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ABSTRACT

We present a treecode algorithm for efficiently computing
the real space part of Ewald summation in periodic dipolar
systems. The algorithm uses multipole expansion in Carte-
sian coordinates to approximate the real space interaction
between a dipole and a distant cluster of dipoles. The nec-
essary Taylor coefficients are computed efficiently using re-
currence relations. Two divide-and-conquer evaluation pro-
cedures are described. Test results are presented for systems
of randomly generated dipoles.

Keywords

Ewald summation, fast electrostatics, tree method

1. INTRODUCTION

Along with the increasing use of computer simulations for
biomolecular systems, developing and using more accurate
and reliable governing force fields are becoming essential for
advanced understanding of the complex systems. Particu-
larly, much effort has been made on the development of force
fields including many body effects such as polarizability. On
the other hand, using polarizable force fields considerably
increases the computational cost, which is prohibitively ex-
pensive for large scale and long time simulations [13]. In
this paper, we present a treecode algorithm for efficiently
computing electrostatic interactions in periodic dipolar sys-
tems.

In molecular dynamics simulations, periodic boundary con-

ditions are commonly used to reduce the surface effects.
Consider N point dipoles in a cubic simulation box that
is replicated periodically in all directions. The electrostatic
energy of such a system can be expressed as a sum of dipole
interactions,
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where p; and p; are point dipoles at position r; and r;, Vi,
and Vr; denote differentiation at r; and r;, L is the side
length of the simulation box, the index n = (n1, na2, n3) runs
through the periodic images of the box, and the prime indi-
cates that the ¢ = j terms are omitted when n = 0 [1]. Al-
though the dipolar potential converges faster than Coulomb
potential, its long range slowly decaying nature still ren-
ders accurately evaluating the potential energy and force a
challenging and important problem. To reduce the compu-
tational cost, as for Coulomb systems, the Ewald summation
technique has often been used. It splits the direct summa-
tion of the interactions (Eq. (1)) into a sum of a constant
E© and two rapidly convergent series, the real space sum
E™ and the reciprocal space sum E®),
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and « is a positive parameter chosen for computational effi-
ciency [1, 5]. The complementary error function in the real
space sum and the exponential function in the reciprocal
space sum decay rapidly with the index n, therefore cut-
offs r¢, k. can be used to compute the Ewald sum, i.e. only
terms satisfying |r; —r; + Ln| < r; for E®) and |n| < k. for
E®) are retained for the computation. The magnitude of the
Ewald parameter o controls the relative rates of convergence
of the real space sum and the reciprocal space sum. When
a is large, E(™ converges rapidly and can be evaluated to
a given accuracy in O(N) operations using an appropriate
cutoff rc; however in this case E*) converges slowly and
O(N?) operations are required since the cutoff k. must be
large enough to attain the desired accuracy. The situation
is reversed when o is small, and therefore in either case,



the classical Ewald method requires O(/N?) operations. The
cost can be reduced to O(N%/ %) by optimizing the parame-
ters o, 7c, ke as a function of N [19, 12]. The hidden constant
in front of N3? can be further reduced using the linked-cell
method to reduce the computational cost of locating the
dipoles which are within the cutoff radius of a given dipole
[19, 10]. A particle-mesh Ewald based method (PME) of or-
der O(N log N) is also reported for dipole interactions [17].
The complexity reduction in PME is accomplished by choos-
ing a large value for ; the real space sum is computed in
O(N) and the cost of evaluating the reciprocal space sum
is reduced from O(N?) to O(N log N) using a particle-mesh
interpolation procedure and the fast Fourier transform. For
further details of the Ewald method we refer the reader to
Refs. [1, 5, 19, 12, 17, 4, 18].

The present work concerns an alternative class of meth-
ods, treecode algorithms, that rely on multipole expansions.
In a treecode algorithm, particles are divided into nested
clusters and the interaction between a particle and a distant
cluster of particles is approximated using a multipole expan-
sion. The first treecode algorithms used a monopole approx-
imation for the particle-cluster interaction and a divide-and-
conquer strategy to choose the clusters [2, 3]. Greengard and
Rohklin’s fast multipole method (FMM) is a more elaborate
procedure that uses a higher order multipole approximation
and a technique for evaluating the approximation by con-
verting it to a local series [8, 9, 14]. These methods reduce
the operation count to O(Nlog N) or O(N). Extension of
FMM to dipolar systems has also been made [11)].

In this paper, we present a simple treecode algorithm for
computing the real-space part of the Ewald summation for
dipolar systems. Our approach involves (i) direct evaluation
of the reciprocal space sum; (ii) tree construction to subdi-
vide the dipoles into clusters; (iii) multipole expansion to ap-
proximate the real space interaction between a dipole and
a distant cluster of dipoles; (iv) divide-and-conquer strat-
egy to evaluate the real space interactions recursively. In
what follows, first we describe the multipole approximation
for dipole-cluster interactions. We then present the con-
struction of the tree and two divide-and-conquer strategies
to apply the multipole approximation recursively. In sec-
tion 5, we give the numerical results obtained for systems
of randomly generated dipoles. Finally, we summarize our
findings in section 6.

2. MULTIPOLE APPROXIMATION

In this section, we describe the multipole approximation
for the dipole interaction between a dipole and a cluster of

dipoles. Define the potential function ¢(x) = 3@erfc(|x|)/|x|.

Consider the Taylor expansion of ¢(x) about X,
= 1
B = 3 L DEHE)(x— B,
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where k! = k1'ka'ks!, |[k|| = k1 + k2 + ks, (x —%)* = (21 —
F1)*1 (z2 — T2)*2 (23 — T3)*2, DX = 9N /92, %1 9x2*2 02553,
Consider a point dipole u; at r; in a cluster A and a distant
dipole p; at r;. Let p; = ap; and p; = au,; be the scaled
dipoles and x; = ar; and X; = ar; be the scaled positions,
and x4 = arg be the scaled center of the cluster A as in
Figure 1.

In Eq. (6), let x = x; — x; and X = x4 — x;, we have the
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Figure 1: Dipole j and a cluster of dipoles A. x4
is the scaled cluster center; p4 is the scaled cluster
radius; R;4 is the distance between the dipole and
the cluster center.

pth order Taylor approximation for the real space interaction
between dipole j and cluster A,
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of cluster A. The last equation computes the electrostatic
interaction between dipole j and the multipoles of cluster A.
[16). The force exerted on dipole j is the negative gradient
of the potential energy at r;,
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where e, ez, e; are the standard Cartesian basis vectors.
We note that the Taylor coefficients ax in Egs. (10) and
(12) are independent of the number of dipoles in cluster A.
Therefore, once the moments of each cluster m% are ob-
tained, the real space potential energy and the force at rj,
E}’) and F](-’), can be computed cluster by cluster. In prac-
tice, it is more efficient to employ the approximation only
when the multipole acceptance criterion is satisfied (detailed
in section 4).

Recurrence Relations. Explicit formulas for the Taylor
coefficients ay can be developed, but we found it simpler and
more efficient to use recurrence relations instead. Consider
another function ¢(x) = 2e~*I" and define by = 2 Dk¢(x).
It is easy to verify that by satisfies the following very simple
recurrence relations

2
bk+k__7‘ 7‘;

where b = 0 when any of the indices is negative.

Clijbk_ej -+ bk—2e_,- =0, J =1, 2, 3, (13)
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Figure 2: Stencil of the Recurrence Relation (14) in
two Dimensions.

derivation of the recurrence relations for the Taylor coef-
ficients ay is also straightforward using Leibniz’s rule for
differentiating the product of two functions:

3
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where ax = 0 when any of the indices is negative. Figure 2
shows the associated stencil in two dimensions. To reduce
the terms involved in the recurrence relations, equation (13),
(14) and a slightly different alternative form of equation (14)
are used in practice[6].

3. TREE CONSTRUCTION

The tree used here is a variant of the Barnes-Hut tree.
The tree construction procedure divides the particles into
a collection of nested clusters (also referred to as cells or
nodes). The root node is the cubic box containing all the
dipoles in the center simulation box. The root is subdivided
in each coordinate direction into a total of eight children.
The children define the next level of nodes in the tree. The
subdivision continues until the number of dipoles in a node
is less than or equal to a specified value Ny. These nodes
form the leaves of the tree. Bookkeeping steps are performed
during the tree construction. The scaled dipole positions,
directions and strength are stored in a global array in such
a way that the members of a cluster appear in consecutive
array locations. Several attributes associated with a node
are also computed including the multipole moments up to a
chosen order p, as well as the scaled center x4 and radius
pa as in Figure 1.

4. EVALUATION PROCEDURES

Having constructed the tree, the potential energy and
force on a dipole are computed by traversing the tree. We
present here two different divide-and-conquer strategies to
accomplish the task. The first one is shown in Figure 3.
It cycles through the dipoles and computes the interaction
between a dipole j and a cluster of dipoles A recursively.
Interaction between a dipole and a leaf cluster of dipoles
is computed directly using the Ewald method. The multi-
pole approximation is performed when the dipole is well-
separated from a nonleaf cluster, i.e. the following multipole
acceptance criterion (MAC) is satisfied,

pa/Rja <s (15)
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dipole_cluster.procedure()
for j=1to N
compute_in_node(j, root)
/*compute energy & force due to the 26 nearest images of root*/
for i =1 to 26
compute-out_node(j, image;)

compute_in_node(j, A)
if (j is in A)
if (A is a leaf)
compute E;;) and F_,(i"A) using direct Ewald;
else /*examine the 8 children of cluster A*/
fori=1to 8
compute.in_node(j, A.child[i});
else
compute_out.node(j, A);

compute_out_node(j, A)
if (A is a leaf)
compute Ef;) and Fg'} using direct Ewald;
else :
if (j and A are well separated)
compute E;;) and F§'2 using a multipole approximation;
else
fori=1to 8 .
compute_out_node(j, A.child[i]);

Figure 3: Outline of the dipole-cluster evaluation
procedure and the two recursive functions involved.
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Figure 4: Two clusters A, B of dipoles. x4, xp are
the cluster centers; p4, pp are the cluster radii; RaB
is the distance between the cluster centers.

where pa, Rja are the cluster radius and dipole-cluster dis-
tance defined in Figure 1. s is a user-specified parameter
for controlling the computational accuracy. If the MAC is
not satisfied, the eight children of the given cluster are ex-
amined; this procedure is continued until a leaf cluster is
encountered or the MAC is satisfied.

The second strategy is shown in Figure 5. It cycles through
all the clusters of dipoles. If two clusters are leaves, direct
Ewald summation is performed using the symmetry prop-
erty of pairwise interactions. The multipole acceptance cri-
terion is defined for two clusters A and B which are not both
leaves [7],

(pa +pB)/Rag < (16)

where pa, pp are the cluster radii and Rap is the distance
between the centers of the two clusters defined in Figure
4. If the MAC is satisfied, the algorithm cycles through
the dipoles in the two clusters and computes the interac-
tion between a dipole in one cluster and another cluster of
dipoles using multipole approximation. If the MAC is not
satisfied, the eight children of the cluster of larger radius are
examined; the procedure is continued until both clusters are
leaves or the MAC is satisfied.

We refer to the first procedure as the dipole-cluster eval-
uation procedure and the second as the cluster-cluster eval-
uation procedure. The main difference between them is on



cluster_cluster_procedure()
compute_one.node( root)
/*compute energy & force due to the 26 nearest images of root*/
for i=1to 26
computetwo_nodes(root, image;)

compute_one_node(A4)
if (A is a leaf)
Vij€EA
compute E,(;) & Fg;) by direct Ewald using pairwise symmetry;
else/*examine the 8 children of cluster A*/
fori=1to 8
compute_one_node(A.childli]);
forj=i+1to8
compute_two_nodes(A.childfi], A.child[j]);

compute_two_nodes(A, B)
if (both A and B are leaves)
Vi€EA jEB
compute E,(:) & Fg;) by direct Ewald using pairwise symmetry;
else if (A and B are well separated)
VicA, jEB
compute E’.(;) & FE'B); EJ('/;) & Fg';‘) using multipole approximation;
else if ((A is a leaf) or (B is not a leaf and rg > ra))
for j=1to 8
computetwo_nodes(A, B.child[j]);
else
fori=1to 8
compute two_nodés(A.child[i], B);

Figure 5: Outline of the cluster-cluster evaluation
procedure and the two recursive functions involved.

how the MAC is checked. It is clear that the first MAC (eq.
(15)) is easier to be satisfied and therefore more approxima-
tions are made if the dipole-cluster procedure is used. The
second MAC (eq. (16)) is checked for two clusters of dipoles.
When the direct Ewald method is used for leaf clusters, the
symmetry property of pairwise interactions can be consid-
ered. Therefore only half of the computation for leaf clusters
need to be carried out. The impact of these differences on
the performance of the treecode is documented in Figure 8
and Figure 9 in section.5.

5. IMPLEMENTATION AND NUMERICAL

RESULTS

The Ewald summation based multipole method for dipo-
lar systems and the classical Ewald summation method with
a neighbor cell list were implemented in the C programming
language and tested on an 1133 MHz IBM ThinkPad. The
classical Ewald summation method is used as the bench-
mark for testing the performance of the treecode. In the im-
plementation of the classical Ewald method, the real space
part was evaluated with a cutoff r, and explicit formulas
for the 1st and 2nd derivatives of erfc(a|r|)/|r| obtained us-
ing Smith’s recurrence formula [17, 15]. The complemen-
tary error function erfc(z) was evaluated using power se-
ries for small arguments and the asymptotic expansion for
large arguments [21]. To reduce the cost of neighbor find-
ing, i.e. locating the dipoles which are within the cutoff
radius of a given dipole, a 3-D Hockney-Eastwood lattice of
(M1 x Ma x M3) cells was used as a mesh to cover the cen-
ter simulation box and the images of its nearest neighbors.
Each of the cells in the central simulation box was linked
with a list of cells within its cutoff radius. The contribu-
tions to the energy and force on a dipole in a cell A are only
from dipoles within cell A and in the cells that are linked to
A. Figure 6 depicts a mesh and a list of cells linked to cell
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Figure 6: The simulation box and its neighbor im-
ages are divided into cells. Contributions to the en-
ergy and force on a dipole in cell A are only from
the dipoles in A and the cells (shaded) linked to A.

main()
input dipole positions, directions and strength
input user-specified parameters

a : Ewald parameter

re : real space cut-off radius

s : MAC parameter

p : order of approximation

No : maximum number of particles in a leaf

construct tree
compute real space sum using
dipole_cluster_procedure() or cluster_cluster_procedure();

Figure 7: Implementation of the treecode algorithm.

A in two dimensions for the set of parameter values given
in equation (18). The reciprocal space sum was computed
with a cutoff n. using the expression given in equation (5)
with explicit differentiation of the exponential function.

One set of results was computed using the classical Ewald
summation with parameter values

a=6/L, re =1L, k. =12; (17)

these results are correct to double precision accuracy and
they serve as a benchmark for determining the error. We
compared the performance of the treecode algorithm and
the classical Ewald method for parameter values

a=5/L, rc =LJ2, k. =4; (18)

these are commonly used values (1, 5] that provide moderate
accuracy at much lower cost than the values in (17). We note
that with this set of parameters, (i) the number of operations
in the reciprocal space computation is of order O(N); (ii)
only the center simulation box and its nearest neighbors are
needed for the real space computation, but the complexity
of the classical Ewald computation is O(N?).

The implementation of the treecode algorithm is outlined
in Figure 7. The real space cutoff was implemented by re-
quiring that the particle-cluster interactions satisfy the cri-
terion |x; —xa| € rc+74;i.e. acluster A contributes to the
real space sum as long as it overlaps the sphere of radius r.
centered at the particle x;. As a result, the treecode com-
putation included more dipole interactions than those enter-
ing the classical Ewald computation. The neighbor finding
procedure provided by the hierarchical tree data structure
is slightly more efficient beyond the linked-cell method. It
eliminates a cluster of dipoles with a single distance calcu-
lation when |x; —xa| > r. + 74 [20]. In addition, using the
cluster-cluster evaluation procedure, two clusters of dipoles
can be eliminated when [x4 — xB| > re +74 + r5. It is in-
teresting to recall that the volume of a sphere of radius r is
3mr® = 0.5236 for r = 1/2. This suggests that if the dipoles



are uniformly distributed in the simulation box, only about
53% of the dipoles are located within the inscribed sphere
and contribute to the energy and force on the dipole located
at the center of the box. We believe this is why when the
cluster-cluster evaluation procedure is used, the treecode al-
gorithm, even with the overhead of constructing the tree and
computing the attributes for each node, outperformed the
classical Ewald method for all values of N as shown in Fig-
ure 9. Because the pairwise symmetry property can not be
utilized in the treecode with the particle-cluster evaluation
procedure, the advantage of the neighbor finding approach
is not apparent in the results shown in Figure 8.

The parameter values for the treecode algorithm were cho-
sen to be representative rather than optimal. The maxi-
mum number (Np) of dipoles in a leaf cluster was set to
be 20 and the separation parameter s was taken to be 0.4
for the treecode using the dipole-cluster evaluation proce-
dure. Since the leaf interaction can be computed more ef-
ficiently using the pairwise symmetry property when the
cluster-cluster evaluation procedure is used, different values
of No = 40 and s = 0.5 were chosen for the treecode using
the cluster-cluster evaluation procedure. The computation
in the reciprocal space is done by the same code used for the
classical Ewald method.

The test data are sets of randomly generated dipoles with
a fixed density. The electrostatic potential energy and forces
were computed based on the data. The numerical results for
three values of p are shown in Figure 8 and Figure 9. The
root mean square (rms) error in the force was computed us-

ing \/gzi\;l
F; is the approximate result obtained by either the classi-
cal Ewald or the treecode method. We note that the rms
error is more meaningful than relative error for randomly
generated data; for example, randomly generated dipole po-
sitions could produce forces of very large magnitude at some
dipoles.

The following observations can be made from the numer-
ical results. (i) For large values of N, the treecode algo-
rithm is significantly faster than the classical Ewald method;
for example, with N = 200,000, the speed-up is about
4.9 and 4 for the two different evaluation procedures. The
cross-over point between the classical Ewald method and
the treecode with the dipole-cluster evaluation procedure is
about N = 12,000 for p = 4, and 25, 000 for p = 8. There is
no cross-over point when the cluster-cluster evaluation pro-
cedure is used; the treecode is always faster than the Ewald
method although most of the computation for N < 10,000
was performed using direct Ewald summation. As noted
above, this is because the neighbor finding procedure for the
treecode is slightly more efficient than that for the classical
Ewald method. Apparently, the overhead of constructing
the tree and computing the attributes associated with the
tree nodes is negligible as compared with the cost of comput-
ing the energy and forces. (ii) As compared with the dipole-
cluster evaluation procedure, the cluster-cluster evaluation
procedure performs better for small to moderately large sys-
tems. However, as the system size increases, the difference
diminishes and when N = 200, 000, the algorithm with the
dipole-cluster evaluation procedure surpasses the one with
the cluster-cluster evaluation procedure. (iii) The observed
CPU time complexity of the new method is consistent with
O(Nlog N), as expected for a particle-cluster treecode [3].

|F; — F4|2, where F; is the correct force and
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(iv) The rms error in the force for the treecode algorithm is
O(sP) as p increases. We note that the treecode error should
be judged by how well it compares with the classical Ewald
error, not by how small it is. Since the tree data structure
is discrete, the number of dipoles in clusters at each level
varies with N; for example, with Ny = 20, the average num-
ber of dipoles in a leaf is 3.05 = 100, 000/8° for N = 100,000
and 6.1 for N = 200,000. This variation leads to the change
in the distance R;ja between a dipole j and the center of a
well-separated cluster A. As a result, the error in the force
obtained using the treecode algorithm fluctuates with N as
shown in Figure 8 and 9. This suggests, similar to the error
bounds for the multipole approximation of Coulomb poten-
tial [8] and London dispersion potential [7], the error bound

for the multipole approximation of ¢(x) = 32—'_{erfc(|x|) /1x|
is also a decreasing function of R;4.

6. SUMMARY AND CONCLUSIONS

Efficient evaluation of electrostatic interactions is a bottle-
neck problem in molecular dynamics simulations. Treecode
algorithms typically reduce the operation count from O(N?)
to O(Nlog N), where N is the number of particles in the
system, but there is still much interest in optimizing per-
formance within this class of algorithms. Here we described
a treecode algorithm for computing the real space part of
the Ewald summation in dipolar systems. The treecode
uses multipole approximation in Cartesian coordinates and
employs recurrence relations to efficiently compute the nec-
essary Taylor coefficients. We have implemented two dif-
ferent evaluation procedures for applying the approxima-
tion recursively. Test results were presented for sets of ran-
domly generated dipoles. The CPU time was consistent with
O(Nlog N) and the algorithm was effective in controlling
the computational error.

The Ewald summation technique poses two distinct com-
putational problems — the evaluation of the real space sum
and the reciprocal space sum. The present treecode algo-
rithm evaluates the real space sum in O(Nlog N) opera-
tions, while the PME method evaluates the reciprocal space
sum in O(N log N) operations. This raises the possibility of
combining the two methods to obtain a more efficient hybrid
method to reduce the constant of proportionality.
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