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Abstract

A treecode algorithm is presented for computing the electrostatic potential and electric field in a system of charged particles.
The algorithm is grid-free and with N particles it reduces the operation count to O(N logN), as opposed to O(N2) which is
required for direct summation of pairwise interactions. The key idea is to replace the particle–particle interactions by particle–
cluster interactions which are evaluated using a Taylor approximation in Cartesian coordinates. The treecode is combined here
with a boundary integral method to simulate electron dynamics in a Penning–Malmberg trap.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Consider a system of charged particles "xi, i = 1,
. . . ,N , with charges qi and potential energy function

(1)Φ("x) = 1
ε0

N∑

i=1
G("x, "xi)qi,

where G("x, "xi) is the Green’s function at "x due to
particle "xi . The electric field is "E = −∇Φ and in a
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Lagrangian simulation it must be evaluated at each
particle location (omitting the infinite self-interaction
term). The simplest approach is to compute the O(N2)
particle–particle interactions directly, but this is pro-
hibitively expensive when N is large. The well-
known particle-in-cell method reduces the cost to
O(N logN) using a grid-based Poisson solver [1,2].
The more recently developed treecode algorithm is
a grid-free alternative that also reduces the cost to
O(N logN) [3,4]. In this approach the particles are
grouped into a set of clusters having a tree structure
and the particle–particle interactions are replaced by
particle–cluster interactions which are evaluated by
a far-field multipole approximation. A divide-and-
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conquer strategy is used to select the clusters. Our
implementation of the treecode uses a Taylor poly-
nomial in Cartesian coordinates for the far-field ap-
proximation. The Fast Multipole Method is a more
elaborate procedure that uses spherical harmonics,
cluster-cluster approximations, and a pre-determined
interaction list [5]. Since treecode algorithms are grid-
free, they avoid spurious grid-based effects and may
be especially appropriate for problems involving sharp
gradients.
The first treecode algorithms were developed for

particle simulations in free-space, but they can be
combined with boundary integral methods to treat
bounded domains as well [6–8]. In the present work
we apply this approach to simulate electron dynam-
ics in a Penning–Malmberg trap. This system was
previously investigated by experiments and particle-
in-cell simulations, and many interesting phenomena
were revealed such as metastable crystalline states
and complex dynamics [9,10]. The following sections
describe the Penning–Malmberg trap, treecode algo-
rithm, and boundary integral method, and then the
simulation results are presented. Although a 2D exam-
ple is treated here, the method applies more generally;
it has been used to simulate a 1D virtual cathode [11]
and vortex sheet roll-up in 3D incompressible fluid
flow [12].

2. Penning–Malmberg trap

A Penning–Malmberg trap is a grounded conduct-
ing cylinder that confines an electron plasma to a
bounded domain [9,10]. The electrons are confined

by applying a magnetic field along the cylinder axis
and holding the cylinder end caps at constant voltage,
so that the electrons bounce back and forth along the
magnetic field lines. For example in [10], the end cap
potentials were held at V ∼ 50 Volts and the magnetic
field strength was B ∼ 1 Tesla. Under these condi-
tions, the time required for an electron to complete one
bounce is much smaller than the characteristic "E × "B
time scale. This implies that the plasma is well de-
scribed by a 2D particle model in which the electrons
behave like line charges being convected with velocity
"v = "E × "B/B2 [13]. This is the model adopted here.
In our simulations, the applied magnetic field "B is a
specified constant and the electric field "E is computed
by the treecode.

3. Treecode algorithm

Here we describe the evaluation of the electrosta-
tic potential Φ("x) and afterwards we indicate how
the electric field is obtained by a similar procedure.
The algorithm has two main steps; the particles are
grouped into a set of clusters having a tree structure
and then Φ("x) is computed with the aid of the tree.
The first level in the tree has a single cluster contain-
ing all the particles (called the root cluster) and each
successive level is obtained by subdividing the clusters
at the previous level into four sub-clusters (see Fig. 1).
Once the tree is constructed, the entire particle dis-

tribution is written as a union of clusters, {"xi, i =
1, . . . ,N} = ⋃M

j=1Cj , where Cj denotes a cluster and
M is the number of clusters in the union. The clusters
are chosen adaptively from different levels in the tree,

Fig. 1. Schematic diagram of tree construction.
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but they are mutually disjoint. The potential is then ex-
pressed as

Φ("x) = 1
ε0

N∑

i=1
G("x, "xi)qi = 1

ε0

M∑

j=1

∑

i∈Cj

G("x, "xi)qi

(2)= 1
ε0

M∑

j=1
Φ("x,Cj ),

where

(3)Φ("x,C) =
∑

i∈C

G("x, "xi)qi

denotes the particle–cluster interaction between "x and
C (see Fig. 2). The next step is to Taylor expand the
potential G("x, "xi) with respect to "xi about the clus-
ter center "xc. Using Cartesian coordinates "xi = (xi, yi)

this gives

G("x, "xi) = G
(
"x, ("xi − "xc) + "xc

)

(
p∑

k=0

k∑

l=0

1
l!(k − l)!∂

l
xi
∂k−l
yi

G("x, "xc)

(4)× (xi − xc)
l(yi − yc)

k−l ,

Fig. 2. Schematic diagram of a particle–cluster interaction. "x: parti-
cle, C: cluster, "xc : cluster center, "xi : generic particle in cluster C .

where p is the order of the approximation. Using
Eq. (4), the particle–cluster interaction is given by

Φ("x,C) (
∑

i∈C

p∑

k=0

k∑

l=0

1
l!(k − l)!∂

l
xi
∂k−l
yi

G("x, "xc)

× (xi − xc)
l(yi − yc)

k−lqi

=
p∑

k=0

k∑

l=0

1
l!(k − l)!∂

l
xi
∂k−l
yi

G("x, "xc)

×
∑

i∈C

(xi − xc)
l(yi − yc)

k−lqi

(5)=
p∑

k=0

k∑

l=0
Tl,k("x, "xc)Ml,k(C),

where Tl,k("x, "xc) is the (l, k)-Taylor coefficient of the
Green’s function and Ml,k(C) is the corresponding
moment of the cluster. Note that the cluster moments
are independent of the location "x, so they can be com-
puted and stored for use with different "x. Also, the
Taylor coefficients are independent of the particles in
the cluster and they can be efficiently computed to
high order using a three term recurrence relation [12].
The simulations below used either p = 4 or p = 8 for
the order of the Taylor approximation.
In practice, the particle–cluster interactionΦ("x,C)

is evaluated using the recursive function shown in
Fig. 3. The decision to accept or reject the Taylor ap-
proximation is made by considering the ratio rc/R,
where rc is the cluster radius and R = |"x − "xc| is the
particle–cluster distance. If the approximation is re-
jected, the function descends to the next level of the
tree and considers the sub-clusters of the given clus-
ter. Finally, the potential Φ("x) is evaluated by calling
ComputePotential("x, root), where root is the entire
particle distribution.
This completes our description of the treecode al-

gorithm. The electric field "E = −∇Φ is obtained by a
similar procedure after analytically differentiating the

function ComputePotential("x,C)

is the Taylor approximation sufficiently accurate?
if yes, compute Φ("x,C) by Taylor approximation in Eq. (5)
if no, does C have any sub-clusters?
if yes, call ComputePotential("x,C′) for each sub-cluster C′ of C

if no, compute Φ("x,C) by direct summation

Fig. 3. Function for evaluating Φ("x,C).
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potential in Eq. (5) with respect to "x; further details are
explained in the references [3,4,12]. For problems de-
fined on a simple bounded domain as in the Penning–
Malmberg trap it is possible to use a modified Green’s
function given by the method of images, but we prefer
to use a boundary integral method in order to accom-
modate more general domains in the future.

4. Boundary integral method

The potential is required to satisfy a Dirichlet
boundary condition on the cylinder wall and hence it
is the solution of a Poisson equation,

$Φ("x) = − 1
ε0

N∑

i=1
δ("x − "xi)qi,

(6)Φ("x) = 0 for "x ∈ ∂&,

where ∂& is a circle (cross-section of the cylinder
wall). The solution is expressed as Φ = ΦP + ΦH ,
where ΦP is a particular solution of the Poisson equa-
tion and ΦH is a homogeneous solution that enforces
the boundary condition. We take

(7)ΦP ("x) = 1
ε0

N∑

i=1
G("x, "xi)qi,

whereG("x, "xi) is the free-space Green’s function as in
the previous section. The homogeneous solution satis-
fies

(8)$ΦH ("x) = 0, ΦH ("x) = −ΦP ("x) for "x ∈ ∂&,

and it is expressed as a single layer potential,

(9)ΦH ("x) =
∫

∂&

G("x, "y)σ ("y)ds("y),

where the source strength σ ("y) has to be determined.
The physical interpretation is that ΦH ("x) arises from
a distribution of line charges on the boundary. Next we
let "x approach a point "y ∈ ∂& and apply the boundary
condition in Eq. (8). This leads to a 1st kind integral
equation for σ ("y) which is solved by a collocation
method at points "yj ∈ ∂&, j = 1, . . . ,N∂&. The po-
tential at an arbitrary point in the domain is then given

by

(10)

Φ("x) = 1
ε0

N∑

i=1
G("x, "xi)qi +

N∂&∑

j=1
G("x, "yj )σ ("yj )ωj ,

where ωj are the quadrature weights for the layer po-
tential. Each term in Eq. (10) and the associated elec-
tric fields can be evaluated by the treecode.

5. Results

The treecode algorithm and boundary integral
method were applied to simulate electron dynamics
in a Penning–Malmberg trap. Time-stepping was per-
formed by the leap-frog method [1,2]. Two examples
of preliminary results are presented here.
Fig. 4 shows the merger of two regions each con-

taining N = 50 K identically charged particles. The
greyscale denotes the particle density. The initial par-
ticle locations were chosen randomly from a Gaussian
pdf that was sharply peaked in each region and rapidly
decaying away from the center. Initially the regions
are disjoint and radially symmetric. At later times
they draw closer together and form a rotating ellip-
tic shape with almost uniform density. The small-scale

Fig. 4. Merger of two disjoint regions of electrons; time increases
from left to right and top to bottom. The order of the Taylor expan-
sion is p = 8.
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Fig. 5. Evolution of a ring of charge; time increases from left to right. The order of the Taylor expansion is p = 4.

features within the ellipse (gaps, scars) arise from the
random fluctuations in the initial condition. Thin fila-
ments are ejected from the ellipse and undergo a short
wavelength Kelvin–Helmholtz instability. The results
have some features in common with studies of vortex
merger and axisymmetrization in 2D incompressible
fluid dynamics [14,15].
Fig. 5 shows the time evolution of a ring of N =

50 K particles. At the initial time (left), the ring was
given a radial perturbation of azimuthal wavenumber
m = 12. At an intermediate time (middle), a regular
state containing twelve crystals has formed, but at later
times (right) this state breaks down and some of the
crystals are in the process of merging, as in the pre-
vious example. This scenario agrees qualitatively with
experimental results [9], but the breakup of the reg-
ular crystalline state in the present simulation is due
to numerical errors rather than genuine physical ef-
fects.

6. Conclusions

We described a grid-free treecode algorithm for
computing the electrostatic potential and forces in-
duced by a set of charged particles, and presented sim-
ulations of electron dynamics in a Penning–Malmberg
trap. With N = 50 K–100 K particles and 8th-order
Taylor approximations, the treecode is much faster
than direct summation. Since treecode algorithms are
grid-free, they avoid spurious grid-based effects and
may be especially appropriate for problems involv-
ing sharp gradients. Particle-in-cell methods are well-
accepted in the plasma simulation community and

techniques are available for reducing their grid-based
effects, e.g., particle–particle/particle–mesh [2] and
adaptive mesh refinement [16]. In future work we will
assess the capability of the treecode algorithm in com-
parison with the particle-in-cell method.
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