The Taylor coefficients Ty
required for a pth order particle-cluster approximation (12) form a wedge (o) in the
index space, ||n|| < p. In practice [41], Tn was computed using a slightly different
alternative form of (16),(17).

2.4 Tree Construction

The tree construction procedure divides the particles into a collection of nested
clusters. Figure 3 compares the standard scheme with the adaptive scheme used
here. In the standard scheme, the root cell is bisected in each coordinate direction,
yielding eight subcells (or children), and the procedure is repeated recursively on the

(a) (b)

level O

level 1

Fig. 3. Tree construction procedure; three levels of clusters are shown. (a) standard
scheme (bisect); (b) adaptive scheme (bisect and shrink; the dashed-line cells are
from the previous level).

subcells. A cell is left undivided if it contains fewer than a user-specified number of
particles Ny; these are the leaves of the tree. This yields an oct-tree in which the cells
on each level are identical [20,21]. In the adaptive scheme, after a cell is bisected
it is shrunk to the smallest rectangular box containing its particles. This yields
adapted rectangular clusters in which the cell radii r4 are smaller than they would
be without shrinking. As a result, the MAC (14) can be satisfied using a lower order
approximation and this leads to a reduction in CPU time. The effect of shrinking
is not so dramatic for homogeneous particle distributions, but it may prove more
effective in biomolecular simulations involving nonhomogeneous distributions such
as an alpha helix or beta sheet.

2.5 Outline of Treecode Algorithm

Figure 4 shows an outline of the particle-cluster treecode algorithm for comput-
ing the real space Ewald sum (6). The program main inputs the particle data
and user-specified parameters, constructs the tree, and cycles through the particles
to compute the potential energy and forces. The computation is performed using
a divide-and-conquer strategy based on two recursive functions [19,20]. The first
function, compute-in-cell (x, A), computes the interaction between a particle x
and a cluster A allowing for the possibility that x is contained in A. The second
function, compute-out-cell (x, A), computes the interaction between a particle x
and a cluster A under the assumption that x is not contained in A. Specifically,
these functions compute the potential energy Vx(z)l and force ff:}l associated with
the real space sum for a given particle-cluster interaction. The [;resent description
corrects an error in ref. [41] in which two lines in part (c) were misplaced; this
concerns only the treatment of leaf cells.

The treecode algorithm and classical Ewald method were implemented in the
C programming language and the code was run on a Sun UltraSPARC-II work-
station. For the classical Ewald method, the real space sum was evaluated by di-
rect summation with cutoff radius 7. using the linked-list technique [9]. For the
treecode algorithm, the real space cutoff was implemented by requiring that the
particle-cluster interactions satisfy the criterion |x; — xa| < r. + 74 (in addition
to the MAC (14)); in effect, a cluster A contributes to the real space sum only if it
overlaps a sphere of radius r. centered at the particle x;. As a result of this imple-
mentation, the treecode computation includes some additional particle interactions
beyond those entering the classical Ewald computation. The parameters for the
treecode computation were Ny = 20 for the maximum number of particles in a leaf,
s = % for the MAC parameter, and p = 6, 8, 10 for the order of approximation; these
are meant to be representative rather than optimized choices. The reciprocal space
sum was also computed, using cutoff k., and the timing and error results below
include contributions from both the real and reciprocal space sums. The enclosed
volume varied with IV to ensure that the particle density remains fixed.

2.6 Test Results

The test data are a set of water molecules (TIP4P water model [50]). A 1.6 pi-
cosecond molecular dynamics simulation was performed to generate equilibrated
test configurations for several values of N [51]. One set of results was computed
using the classical Ewald method with parameter values

a=6/L, re=L, k.=12 ; (18)

these results are correct to double precision accuracy and they serve as a benchmark
for determining the error. We compared the performance of the treecode algorithm
and the classical Ewald method for parameter values

a=56/L, re=0LJ2, k.=6 ; (19)

these are commonly used values [5,52] that provide moderate accuracy at lower cost
than the values in (18).

program main
input particle positions and weights
input user-specified parameters
a : Ewald parameter
re : real space cutoff radius
s : MAC parameter
p : order of approximation
Np : maximum number of particles in a leaf
construct tree
compute real space sum for potential energy and forces
forj=1: N
compute-in-cell (x;, root)

function compute-in-cell (x, A)
ifxe A
if Ais a leaf
compute Vx(z, f,(:f)1 by direct summation (10)
else
fori=1:8
compute-in-cell(x, A.child[:])
else
compute-out-cell(x, A)

function compute-out-cell (x, A)
if MAC is satisfied
compute Vx(z, f,(:f)1 by Taylor approximation (12)
else
if Ais a leaf
compute Vx(z, f,(:f)l by direct summation (10)
else
fori=1:8
compute-out-cell(x, A.child[:])

Fig. 4. Outline of particle-cluster treecode algorithm for computing the real space
Ewald sum. (a) program main; (b) function compute-in-cell (x, A); (c) function
compute-out-cell (x, 4).

(b) relative force error

5 (a) CPU time (sec) "
107 ————————— 107 .
I —e— classical Ewald E
[o p=
o
R . -
10*E P 1 10k ° 4
i -3 [,O==0-6._ o= =%
i -3 Y e e B
103: 1075 ;_-o—---o-m~~' ‘/9___:
E S
o
20,1 \ o ol . S
10 10
10* N 10° 10* N 105

Fig. 5. Test results for a water system with periodic boundary conditions; compar-
ison between classical Ewald method and treecode algorithm with pth order Taylor
approximation.

Figure 5a displays the CPU time for evaluating the total potential energy and
particle forces. Straight lines are drawn to indicate exact O(N) and O(N?) behav-
iour. The CPU time for the classical Ewald method is O(N?), while for the treecode
algorithm it is consistent with O(INlog N). For large enough values of N, the
treecode is faster than the classical Ewald method; for example with N = 107, 811
and p = 10, the treecode is more than four times faster than the classical Ewald
method. The crossover point is roughly N = 8,000 for p = 6, N = 10, 000 for p = 8,
and N = 15,000 for p = 10. Figure 5b displays the relative force error given by

N N 1/2
(fo —fj|2/2|fj|2> : (20)
j=1 j=1

where f}' denotes the approximation to the force on particle x; computed using (19)
and f; denotes the precise result computed using (18). The treecode error is reduced
as the order of approximation p increases, and with p = 10, the treecode is slightly
more accurate than the classical Ewald method.

3 Cluster-Cluster Treecode for Total Potential Energy

In this section we consider a system with vacuum boundary conditions and a po-
tential energy function of the form

N N
1 .
V(xl,...,xN)ZEE:2:7|X_qiq;|y , (21)
? -J

where v is the exponent of a general power-law interaction. As before, we assume
that the particle interaction is separable. Important cases include the electrostatic

interaction (v = 1) and London dispersion (v = 6, the attractive term in a Lennard-
Jones potential) [4]. A number of treecode algorithms and versions of the FMM have
been developed to treat such power-law interactions [23,25,28,31].

In a molecular dynamics simulation it is necessary to compute the particle
forces f; = —Vx;V, but evaluating the total potential energy V' is itself an impor-
tant task in Monte-Carlo simulations [5] and optimization techniques for molecular
conformation [53]. Here we describe a cluster-cluster treecode algorithm specifically
for computing the total potential energy (21).

3.1 Cluster-Cluster Interaction

The standard procedure for computing the total potential energy is based on the
expression

V =

N | =

N
dovi, (22)
i=1

where

N
vV = Z _ %% (23)
j=1

|xi — x;]”
i
The terms V; are computed rapidly using a treecode algorithm or FMM, and then
they are summed to obtain V. We propose an alternative procedure based on the
expression

1
V=3 Vas, (24)
A, B

where A, B are suitable pairs of clusters and

4 4j
Vap = Y L4 _ 2
AB Z P (25)
x EA
X]‘EB

is the potential energy due to interactions between the particles in cluster A and
the particles in cluster B (Fig. 6). When the two clusters are well-separated, Vagp
can be computed using a Taylor approximation; otherwise, Vap can be computed
either by direct summation or by subdividing one of the clusters and considering
interactions with the children.

Note that the standard procedure based on (22),(23) expresses V as a sum
of particle-cluster interactions, while (24),(25) expresses V as a sum of cluster-
cluster interactions. The advantage of the cluster-cluster expression is that it avoids
computing the N individual terms V; in favor of computing a potentially smaller
number of terms Vap (in practice, the number of terms is determined adaptively).
The cluster-cluster expression for V' was proposed by Pérez-Jordd and Yang [54],
and it is similar in spirit to Appel’s approach [19] as well as to the FMM [21], but
those works deal primarily with computing the particle forces rather than the total
potential energy.

AN - - //
o .
N ° s
A\\ , rB
U e
XA R XB
° °
° °

Fig. 6. Two clusters A, B define a cluster-cluster interaction Vap (25). xa,x5: cell
centers; ra,rp: cell radii; R: distance between cell centers.

3.2 Taylor Approximation for Vap

The general power-law potential has the following expansion,

oo
1 X xX—x)\ |x—%x"
:E :Cu/2 . 26
|x[” ! (IEI Ii—XI> x|+ 26)

n=0

where CT'Z/2(y) is the Gegenbauer polynomial of degree n and order v [55]. Forv =1
this reduces to the well-known spherical harmonics expansion of the electrostatic
potential, and for » > 1 the expansion has been used to extend the FMM to general
power-law interactions [25,28]. Here instead of (26) we employ a Taylor expansion
in Cartesian coordinates,

@ - Y nEx-%". 27)
|In|[=0

Substituting (27) into (25) and rearranging terms, we obtain a pth order approxi-
mation for the cluster-cluster interaction,

Vapx Y Ta(xa—%x5) Y <E> (1) Im Il ke ke (28)

lInfi=0 k<n

where m% and m%* are cluster moments (13). As before, the Taylor coefficients

satisfy a recurrence relation,

3 3
Il %> To + Il + v =2) Y 2 Tae; + (0]l +v=2) > Taze, =0 . (29)
i=1 i=1
The same conventions apply here as explained for (16),(17). Equation (29) is a three-
dimensional analogue of the one-dimensional recurrence relation for the Gegenbauer
polynomials [55].

The error in the Taylor approximation of Vap was analyzed to derive an ex-
pression for the MAC [42]. For the electrostatic potential (¥ = 1), the MAC was

chosen to be
1 errl

<e, (30)

=

1—r

where R = |xa —xB|, r = (ra + rg)/R, and € is a user-specific parameter for
controlling the computational accuracy. The order of approximation p was chosen
adaptively; given a pair of clusters A, B, with geometric parameters r, R, the code
selects the minimum order p satisfying (30), subject to the constraint p < pmaz,
where pmqz 1S a user-specified parameter. For the dispersion potential (v = 6), the
order of approximation was fixed at p = 2 and the MAC was chosen to be

11 d°(»®
— -2 [)<e. 1
RS 5! dr5<1—r>_6 (1)
The reason for using a fixed low order approximation when v = 6 is that the Taylor

expansion (27) converges relatively slowly in this case and there is little advantage
to be gained from higher order [25].

3.3 Outline of Treecode Algorithm

Figure 7 shows an outline of the cluster-cluster treecode algorithm for comput-
ing the total potential energy. The program main inputs the particle data and
user-specified parameters, constructs the tree as described in section 2.4, and then
computes the energy V. The computation is performed using a divide-and-conquer
strategy based on two recursive functions [19,20]. The first function, compute-one-
cell(A), computes the energy Vaa due to interactions among the particles in cell A.
The second function, compute-two-cells(A, B), computes the energy Vap due to
interactions between the particles in cell A and the particles in cell B, assuming that
A and B are disjoint. Note that the second function implements a run-time choice
between Taylor approximation and direct summation using the function direct-is-
faster(A, B); this function accesses a lookup table of precomputed CPU times and
returns true if direct summation is faster than Taylor approximation and false
otherwise. The CPU time for direct summation depends on the product N4 - N of
the number of particles in cell A and cell B, and the CPU time for Taylor approx-
imation depends on the order p. The precomputed CPU times in the lookup table
depend on the computer hardware and coding of the algorithms; if these change,
then the table should be recomputed.

Results are presented below for three test cases: the electrostatic and dispersion
potentials with random particles, and the electrostatic potential with particles on
a curve. The maximum order of approximation was pmae: = 10 for v = 1 and
the order was fixed at p = 2 for v = 6. The number of particles ranged from
N =500 to N = 128,000, and the simulation volume was adjusted to ensure that
the particle density remains fixed. The maximum number of particles in a leaf was
No = 30, 10, 20, in the three test cases, respectively, and in each case, results are
presented for three values of the MAC parameter, e = 1072,107°,10~". Loops for
the recurrence relation and Taylor approximation were expanded to inline code
using a separate program. A direct summation computation was the benchmark for
comparing CPU times and errors.

3.4 Test Results

The first test case is the electrostatic potential (v = 1) for a set of particles distrib-
uted randomly in space. The charge is ¢; = £1 with equal probability. Figure 8a

program main
input particle positions and weights
input user-specified parameters
e : MAC parameter
Pmaz : Mmaximum order of approximation
Np : maximum number of particles in a leaf
construct tree
compute total potential energy
compute-one-cell (root)

function compute-one-cell(A)
if Ais a leaf
compute Vaa by direct summation (25)

else
fori=1:8
compute-one-cell(A.child[])
forj=i+1:8

compute-two-cells(A.child[i], A.child[j])

function compute-two-cells(A, B)
if MAC is satisfied
if direct-is-faster(A, B)
compute Vap by direct summation (25)
else
compute Vap by Taylor approximation (28)
else
if (A is a leaf) and (B is a leaf)
compute Vap by direct summation
else if (A is a leaf) or ((B is not a leaf) and (rg > ra))
fori=1:8
compute-two-cells(A, B.child[i])
else
fori=1:8
compute-two-cells(A.child[é], B)

Fig. 7. Outline of cluster-cluster treecode algorithm for computing the total poten-
tial energy. (a) program main; (b) function compute-one-cell(A); (c) function
compute-two-cells(A4, B).

(a) CPU time (sec)

1 (b) relative error in V
4 T T 10 T T T
10" —e— direct summation E
@ g =10‘5 E - @1
3[-e-- =10 3 Jw.,,....oa.,..“ ..,.e“"
10 - =107 B 10 l‘ o E
EC E
102 o7 3 5
o 107k o= 1
K JPE N L, ~o\
10" 4 L e o’ N
. 107k oo 1
10 E 0--"%~._ g R
3 L ~e” |
F-- o’
107" 1 10 :
1 1 1 1 1 1
10° N 10° 10° N 10°

Fig. 8. First test case, electrostatic potential (v = 1), random x;, ¢; = £1; com-
paring direct summation and treecode with MAC parameter € (30).

(a) CPU time (sec)

1 (b) relative error in V
4 T T 10 T T T
10" —e— direct summation E
s g =107 E 3
107%F :
3 E
10750 g N
- L@
oo T R e o 1
. - -
107k PO o
S
AN o=
\\o- e .

107% 1

1 1 1 1 1 1
10° N 10° 10° N 10°

Fig. 9. Second test case, dispersion potential (v = 6), random x;, ¢; = 1; comparing
direct summation and treecode with MAC parameter € (31).

(a) CPU time (sec)

1 (b) relative errorin V
10”7 T T T
3 Lo o @
10—3'_.“.,.@,““ ““,,.o~ F
E- e P
- -0 -
3 L 1
10_5r - - E
F_.o-" °” o
40__-0
1077:--0 ’p_--e" E
3 Tt 3
E 10°F E
1 1 1 1 1 1
10° N 10° 10° N 10°

Fig. 10. Third test case, electrostatic potential (v = 1), B-spline x;, ¢; = 1; com-
paring direct summation and treecode with MAC parameter € (30).

plots the CPU time required to compute the total potential energy V by direct
summation and by the treecode. Direct summation is faster for small systems and
the treecode is faster for large systems. The crossover point depends on the MAC
parameter; it is N = 1,000 for e = 102 and increases to N = 8,000 for ¢ = 10~ 7.
Above the crossover point, the treecode CPU time increases at a rate consistent
with O(N log N). Figure 8b plots the relative error in the total potential energy
computed by the treecode. The error varies slightly with the number of particles,
but for each value of N it decreases as € is reduced.

The second test case is the dispersion potential (v = 6) for the same particle
distributions as above but with uniform weights ¢; = 1. The results, shown in Fig. 9,
display the same trends as in the first test case, but some details are different. In
Fig. 9a, the direct summation CPU time is roughly the same as in Fig. 8a, but the
treecode CPU time is less than in Fig. 8a. The crossover point is N = 1,000 for
e = 107% and increases to only N = 2,000 for ¢ = 10~". The error in Fig. 9b is
qualitatively similar to the results in Fig. 8b.

The third test case is the electrostatic potential (v = 1) for particles lying
on a B-spline curve representing a supercoiled DNA molecule (Fig. 3b in [56]).
The particles represent phosphate groups with uniform charge ¢; = 1 and uniform
spacing; the latter condition was enforced using the algorithm in [56]. In contrast to
the random particle distribution in the first two cases, this is a sparse distribution in
three-dimensional space. The results are shown in Fig. 10. The treecode CPU time
increases only slightly as e is reduced. The crossover point is less than N = 1,000
for all three values of €. The error increases slightly with N, but for a given value
of N it decreases as € is reduced.

The results show that the treecode algorithm is behaving generally as expected
in terms of CPU time and error (although the variation of the error with NV seen in
Figs. 8b, 9b, 10b is unexplained). Comparing the CPU time for the first and second
test cases shows that the treecode is more effective at speeding up the computation
for a short-range potential than for a long-range potential; however, it should be
kept in mind that for a short-range potential, direct summation with a suitable
cutoff might be competitive. Comparing the CPU time for the first and third test
cases shows that the treecode is more effective for a sparse set of particles than for
a random set; this is characteristic of adaptive treecode algorithms [33,57].

4 Summary and Conclusions

The cost of evaluating nonbonded particle interactions is a serious obstacle in mole-
cular dynamics simulations. Treecode algorithms typically reduce the operation
count from O(N?) to O(Nlog N), where N is the number of particles in the sys-
tem, but there is still much interest in optimizing performance within this class
of algorithms. Here we described two new treecode algorithms that use adapted
rectangular clusters and Taylor approximation in Cartesian coordinates. Cartesian
Taylor approximation has been used before in treecode algorithms [36] and FMM
implementations [23,32]. The present work employs recurrence relations to effi-
ciently compute the necessary Taylor coefficients, up to order p = 10, instead of
using explicit formulas for the coefficients.

The first algorithm is a particle-cluster treecode for the real space sum in the
Ewald summation method. Ewald summation poses two distinct computational

problems, the real and reciprocal space sums. The present treecode algorithm eval-
uates the real space sum in O(N log N) operations, while the PME method eval-
uates the reciprocal space sum in O(N log N) operations [10,11]. This raises the
possibility of combining the two methods to obtain a more efficient hybrid scheme;
however this is nontrivial since each method by itself requires a different value of
the Ewald parameter.

The second algorithm is a cluster-cluster treecode for the total potential energy
in a system with vacuum boundary conditions. The algorithm treats a general
power-law potential. It implements variable order approximation, and a run-time
choice between Taylor approximation and direct summation based on empirical
estimates of the required CPU times. These adaptive techniques have not yet been
implemented in the first algorithm.

Test results were presented for an equilibrated water system, and random and
sparse particle systems. The CPU time was consistent with O(NNlog N) and the
algorithms were effective in controlling the computational error.

Given the importance and difficulty of the computational N-body problem, it
is not surprising that many different approaches have been developed. The FMM
uses sophisticated analytical techniques to improve performance (plane wave trans-
lations, optimized Gaussian quadrature) [40]. In contrast, the present approach
uses simple analytical techniques (Taylor approximation in Cartesian coordinates,
recurrence relations), but combines them with enhanced adaptivity (adapted rec-
tangular cells, variable order approximation, run-time choice between Taylor ap-
proximation and direct summation). Aside from methods based on multipole ex-
pansions, particle-mesh algorithms are another general approach [9-18]. There are
various tradeoffs among these alternatives in terms of speed, accuracy, memory us-
age, range of applicability, and ease of implementation. Detailed comparisons have
been performed [7,47,58-60] and an important development is the emergence of
well-defined test problems [61]. More work along these lines will help achieve the
goal of physically realistic biomolecular simulations.

References

1. Karplus, M., Petsko, G. A.: Molecular dynamics simulations in biology. Nature
347 (1990) 631-639

2. van Gunsteren, W. F., Hiinenberger, P. H., Mark, A. E., Smith, P. E., Tironi, I.
G.: Computer simulation of protein motion. Comput. Phys. Comm. 91 (1995)
305-319

3. Neumaier, A.: Molecular modeling of proteins and mathematical prediction of
protein structure. STAM Review 39 (1997) 407-460

4. Stone, A. J.: The Theory of Intermolecular Forces, Oxford University Press,
Oxford (1996)

5. Allen, M. P., Tildesley, D. J.: Computer Simulation of Liquids, Oxford Univer-
sity Press, Oxford (1987)

6. Greengard, L.: Fast algorithms for classical physics. Science 265 (1994) 909-914

7. Sagui, C., Darden, T. A.: Molecular dynamics simulations of biomolecules: long-
range electrostatic effects. Annu. Rev. Biophys. Biomol. Struct. 28 (1999) 155—
179

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Schlick, T., Skeel, R. D., Brunger, A. T., Kalé, L. V., Board Jr., J. A., Hermans,
J., Schulten, K.: Algorithmic challenges in computational molecular biophysics.
J. Comput. Phys. 151 (1999) 9-48

Hockney, R. W., Eastwood, J. W.: Computer Simulation Using Particles, IOP
Publishing, Bristol (1988)

Darden, T., York, D., Pedersen, L.: Particle mesh Ewald: an N -log(N) method
for Ewald sums in large systems. J. Chem. Phys. 98 (1993) 10089-10092
Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., Pedersen, L.:
A smooth particle mesh Ewald method. J. Chem. Phys. 103 (1995) 8577-8593
York, D., Yang, W.: The fast Fourier Poisson method for calculating Ewald
sums. J. Chem. Phys. 101 (1994) 3298-3300

Sagui, C., Darden, T.: Multigrid methods for classical molecular dynamics sim-
ulations of biomolecules. J. Chem. Phys. 114 (2001) 6578-6591

Brandt, A., Lubrecht, A. A.: Multilevel matrix multiplication and the fast so-
lution of integral equations. J. Comput. Phys. 90 (1990) 348-370

Brandt, A., Venner, C. H.: Multilevel evaluation of integral transforms with
asymptotically smooth kernels. STAM J. Sci. Comput. 19 (1998) 468-492
Zaslavsky, L. Y., Schlick, T.: An adaptive multigrid technique for evaluating
long-range forces in biomolecular simulations, Appl. Math. Comput. 97 (1998)
237-250

Sandak, B.: Multiscale fast summation of long range charge and dipolar inter-
actions. J. Comp. Chem. 22 (2001) 717-731

Sandak, B.: Efficient computational algorithms for fast electrostatics and mole-
cular docking. this volume

Appel, A. W.: An efficient program for many-body simulation. STAM J. Sci.
Stat. Comput. 6 (1985) 85-103

Barnes, J., Hut, P.: A hierarchical O(N log N) force-calculation algorithm. Na-
ture 324 (1986) 446—449

Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comp.
Phys. 73 (1987) 325-348

Board Jr., J. A., Causey, J. W., Leathrum Jr., J. F., Windemuth, A., Schulten,
K.: Accelerated molecular dynamics simulation with the parallel fast multipole
algorithm. Chem. Phys. Lett. 198 (1992) 89-94

Ding, H.-Q., Karasawa, N., Goddard ITI, W. A.: Atomic level simulations on a
million particles: The cell multipole method for Coulomb and London nonbond
interactions. J. Chem. Phys. 97 (1992) 43094315

Saito, M.: Molecular dynamics simulations of proteins in water without the
truncation of long-range Coulomb interactions. Molec. Simul. 8 (1992) 321-331
Elliott, W. D., Board Jr., J. A.: Fast multipole algorithm for the Lennard-
Jones potential. Tech. Rep. 94-005, Duke University EECS Dept. (1994)
(http://www.ee.duke.edu/research/SciComp/Papers/ TR94-005.html)
Shimada, J., Kaneko, H., Takada, T.: Performance of fast multipole methods
for calculating electrostatic interactions in biomacromolecular simulations. J.
Comput. Chem. 15 (1994) 28-43

White, C. A., Head-Gordon, M.: Derivation and efficient implementation of the
fast multipole method. J. Chem. Phys. 101 (1994) 6593-6605

Fenley, M. O., Olson, W. K., Chua, K., Boschitsch, A. H.: Fast adaptive multi-
pole method for computation of electrostatic energy in simulations of polyelec-
trolyte DNA. J. Comput. Chem. 17 (1996) 976-991

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Niedermeier, C., Tavan, P.: Fast version of the structure adapted multipole
method - efficient calculation of electrostatic forces in protein dynamics. Mol.
Simul. 17 (1996) 57-66

White, C. A., Head-Gordon, M.: Rotating around the quartic angular momen-
tum barrier in fast multipole method calculations. J. Chem. Phys. 105 (1996)
5061-5067

Xue, G. L., Zall, A. J., Pardalos, P. M.: Rapid evaluation of potential energy
functions in molecular and protein conformations. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science 23 (1996) 237-249

Zhao, F.: An O(N) algorithm for three-dimensional N-body simulations. AlI-
TR-995, Massachusetts Institute of Technology (1987)

Carrier, J., Greengard, L., Rokhlin, V.: A fast adaptive multipole algorithm for
particle simulations. STAM J. Sci. Statist. Comput. 9 (1988) 669-686

van Dommelen, L., Rundensteiner, E. A.: Fast, adaptive summation of point
forces in the two-dimensional Poisson equation. J. Comput. Phys. 83 (1989)
126-147

Anderson, C.: An implementation of the fast multipole method without multi-
poles. SIAM J. Stat. Sci. Comp. 13 (1992) 923-947

Salmon, J. K., Warren, M. S.: Skeletons from the treecode closet. J. Comput.
Phys. 111 (1994) 136-155

Elliott, W. D., Board Jr., J. A.: Fast Fourier transform accelerated fast multi-
pole algorithm. SIAM J. Sci. Comput. 17 (1996) 398-415

Strickland, J. H., Baty, R. S.: A pragmatic overview of fast multipole methods.
Lect. Appl. Math. 32, (1996) 807-830

Wang, H. Y., LeSar, R.: An efficient fast-multipole algorithm based on an
expansion in the solid harmonics. J. Chem. Phys. 104 (1996) 4173-4179
Cheng, H., Greengard, L., Rokhlin, V.: A fast adaptive multipole algorithm in
three dimensions. J. Comput. Phys. 155 (1999) 468-498

Duan, Z.-H., Krasny, R.: An Ewald summation based multipole method. J.
Chem. Phys. 113 (2000) 3492-3495

Duan, Z.-H., Krasny, R.: An adaptive treecode for computing nonbonded po-
tential energy in classical molecular systems. J. Comput. Chem. 22 (2001)
184-195

Draghicescu, C., Draghicescu, M.: A fast algorithm for vortex-blob interactions.
J. Comput. Phys. 116 (1995) 69-78

Lindsay, K.: A three-dimensional Cartesian tree-code and applications to vortex
sheet roll-up. Ph.D. Thesis, University of Michigan (1997)

Lindsay, K., Krasny, R.: A particle method and adaptive treecode for vortex
sheet motion in 3-D flow. submitted to J. Comput. Phys. (2001)

de Leeuw, S. W., Perram, J. W., Smith, E. R.: Simulation of electrostatic sys-
tems in periodic boundary conditions. I. Lattice sums and dielectric constant.
Proc. Roy. Soc. Lond. A 373 (1980) 27-56

Toukmaji, A. Y., Board Jr., J. A.: Ewald summation techniques in perspective:
a survey. Comput. Phys. Commun. 95 (1996) 73-92

Perram, J. W., Petersen, H. G., de Leeuw, S. W.: An algorithm for the sim-
ulation of condensed matter which grows as the 3/2 power of the number of
particles. Mol. Phys. 65 (1988) 875-893

Fincham, D.: Optimisation of the Ewald sum for large systems. Mol. Sim. 13
(1994) 1-9

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., Klein, M.
L.: Comparison of simple potential functions for simulating liquid water. J.
Chem. Phys. 79 (1983) 926-935

Rapaport, D. C.: The Art of Molecular Dynamics Simulation, Cambridge Uni-
versity Press, Cambridge, (1995)

Hummer, G., Pratt, L. R., Garcia, A. E.: Molecular theories and simulation of
ions and polar molecules in water. J. Phys. Chem. 102 (1998) 7885-7895
Vésquez, M., Némethy, G., Scheraga, H. A.: Conformational energy calculations
on polypeptides and proteins. Chem. Rev. 94 (1994) 2183-2239

Pérez-Jorda, J. M., Yang, W.: A simple O(N log N) algorithm for the rapid
evaluation of particle-particle interactions. Chem. Phys. Lett. 247 (1995) 484-
490

Andrews, G. E., Askey, R., Roy, R.: Special Functions, Cambridge University
Press, Cambridge, (1999)

Hao, M.-H. Olson, W. K.: Global equilibrium configurations of supercoiled
DNA. Macromolecules 22 (1989) 3292-3303

Boschitsch, A. H., Fenley, M. O., Olson, W. K.: A fast adaptive multipole
algorithm for calculating screened Coulomb (Yukawa) interactions. J. Comput.
Phys. 151 (1999) 212-241

Esselink, K.: A comparison of algorithms for long-range interactions. Comput.
Phys. Commun. 87 (1995) 375-395

Pollock, E. L., Glosli, J.: Comments on P*M, FMM, and the Ewald method for
large periodic Coulombic systems. Comput. Phys. Commun. 95 (1996) 93-110
Deserno, M., Holm, C.: How to mesh up Ewald sums. I. A theoretical and
numerical comparison of various particle mesh routines. J. Chem. Phys. 109
(1998) 7678-7693

Barth, E., Leimkuhler, B., Reich, S.: A test set for molecular dynamics. this
volume

