

Parallel Implementation of the Treecode Ewald Method

Dongqing Liu*, Zhong-Hui Duan*, Robert Krasny†, Jianping Zhu‡§

* Department of Computer Science, The University of Akron, Akron, OH 44325, USA.

† Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
‡ Department of Theoretical and Applied Mathematics, University of Akron, Akron, OH 44325, USA

§ Corresponding author: jzhu@math.uakron.edu

Abstract

 In this paper, we discuss an efficient parallel
implementation of the treecode Ewald method for fast
evaluation of long-range Coulomb interactions in a
periodic system for molecular dynamics simulations.
The parallelization is based on an adaptive
decomposition scheme using the Morton order of the
particles. This decomposition scheme takes advantage
of the data locality and involves minimum changes to
the original sequential code. The Message Passing
Interface (MPI) is used for inter-processor
communications, making the code portable to a variety
of parallel computing platforms. We also discuss
communication and performance models for our
parallel algorithm. The predicted communication time
and parallel performance from these models match the
measured results well. Timing results obtained using a
system of water molecules on the IA32 Cluster at the
Ohio Supercomputer Center demonstrate high speedup
and efficiency of the parallel treecode Ewald method.

1. Introduction

 The rapid advancement in computational science
has dramatically changed the way researchers conduct
scientific investigations, particularly in the studies of
molecular interactions in a biomolecular system [1].
However, the current modeling and simulation
capabilities available to researchers are still vastly
inadequate for the study of complex biomolecular
systems, although there has been tremendous progress
in computer hardware, software, modeling, and
algorithm development [1, 2]. For example, the typical
time step in a molecular dynamics (MD) simulation is
on the order of 10-15 second, but the time interval of
biological interest is typically on the order of 10-6 - 1
second. This translates to a simulation involving 109 -
1015 time steps, where each step includes the
computation of short-range interactions and extremely
time consuming long-range Coulomb interactions. As a
result, the longest simulation time that has ever been
reported was 3.8×10-5 seconds [1, 3], which was

achieved using a distributed parallel system with 5000
processors. To bridge the gap between the time interval
of biological interest and that accessible by MD
simulations, there has been extensive effort to improve
the computational efficiency. One approach is to
increase the time step size [4]. Another approach is to
decrease the time needed for the force evaluations at
each time step. This paper is concerned with the second
approach.
 In an MD simulation of a system of N particles, the
computational cost is dominated by the frequent force
evaluations. The calculation of long-range Coulomb
interactions is the most time-consuming part of the
evaluations. A straightforward implementation of the
calculation requires O(N2) operations. In recent years,
several methods have been developed to reduce the
cost of computing Coulomb interactions while
maintaining accuracy of N-body MD simulations,
notably the multipole expansion based tree-codes and
Ewald summation based fast algorithms [5-20]. Two of
the earliest tree-codes were developed for problems
involving gravitational interaction by Appel [7], Barnes
and Hut [8]. Both algorithms employed monopole
approximations with a complexity of O(Nlog(N)).
Appel used a cluster-cluster evaluation procedure,
while Barnes and Hut used a particle-cluster procedure.
Greengard and Rokhlin's fast multipole method reduces
the operation count from O(N2) to O(N) [9]. To obtain
higher accuracy, the fast multipole method uses higher
order multipole approximations and a procedure for
evaluating a multipole approximation by converting it
into a local Taylor series. There is much ongoing effort
to optimize the performance of the fast multipole
method. The latest version of the fast multipole method
uses more sophisticated analytical techniques that
combine the use of exponential expansions and
multipole expansions [10]. The Ewald summation
method has been widely used to handle Coulomb
interactions for systems with periodic boundary
conditions [15, 16]. The method converts a
conditionally convergent series into a sum of a constant
and two rapidly convergent series, a real space sum and
a reciprocal space sum. The relative computational cost
of the two series is controlled by an adaptive splitting

parameter α. The popular particle-mesh Ewald method
[17] (PME) reduces the complexity of Ewald
summation by choosing a large value for a; the real
space sum is computed in O(N) and the cost of
evaluating the reciprocal space sum is reduced from
O(N2) to O(Nlog N) using a particle-mesh interpolation
procedure and the fast Fourier transform (FFT). PME
was a major success in the field of biomolecular
computing, but parallelizing PME has been a great
challenge due to the high communication cost of 3D
FFT. With a relative small value of α.? the Ewald
summation based tree-code [18] approximates the real
space sum using a Barnes-Hut tree and the multipole
expansion of the kernel erfc(|x|)/|x| and reduces the
computational cost from O(N2) to O(Nlog(N)).
 While parallel implementations of hierarchical tree-
codes, including the parallel fast multipole method and
the parallel Barnes-Hut tree based multipole method,
have been extensively studied [21-26], the parallel
implementation of the Ewald summation based
treecode [18] for fast evaluation of long-range
Coulomb interactions in a periodic system has never
been reported. In this paper, we present an efficient
parallel implementation of this method. We describe an
adaptive decomposition scheme based on the Morton
order of the particles. This decomposition scheme takes
advantage of the data locality and involves minimum
changes to the original sequential code. We then
discuss Amdahl’s law and illustrate the performance
improvement gained by making a common sequential
part faster. The parallel algorithm has been
implemented using the Message Passing Interface
(MPI), making it portable to a variety of parallel
platforms [27, 28]. We then report and discuss detailed
numerical results based on the force evaluation for a
water system on the IA32 Cluster at the Ohio
Supercomputer Center. The next section describes the
Ewald summation based treecode. The parallel
implementation of the method and timing results are
given in Section 3 and Section 4, respectively,
followed by the conclusions in Section 5.

2. Treecode Ewald method

 The total electrostatic energy of a periodic system of
N particles can be described in terms of a conditionally
convergent series:

∑∑∑
== +−

=
N

j ji
ji

N

i L
qqE

11 |nrr|
1'

n2
1 (1)

where qi is the charge of particle i, L is the size of the
simulation box, ri is the position of particle i, |r|
denotes the Euclidean norm, n = (n1, n2, n3) are
integers, and the prime indicates that the i=j terms are
omitted when n=0. A detailed description of the Ewald
summation method is given in [15]. Essentially, the

method splits the above conditionally convergent series
into a sum of a constant, E(0), and two rapidly
convergent series, a real space sum E(r) and a reciprocal
space sum E(k),

)()()(kr0 EEEE ++= (2)

where
 ∑

=

=
N

j
jqE

1

2
2/1

)(

π
α 0 (3)

∑∑∑
== +−

+−
=

N

j ji

ji
ji

N

i L

L
qqE

11

)(

||

|)|(erfc'

2
1

nrr

nrr

n
 r α

 (4)

2

1
22

22

2
)(2

exp
||

exp
||

1
2

1 ∑∑
=







 ⋅

≠








−=

N

j
jj L

i
q

LLE rn
n

n

n
 k π

α
π

π 0

 (5)

and a is a positive parameter. The complementary error
function in the real space sum and the exponential
function in the reciprocal space sum decay rapidly with
the index n, therefore cutoffs rc and kc can be used to
compute the Ewald sum, i.e. only terms satisfying
 | ri – rj + Ln| ≤ rc (6)
for E(r) and
 |n| ≤ kc (7)
for E(k) are retained for the computation. The magnitude
of the Ewald parameter a controls the relative rates of
convergence of the real space sum and the reciprocal
space sum. When a is large, E(r) converges rapidly and
can be evaluated to a given accuracy in O(N)
operations using an appropriate cutoff rc; however in
this case E(k) converges slowly and O(N2) operations
are required since the cutoff kc must be large enough to
attain the desired accuracy. The situation is reversed
when a is small, and therefore in either case, the
classical Ewald method requires O(N2) operations. The
cost can be reduced to O(N3/2) by optimizing the
parameters a, rc, kc as a function of N [16]. The hidden
constant in front of N3/2 can be further reduced using
the linked-cell method to reduce the computational cost
of locating the particles that are within the cutoff radius
of a given particle [6].
 The Ewald summation based multipole method is a
tree-code [18]. A typical tree-code has three basic
features: (a) the particles are divided into nested
clusters, (b) the far-field influence of a cluster is
approximated using a multipole expansion, and (c) a
recursive procedure is applied to evaluate the required
force or potential. The Ewald summation based
treecode uses an oct-tree data structure and Cartesian
multipole expansions to approximate the real space
sum in the Ewald summation. With a relatively small
value for a and an appropriate cutoff rc, the method
reduces the computational complexity of the real space
part from O(N2) to O(Nlog(N)). The reciprocal part can
be computed in O(N) operations using a cutoff kc.
 In the Ewald summation based treecode, the oct-tree
is a Barnes-Hut tree. The root node is the cubic box

containing all the particles in the center simulation box.
The root is subdivided in each coordinate direction into
a total of eight children. The children define the next
level of nodes in the tree. The subdivision continues
until the number of particles in a node is less than or
equal to a specified value N0. These nodes form the
leaves of the tree. In the implementation of the tree
construction, the particle positions are sorted in a one-
dimensional list based on their Morton order to
preserve the spatial locality of the data [21, 29]. A 2-D
case is illustrated in Figure 1. Each tree node includes a
field, (head, tail), indicating that this tree node contains
all the particles between head and tail on the list. Other
bookkeeping steps are also performed during the tree
construction. Attributes associated with a node such as
the center and the radius of the node box as well as its
multipole moments up to a chosen order p are
computed.

 The far-field interaction --- the real space
interaction between particle j and a distant cluster A is
approximated using a p-th order Cartesian multipole
approximation:

 ∑
=

≈
p

AjAj maqE
0k

k
k

r
π

α)(
, (8)

where 321 kkk ++=k ,)(
!

1
jADa xx

k
k
xk −= φ

is the Taylor coefficient of the function

 xxx |,|/|)(|erfc
2

)(
π

φ = Ajj x ,r x α= is

the scaled center of cluster A, !!!! 321 kkk=k

321
321

kkk xxx
D

∂∂∂
∂

=
k

k
x

, k

x

k xx)(Ai
Ai

iA qm −
∈

= ∑

 is the kth multipole moment of cluster A, and

321)()()()(332211
kkk xxxxxx −−−=− kxx . The

Taylor coefficients ak are computed using a set of
simple recurrence relations:

ke-ke-kk kkkxk baxaxa
ii

i
i

i
i =−+−+ ∑∑

==
2

3

1

3

1

2)1()12((9)

and

.3,2,1 ,0
22

e2kekk ==++ −− ib
k

bx
k

b
ii

i
i

i

 (10)

With the constructed oct-tree, the force acting on a
particle due to the interactions with particles within a
cutoff range is computed by traversing the tree and
using a divide-and-conquer strategy. The recursive
evaluation procedure cycles through the particles and
computes the interaction between a particle j and a
cluster of particles A recursively. Interaction between a
particle and a leaf cluster of particles is computed
directly using the Ewald method. The multipole
approximation is performed when the particle is well-
separated from a nonleaf cluster, i.e. the following
multipole acceptance criterion (MAC) is satisfied,

s
R jA

A ≤
ρ (11)

where ρA is the cluster radius, RjA is the particle-cluster
distance, and s is a user-specified parameter for
controlling the computational accuracy. If the MAC is
not satisfied, the children of the given cluster are
examined; this procedure is continued until a leaf
cluster is encountered or the MAC is satisfied.
To reduce the cost of neighbor-finding, i.e. locating the
particles that are within the cutoff radius of a given
particle, the tree-code uses a 3-D Hockney-Eastwood
lattice of (M1×M2×M3) cells as a mesh to cover the
center simulation box and the images of its nearest
neighbors [6]. Each of the cells in the center simulation
box is linked with a list of cells within its cutoff radius.
The contributions to the force on a particle in a cell A
are only from particles within cell A and in the cells
that are linked to A. In addition, the hierarchical tree
data structure also eliminates a cluster of particles with
a single distance calculation when

 |xj - xA| > rc + ρA. (12)

3. Parallel implementation

 The main computation of an MD simulation
includes force evaluations and velocity and position
updates. The calculation of new velocities and
positions can be readily parallelized once the force
acting on each particle is obtained. The force
evaluations of the MD simulations include the
computations of short-range forces (bond-bond
interactions and van der Waals interactions) and long-
range forces (Coulomb interactions). Parallelizing the

Figure 1. The Morton order of
particles in a 2-D domain.

computation of the short-range forces can be achieved
through spatial decomposition and exchange of particle
positions with neighboring processors [30]. However,
parallelizing the computation of long-range forces is a
challenge. For the Coulomb interactions, a particle in a
charged system interacts with all other particles in the
system. This means that to compute the Coulomb
interactions, all-to-all data communications between
different processors of a parallel computer is required.
This situation is even more cumbersome when the
simulation system is non-homogeneous and/or a typical
pointer-based tree data structure is used.
 Atom decomposition and spatial decomposition are
the two commonly used methods for parallelization of
an MD code [30]. In the atom decomposition method
(also known as replicated-data method [31]), identical
copies of particle information are stored on each
processor and a pre-determined set of force evaluations
is assigned to each processor for the entire duration of
the simulation. The particles assigned to a processor
may not have any spatial relationship to each other.
One of the main advantages of this method is its
simplicity. As a result, it has been widely used by
many major MD programs including Amber and
Charmm [32, 33]. In addition, because each processor
has a copy of the entire data set, the computation of
many body effects such as polarizability can be
relatively easily added to the simulation. Spatial
decomposition is another popular parallelization
method [34]. In this method the domain is decomposed
spatially and particles are assigned to each processor
based on their geometrical positions. One clear
advantage of this method is the consideration of the
data locality and scalability. The adaptive domain
decomposition scheme presented in this paper is a
variant of the atom decomposition method, in which
the spatial position of each particle is considered in the
decomposition to ensure good data locality.
 The sequential code of the Ewald summation based
treecode uses a pointer-based oct-tree. The tree is
constructed adaptively to deal with non-homogeneous
systems, i.e. tree branches are taller in regions of high
particle density and shorter in regions of low density.
The implementation of the data structure is achieved by
utilizing a list of particles in their Morton order. Based
on our experience with the sequential code, the tree
construction, even in a straightforward implementation,
takes only a very small fraction, typically less than
0.4%, of the total computation time. To obtain an
efficient parallel code for a moderate number of
processors and minimize changes to the sequential
code, we implemented a variant of the atom
decomposition method in the parallelization of the
Ewald summation based treecode. In our method,
particle information, including particle positions and
charges as well as input parameters such as the order of

the approximation and multipole acceptance criterion,
are replicated on each processor. Each processor
constructs its own copy of the oct-tree and computes
the multipole moments associated with each node of
the tree. As a result, a unique list of the particles in
Morton order is obtained on each processor when the
tree construction is finished. Through the duplicated
tree construction performed on each processor, the
cumbersome all-to-all communication of the pointer-
based oct-tree structure can be avoided.
 With the one-dimensional list of the particles in
spatial order, the force computation can be distributed
across the processors by simply splitting the list into
groups of the same computational workload, which can
be approximated based on the computational cost of
each particle at the previous time step. With our
domain decomposition, the actual computation for the
particles assigned to each processor can be performed
in parallel without exchanging data with any other
processors. After the force calculation is complete,
each processor sends the computed forces acting on the
particles assigned to the processor to all other
processors and receives the force acting on other
particles from other processors.

Table1. Morton order based atom
decomposition algorithm.

Step Description

1
Construct the oct-tree, sort the particles based
on their Morton order to form a 1-D list, and
compute the multipole moments of each tree
node.

2

Compute forces on particles assigned to
processor Pi based on the workload in the
previous time step. The computation uses the
oct-tree structure and the linked cells method.
The distant particle-cluster interactions are
approximated using multipole expansions.

3 Exchange forces with all other processors

4
Consolidate other parts of the force acting on
each particle, integrate the equation of motion,
and update the particle positions.

 Table 1 outlines the Morton order based atom
decomposition algorithm. The cost of the tree
construction is of order Nlog(N), but as mentioned
above, the proportionality constant is very small,
making the cost of step 1 only a very small fraction of
the total computation time. The second step is the most
time consuming part of the computation. Each

processor is responsible for the force calculation of N/P
particles, where P is the number of processors.
Consequently, the computation time on each processor
is proportional to (Nlog(N))/P. The third step of the
algorithm involves an all-to-all communication, but
fortunately this is the only communication required in
the method. Once the long-range force evaluation is
finished, the forces due to other short-range
interactions, including the reciprocal part of the Ewald
summation, can be added to obtain the total force on
each particle. Clearly the cost of this last step is
proportional to N.
 In our parallel implementation of the tree-code, the
tree construction part is sequential although the whole
computation has substantial parallelism. To minimize
the computation in tree construction, we optimized this
common sequential part of the tree-code. In the original
sequential implementation, eight temporary linked lists
are used to construct the tree and sort the particles in
Morton order. When a tree node is divided into eight
child nodes, the particles belonging to a child node are
copied into the corresponding linked list. When the
partition is finished, the particles on the eight linked
lists are then copied back into the main list according
to the order illustrated in Figure 1. In the current
implementation, a variant of quicksort partition is used
and accordingly the sorting is done in place with no
need for any linked lists. This partition technique is an
analog of the K-d tree construction technique. The
initial list of the particle positions are partitioned along
the x-axis into two sublists. Each sublist is then
partitioned along y-axis, and then z-axis respectively.
The enture process is repeated recursively until the
number of particles in each node is less than or equal to
a pre-determined number N0. With this new tree
construction technique, a substantial amount of tree
construction time can be saved, thereby reducing the
sequential computation time in the parallel code.
 Load balancing is a key issue in the parallelization
of any MD code, especially when the simulation
systems under consideration are non-homogenous. The
workload for computing the force at each particle
depends on its local particle density and the particle’s
geometrical position. As pointed out earlier, the
domain decomposition scheme splits the main list for
the simulation system into groups of particles. The
number of particles in each group is approximated
based on the number of interactions that each particle
was involved in the previous time step. With this
weighted equal-size splitting technique a good load
balancing can be achieved.

4. Numerical Results

 The parallel treecode Ewald method is implemented
using the C programming language and MPI on the

IA32 Cluster at the Ohio Supercomputing Center [35].
The cluster is a distributed/shared memory hybrid
system constructed from commodity PC components
running the Linux operating system. Each compute
node has two 1.4GHz Athlon MP processors, 2 GB of
memory, and 70 GB of local scratch space. The nodes
are connected using Myrinet 2000, a switched 2 Gbit/s
network.
 The test data is a set of 15,625 water molecules,
which consists of 46,875 particles. The TIP4P water
model [36] is used and a 1.6 picosecond molecular
dynamics simulation is performed to generate the
configurations of the water molecules [37]. The real
space part of the potential and forces are computed
based on this set of data, and the performance of the
parallel implementation of the Ewald summation based
treecode is also measured using this set of data.
 Figure 2 and 3 show the execution times (wall-
clock times) of the real space sum calculations for one
time step using a = 5.6/L, rc = L/2, and N0=20. The
order of the multipole expansion was taken to be p=6
and p=9 respectively. It is clear that significant
reductions in runtime have been achieved as more
processors are added. In the case of p=6, the execution
time is reduced from about 100 seconds on one
processor to less than 2 seconds on 64 processors. In
the case of p=9, the execution time is reduced from
about 200 seconds on one processor to less than 3.4
seconds. Note that the higher the order of the multipole
approximation, the more computations are needed to
calculate the forces while the communication cost
remains the same. Hence, we expect better speedup and
computational efficiency with higher order multipole
approximations.

012 4 8 16 32 64
0

20

40

60

80

100

120

Number of processors

E
xe

cu
tio

n
tim

e
(s

)

Figure 2. Execution time or calculating the real
space sum using the parallel tree-code with
the order of the multipole approximation p=6.

 According to Amdahl’s law [38, 39], the speedup of
a parallel implementation of a computation algorithm

using P processors without communication cost is
given by

PfTTf

T
PS

ss

s

/)1(
)(

+−
= (13)

012 4 8 16 32 64

0

20

40

60

80

100

120

140

160

180

200

Number of processors

E
xe

cu
tio

n
tim

e
(s

)

Figure 3. Execution time for calculating
the real space sum using the parallel
tree-code with the order of the multipole
approximation p=9.

where Ts is the execution time of the sequential
algorithm on one processor and f is the fraction of the
computation that can be parallelized. The parallel
efficiency is defined as

P
PS

Pe
)(

)(= . (14)

In our calculations, the tree construction part, which
takes about 0.278 seconds, is not parallelized. Since the
total sequential computation times with p = 6 and p=9
are 109.3 seconds and 198.1 seconds, respectively, the
fraction of parallelizable computation is 99.75% and
99.86%, respectively.
 With communication cost, the Amdahl’s model
needs to be extended as

css

s

TPfTTf
T

PS
++−

=
/)1(

)((15)

where Tc is the communication time. Based on the
architecture of the parallel machine used in our study,
we use the following model to account for the all-to-all
communication:

 Tc=(ß + ?N/P) log(P) (16)

where ß is the effective startup latency, 1/? is the
effective bandwidth for sending forces acting on
particles, N is the number of particles, and P is the
number of processors. Each processor is responsible
for the force calculation of N/P particles. The term
log(P) reflects the number of stages involved in an all-
to-all communication for P processors. Using measured
communication time and least-squares data fitting, we

obtain ß = 4.6237×10-3 and ? = 1.3585×10-7. Figure 4
shows both the measured communication time and that
predicted by this model. It is clear that the model
provides a good fit to the actual communication cost.

2 10 20 30 40 50 60
0.005

0.01

0.015

0.02

0.025

0.03

Number of processors

C
om

m
un

ic
at

io
n

tim
e

(s
)

curve fitting
real data

Figure 4. All-to-all communication time.

12 4 8 16 32 64

12
4
8

16

32

64

Number of processors

S
pe

ed
up

 re
la

tiv
e

to
 o

ne
 p

ro
ce

ss
or

predicted speedup
ideal speedup
measured speedup

Figure 5. Speedup of the parallel tree-
code with the order of the multipole
approximation p = 6.

 Figure 5 shows the ideal, measured, and predicted
speedup using the speedup model Eq. 15 for the force
calculation with p = 6. It is clear that very good
speedup has been achieved. With 64 processors, the
measured speedup is above 55, indicating a parallel
efficiency of 86%. Further, we note that the speedup
predicted by the model (Eq. 15) is very close to the
actual measured speedup. Given the cache and memory
hierarchy in the processors, computations involving
smaller data arrays usually maintain better data locality
and benefit more from high speed cache than those
involving larger data sets, which means the
decomposed subtasks can be done more efficiently on
P processors than can a single task on one processor.
This is not reflected in the speedup model of Eq. 15,
which explains why the measured speedup is actually
better than the predicted speedup.

 Figure 6 shows the ideal, measured, and predicted
speedup using Eq. 15 for the force calculation with p =
9. Since the communication cost does not increase as
more terms are used in the calculation, the speedup is
better compared to that in Figure 5. With 64
processors, the measured speedup is 59.6, indicating a
parallel efficiency of 93%. For a similar reason as
discussed in Figure 5, the measured speedup is better
than the predicted speedup with more significant
difference since more computations are involved using
p=9. Although we only use up to 64 processors in our
computations since it is difficult to obtain access to
more processors on a shared cluster, the speedup model
of Eq. 15 predicts a speedup of 104 on 128 processors,
indicating a parallel efficiency of better than 81%.
Since the real measured performance is better than the
model prediction, we expect our algorithm to perform
well on 128 processors.

12 4 8 16 32 64
12
4
8

16

32

64

Number of processors

S
pe

ed
up

 re
la

tiv
e

to
 o

ne
 p

ro
ce

ss
or

predicted speedup
ideal speedup
measured speedup

Figure 6. Speedup of the parallel tree-
code with the order of the multipole
approximation p = 9.

 It is well known that for a given problem with fixed
size, the parallel performance will eventually
deteriorate as the number of processors increases. To
maintain parallel efficiency, the problem size must
increase as more processors are used, and a different
measure, such as effective number of floating point
operations per second, must be used to measure the
parallel efficiency.

5. Conclusions

 The work reported in this paper is a first attempt to
parallelize the Ewald summation based treecode for
long-range force calculations in a periodic system for
molecular dynamics simulations. Our effort focused on
portability, simplicity, and efficiency of the parallel
code. The predicted results from our communication

and performance models match the measured results
well. Timing results obtained using a 46,875-particle
water system demonstrates that our parallel algorithm
scales well up to 64 processors. We expect the
algorithm to maintain this good scalability on more
processors with increased problem size. Future work
includes investigation of parallel tree construction to
increase the fraction f of parallelizable computations,
and minimization of communication cost Tc to further
improve parallel efficiency.

6. Acknowledgement

 This work was supported in part by NSF Grants
ACI-0081303, DMS-0075009, DMS-0107187, a start-
up fund from the University of Akron, and Michigan
Life Sciences Corridor grant #1515. The authors thank
Dr. Timothy O’Neil for helpful discussions and the
anonymous referees for their comments on the revision
of this paper.

7. References

1. T. Schlick, Molecular Modeling and Simulation,
Springer-Verlag, New York, New York, 2002.

2. T. Schlick, R.D. Skeel, A. T. Brunger, L. V. Kale, J. A.
Board Jr., J. Hermans, and K. Schulten, Algorithmic
challenges in computational molecular biophysics,
Journal of Computational Physics, 151:9-48, 1999.

3. Y. Duan and P. A. Kollman, Pathways to a protein
folding intermediate observed in a 1-microsecond
simulation in aqueous solution, Science, 282:740-744,
1998.

4. T. Schlick, E. Barth, and M. Mandziuk, Biomolecular
dynamics at long timesteps: bridging the time scale gap
between simulation and experimentation, Annu. Rev.
Biophys. Biomol. Struct., 26:181-222, 1997.

5. M. P. Allen and D. J. Tildesley, Computer Simulation of
Liquids, Oxford University, New York, 1987.

6. R. W. Hockney and J. W. Eastwood, Computer
Simulation Using Particles, McGraw-Hill, New York,
1981.

7. A. W. Appel, An efficient program for many-body
simulation, SIAM Journal on Scientific and Statistical
Computing, 6:85-103, 1985.

8. J. Barnes and P. Hut, A hierarchical O(nlog(n)) force-
calculation algorithm, Nature, 324:446-449, 1986.

9. L. Greengard and V. Rokhlin, A fast algorithm for
particle simulations, Journal of Computational Physics,
73:325-348, 1987.

10. L. Greengard and V. Rokhlin, A new version of the Fast
Multipole Method for the Laplace equation in three
dimensions, Acta Numerica, 229-269, 1997.

11. K. E. Schmidt and M. A. Lee, Implementing the fast
multipole method in three dimensions. Journal of
Statistical Physics, 63:1223-1235, 1991.

12. H.-Q. Ding, N. Karasawa, and W. A. Goddard III,
Atomic level simulations of a million particles: The cell
multipole method for coulomb and London interactions,
Journal of Chemical Physics, 97:4309-4315, 1992.

13. M. Challacombe, C. White, and M. Head-Gordon,
Periodic boundary conditions and the fast multipole
method, Journal of Chemical Physics, 107:10131-
10140, 1997.

14. Z.-H. Duan and R. Krasny, An adaptive tree code for
potential energy evaluation in classical molecular
simulations, Journal of Computational Chemistry,
22:184-195, 2001.

15. S. W. De Leeuw, J. W. Perram, and E. R. Smith,
Simulation of electrostatic systems in periodic boundary
conditions. I. Lattice sums and dielectric constants,
Proceedings of the Royal Society of London. Series A,
373:27-56, 1980.

16. J. W. Perram, H. G. Petersen and S. W. de Leeuw, An
algorithm for the simulation of condensed matter which
grows as the 3/2 power of the number of particles,
Molecular Physics, 65:875-893, 1988.

17. T. Darden, D. York, and L. Pedersen, Particle mesh
Ewald: An Nlog(N) method for Ewald sums in large
systems, Journal of Chemical Physics, 98:10089-10092,
1993.

18. Z.-H. Duan and R. Krasny, An Ewald summation based
multipole method, Journal of Chemical Physics,
113:3492-3495, 2000.

19. R. Krasny and Z.-H. Duan, Treecode algorithms for
computing nonbonded particle interactions, Advances in
Computational Methods for Macromolecular Modeling,
Lecture Notes in Computational Science and
Engineering, T. Schlick, H. H. Gan (eds.), Springer-
Verlag, 359-380, 2002.

20. A. Y. Toukmaji, and J. A. Board, Jr., Ewald sum
techniques in perspective: A survey, Computer Physics
Communications, 95:73-92, 1996.

21. M. S. Warren and J. K. Salmon, A portable parallel
particle program, Computer Physics Communications,
87:266-290, 1995.

22. J. K. Salmon and M. S. Warren, Skeletons from the
treecode closet, Journal of Computer Physics, 111:136-
155, 1994.

23. W. Rankin and J. Board, A potable distributed
implementation of the parallel multipole tree algorithm,
Proceedings of IEEE Symposium on High Performance
Distributed Computing, pp.17-22, 1995.

24. J. A. Board, J. W. Causey, J.F. Leathrum, A.
Windemuth and K. Schulten, Accelerated molecular
dynamics simulation with the parallel fast multipole
algorithm, Chemical Physics Letters, 198:89-94, 1992.

25. J. P. Singh, C. Holt, T. Totsuka, A. Gupta, and J.
Hennessy, Load balancing and data locality in adaptive
hierarchical N-body methods: Barnes-Hut, Fast

Multipole, and Radiosity, Journal of Parallel and
Distributed Computing, 27:118-141, 1995.

26. H. Zeng, J. Devaprasad, M. Krishnan, I. Banicescu, and
J. Zhu, Improving load balancing and data locality in N-
body simulations via adaptive weighted fractiling,
Proceedings of 2002 High Performance Computing
Symposium, Society of Computer Simultation
International, CD-ROM, San Diego, CA, April 14 - 18,
2002.

27. B. Wilkinson and M. Allen, Parallel Programming:
Techniques and Applications Using Networked
Workstations and Parallel Computers, Prentice Hall,
Inc., New Jersey, 1999.

28. W. Gropp, E. Lusk, and A. Skjellum, Using MPI:
Portable Parallel Programming with the Message
Passing Interface, second edition, The MIT Press,
Cambridge, Massachusetts, 1999.

29. H. Samet, The Design and Analysis of Spatial Data
Structures, Addison-Wesley Publishing Company, Inc.,
New York, New York, 1989.

30. S. Plimpton, Fast parallel algorithms for short-range
molecular dynamics, Journal of Computational Physics,
117:1-19, 1995.

31. W. Smith, Molecular dynamics on hypercube parallel
computers, Computer Physics Communications, 62:229-
248, 1991.

32. J. J. Vincent and K. M. Merz, Jr., A highly portable
parallel implementation of AMBER 4 using message
passing interface standard, Journal of Computational
Chemistry, 16:1420-1427, 1995.

33. B. R. Brooks and M. Hodoscek, Parallelization of
CHARMM for MIMD machines, Chemical Design
Automation News, 7:16-22, 1992.

34. L. Kale, R. Skeel, M. Bhandarkar, R. Brunner, A.
Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K.
Varadarajan and K. Schulten, NAMD2: Greater
scalability for parallel molecular dynamics, Journal of
Computational Physics, 151:283-312, 1999.

35. OSC IA32 Cluster.
http://oscinfo.osc.edu/computing/beo/

36. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W.
Impey, and M. L. Klein, Comparison of simple potential
functions for simulating liquid water, Journal of
Chemistry Physics, 79:926-935, 1983.

37. D. C. Rapaport, The Art of Molecular Dynamics
Simulation, Cambridge University Press, Cambridge,
1995.

38. D. A. Patterson and J. L. Hennessy, Computer
Architecture: A Quantitative Approach, second edition,
Morgan Kaufmann Publishers, Inc., San Francisco,
California, 1996.

39. J. Zhu, Solving Partial Differential Equations on
Parallel Computers, World Scientific Publishing Co.
Pte. Ltd., River Edge, New Jersey, 1994.

