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Abstract 
 
      In this paper, we discuss an efficient parallel 
implementation of the treecode Ewald method for fast 
evaluation of long-range Coulomb interactions in a 
periodic system for molecular dynamics simulations. 
The parallelization is based on an adaptive 
decomposition scheme using the Morton order of the 
particles. This decomposition scheme takes advantage 
of the data locality and involves minimum changes to 
the original sequential code. The Message Passing 
Interface (MPI) is used for inter-processor 
communications, making the code portable to a variety 
of parallel computing platforms. We also discuss 
communication and performance models for our 
parallel algorithm. The predicted communication time 
and parallel performance from these models match the 
measured results well. Timing results obtained using a 
system of water molecules on the IA32 Cluster at the 
Ohio Supercomputer Center demonstrate high speedup 
and efficiency of the parallel treecode Ewald method. 
 
 
1. Introduction 
 
      The rapid advancement in computational science 
has dramatically changed the way researchers conduct 
scientific investigations, particularly in the studies of 
molecular interactions in a biomolecular system [1]. 
However, the current modeling and simulation 
capabilities available to researchers are still vastly 
inadequate for the study of complex biomolecular 
systems, although there has been tremendous progress 
in computer hardware, software, modeling, and 
algorithm development [1, 2]. For example, the typical 
time step in a molecular dynamics (MD) simulation is 
on the order of 10-15 second, but the time interval of 
biological interest is typically on the order of 10-6 -  1 
second. This translates to a simulation involving 109 -  
1015 time steps, where each step includes the 
computation of short-range interactions and extremely 
time consuming long-range Coulomb interactions. As a 
result, the longest simulation time that has ever been 
reported was 3.8×10-5 seconds [1, 3], which was 

achieved using a distributed parallel system with 5000 
processors. To bridge the gap between the time interval 
of biological interest and that accessible by MD 
simulations, there has been extensive effort to improve 
the computational efficiency. One approach is to 
increase the time step size [4]. Another approach is to 
decrease the time needed for the force evaluations at 
each time step. This paper is concerned with the second 
approach. 
      In an MD simulation of a system of N particles, the 
computational cost is dominated by the frequent force 
evaluations. The calculation of long-range Coulomb 
interactions is the most time-consuming part of the 
evaluations. A straightforward implementation of the 
calculation requires O(N2) operations. In recent years, 
several methods have been developed to reduce the 
cost of computing Coulomb interactions while 
maintaining accuracy of N-body MD simulations, 
notably the multipole expansion based tree-codes and 
Ewald summation based fast algorithms [5-20]. Two of 
the earliest tree-codes were developed for problems 
involving gravitational interaction by Appel [7], Barnes 
and Hut [8]. Both algorithms employed monopole 
approximations with a complexity of O(Nlog(N)). 
Appel used a cluster-cluster evaluation procedure, 
while Barnes and Hut used a particle-cluster procedure. 
Greengard and Rokhlin's fast multipole method reduces 
the operation count from O(N2) to O(N) [9]. To obtain 
higher accuracy, the fast multipole method uses higher 
order multipole approximations and a procedure for 
evaluating a multipole approximation by converting it 
into a local Taylor series. There is much ongoing effort 
to optimize the performance of the fast multipole 
method. The latest version of the fast multipole method 
uses more sophisticated analytical techniques that 
combine the use of exponential expansions and 
multipole expansions [10]. The Ewald summation 
method has been widely used to handle Coulomb 
interactions for systems with periodic boundary 
conditions [15, 16]. The method converts a 
conditionally convergent series into a sum of a constant 
and two rapidly convergent series, a real space sum and 
a reciprocal space sum. The relative computational cost 
of the two series is controlled by an adaptive splitting 



parameter α. The popular particle-mesh Ewald method 
[17] (PME) reduces the complexity of Ewald 
summation by choosing a large value for a; the real 
space sum is computed in O(N) and the cost of 
evaluating the reciprocal space sum is reduced from 
O(N2) to O(Nlog N) using a particle-mesh interpolation 
procedure and the fast Fourier transform (FFT). PME 
was a major success in the field of biomolecular 
computing, but parallelizing PME has been a great 
challenge due to the high communication cost of 3D 
FFT. With a relative small value of α.? the Ewald 
summation based tree-code [18] approximates the real 
space sum using a Barnes-Hut tree and the multipole 
expansion of the kernel erfc(|x|)/|x| and reduces the 
computational cost from O(N2) to O(Nlog(N)).  
      While parallel implementations of hierarchical tree-
codes, including the parallel fast multipole method and 
the parallel Barnes-Hut tree based multipole method, 
have been extensively studied [21-26], the parallel 
implementation of the Ewald summation based 
treecode [18] for fast evaluation of long-range 
Coulomb interactions in a periodic system has never 
been reported. In this paper, we present an efficient 
parallel implementation of this method. We describe an 
adaptive decomposition scheme based on the Morton 
order of the particles. This decomposition scheme takes 
advantage of the data locality and involves minimum 
changes to the original sequential code. We then 
discuss Amdahl’s law and illustrate the performance 
improvement gained by making a common sequential 
part faster. The parallel algorithm has been 
implemented using the Message Passing Interface 
(MPI), making it portable to a variety of parallel 
platforms [27, 28]. We then report and discuss detailed 
numerical results based on the force evaluation for a 
water system on the IA32 Cluster at the Ohio 
Supercomputer Center. The next section describes the 
Ewald summation based treecode. The parallel 
implementation of the method and timing results are 
given in Section 3 and Section 4, respectively, 
followed by the conclusions in Section 5. 
 
2. Treecode Ewald method  
 
     The total electrostatic energy of a periodic system of 
N particles can be described in terms of a conditionally 
convergent series: 
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where qi  is the charge of particle i, L is the size of the 
simulation box, ri is the position of particle i, |r| 
denotes the Euclidean norm, n = (n1, n2, n3) are 
integers, and the prime indicates that the i=j terms are 
omitted when n=0. A detailed description of the Ewald 
summation method is given in [15]. Essentially, the 

method splits the above conditionally convergent series 
into a sum of a constant, E(0), and two rapidly 
convergent series, a real space sum E(r) and a reciprocal 
space sum E(k), 
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and a is a positive parameter. The complementary error 
function in the real space sum and the exponential 
function in the reciprocal space sum decay rapidly with 
the index n, therefore cutoffs rc and kc can be used to 
compute the Ewald sum, i.e. only terms satisfying  
                       | ri – rj + Ln| ≤ rc                                                     (6) 
for E(r) and  
                            |n| ≤  kc                                                                    (7) 
for E(k) are retained for the computation. The magnitude 
of the Ewald parameter a controls the relative rates of 
convergence of the real space sum and the reciprocal 
space sum. When a is large, E(r) converges rapidly and 
can be evaluated to a given accuracy in O(N) 
operations using an appropriate cutoff rc; however in 
this case E(k) converges slowly and O(N2) operations 
are required since the cutoff kc must be large enough to 
attain the desired accuracy. The situation is reversed 
when a is small, and therefore in either case, the 
classical Ewald method requires O(N2) operations. The 
cost can be reduced to O(N3/2) by optimizing the 
parameters a, rc, kc as a function of N [16]. The hidden 
constant in front of N3/2 can be further reduced using 
the linked-cell method to reduce the computational cost 
of locating the particles that are within the cutoff radius 
of a given particle [6]. 
     The Ewald summation based multipole method is a 
tree-code [18]. A typical tree-code has three basic 
features: (a) the particles are divided into nested 
clusters, (b) the far-field influence of a cluster is 
approximated using a multipole expansion, and (c) a 
recursive procedure is applied to evaluate the required 
force or potential. The Ewald summation based 
treecode uses an oct-tree data structure and Cartesian 
multipole expansions to approximate the real space 
sum in the Ewald summation. With a relatively small 
value for a and an appropriate cutoff rc, the method 
reduces the computational complexity of the real space 
part from O(N2) to O(Nlog(N)). The reciprocal part can 
be computed in O(N) operations using a cutoff kc. 
     In the Ewald summation based treecode, the oct-tree 
is a Barnes-Hut tree. The root node is the cubic box 



containing all the particles in the center simulation box. 
The root is subdivided in each coordinate direction into 
a total of eight children. The children define the next 
level of nodes in the tree. The subdivision continues 
until the number of particles in a node is less than or 
equal to a specified value N0. These nodes form the 
leaves of the tree. In the implementation of the tree 
construction, the particle positions are sorted in a one-
dimensional list based on their Morton order to 
preserve the spatial locality of the data [21, 29]. A 2-D 
case is illustrated in Figure 1. Each tree node includes a 
field, (head, tail), indicating that this tree node contains 
all the particles between head and tail on the list. Other 
bookkeeping steps are also performed during the tree 
construction.  Attributes associated with a node such as 
the center and the radius of the node box as well as its 
multipole moments up to a chosen order p are 
computed. 
 

 
     The far-field interaction --- the real space 
interaction between particle j and a distant cluster A is 
approximated using a p-th order Cartesian multipole 
approximation: 
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Taylor coefficients ak are computed using a set of 
simple recurrence relations: 
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With the constructed oct-tree, the force acting on a 
particle due to the interactions with particles within a 
cutoff range is computed by traversing the tree and 
using a divide-and-conquer strategy. The recursive 
evaluation procedure cycles through the particles and 
computes the interaction between a particle j and a 
cluster of particles A recursively. Interaction between a 
particle and a leaf cluster of particles is computed 
directly using the Ewald method. The multipole 
approximation is performed when the particle is well-
separated from a nonleaf cluster, i.e. the following 
multipole acceptance criterion (MAC) is satisfied,  

s
R jA

A ≤
ρ                        (11) 

where ρA is the cluster radius, RjA is the particle-cluster 
distance, and s is a user-specified parameter for 
controlling the computational accuracy. If the MAC is 
not satisfied, the children of the given cluster are 
examined; this procedure is continued until a leaf 
cluster is encountered or the MAC is satisfied. 
To reduce the cost of neighbor-finding, i.e. locating the 
particles that are within the cutoff radius of a given 
particle, the tree-code uses a 3-D Hockney-Eastwood 
lattice of (M1×M2×M3) cells as a mesh to cover the 
center simulation box and the images of its nearest 
neighbors [6]. Each of the cells in the center simulation 
box is linked with a list of cells within its cutoff radius. 
The contributions to the force on a particle in a cell A 
are only from particles within cell A and in the cells 
that are linked to A. In addition, the hierarchical tree 
data structure also eliminates a cluster of particles with 
a single distance calculation when    

              |xj - xA| > rc + ρA.                           (12) 
 
3. Parallel implementation  
 
     The main computation of an MD simulation 
includes force evaluations and velocity and position 
updates. The calculation of new velocities and 
positions can be readily parallelized once the force 
acting on each particle is obtained. The force 
evaluations of the MD simulations include the 
computations of short-range forces (bond-bond 
interactions and van der Waals interactions) and long-
range forces (Coulomb interactions). Parallelizing the 

Figure 1. The Morton order of 
particles in a 2-D domain. 



computation of the short-range forces can be achieved 
through spatial decomposition and exchange of particle 
positions with neighboring processors [30]. However, 
parallelizing the computation of long-range forces is a 
challenge. For the Coulomb interactions, a particle in a 
charged system interacts with all other particles in the 
system. This means that to compute the Coulomb 
interactions, all-to-all data communications between 
different processors of a parallel computer is required. 
This situation is even more cumbersome when the 
simulation system is non-homogeneous and/or a typical 
pointer-based tree data structure is used. 
     Atom decomposition and spatial decomposition are 
the two commonly used methods for parallelization of 
an MD code [30]. In the atom decomposition method 
(also known as replicated-data method [31]), identical 
copies of particle information are stored on each 
processor and a pre-determined set of force evaluations 
is assigned to each processor for the entire duration of 
the simulation. The particles assigned to a processor 
may not have any spatial relationship to each other. 
One of the main advantages of this method is its 
simplicity. As a result, it has been widely used by 
many major MD programs including Amber and 
Charmm [32, 33]. In addition, because each processor 
has a copy of the entire data set, the computation of 
many body effects such as polarizability can be 
relatively easily added to the simulation. Spatial 
decomposition is another popular parallelization 
method [34]. In this method the domain is decomposed 
spatially and particles are assigned to each processor 
based on their geometrical positions. One clear 
advantage of this method is the consideration of the 
data locality and scalability. The adaptive domain 
decomposition scheme presented in this paper is a 
variant of the atom decomposition method, in which 
the spatial position of each particle is considered in the 
decomposition to ensure good data locality.   
      The sequential code of the Ewald summation based 
treecode uses a pointer-based oct-tree. The tree is 
constructed adaptively to deal with non-homogeneous 
systems, i.e. tree branches are taller in regions of high 
particle density and shorter in regions of low density. 
The implementation of the data structure is achieved by 
utilizing a list of particles in their Morton order. Based 
on our experience with the sequential code, the tree 
construction, even in a straightforward implementation, 
takes only a very small fraction, typically less than 
0.4%, of the total computation time. To obtain an 
efficient parallel code for a moderate number of 
processors and minimize changes to the sequential 
code, we implemented a variant of the atom 
decomposition method in the parallelization of the 
Ewald summation based treecode. In our method, 
particle information, including particle positions and 
charges as well as input parameters such as the order of 

the approximation and multipole acceptance criterion, 
are replicated on each processor. Each processor 
constructs its own copy of the oct-tree and computes 
the multipole moments associated with each node of 
the tree. As a result, a unique list of the particles in 
Morton order is obtained on each processor when the 
tree construction is finished. Through the duplicated 
tree construction performed on each processor, the 
cumbersome all-to-all communication of the pointer-
based oct-tree structure can be avoided.  
     With the one-dimensional list of the particles in 
spatial order, the force computation can be distributed 
across the processors by simply splitting the list into 
groups of the same computational workload, which can 
be approximated based on the computational cost of 
each particle at the previous time step. With our 
domain decomposition, the actual computation for the 
particles assigned to each processor can be performed 
in parallel without exchanging data with any other 
processors. After the force calculation is complete, 
each processor sends the computed forces acting on the 
particles assigned to the processor to all other 
processors and receives the force acting on other 
particles from other processors.  
 

Table1. Morton order based atom 
decomposition algorithm. 

 

Step Description  

1 
Construct the oct-tree, sort the particles based 
on their Morton order to form a 1-D list, and 
compute the multipole moments of each tree 
node. 

2 

Compute forces on particles assigned to 
processor Pi based on the workload in the 
previous time step. The computation uses the 
oct-tree structure and the linked cells method. 
The distant particle-cluster interactions are 
approximated using multipole expansions.   

3 Exchange forces with all other processors 

4 
Consolidate other parts of the force acting on 
each particle, integrate the equation of motion, 
and update the particle positions.  

 
     Table 1 outlines the Morton order based atom 
decomposition algorithm. The cost of the tree 
construction is of order Nlog(N), but as mentioned 
above, the proportionality constant is very small, 
making the cost of step 1 only a very small fraction of 
the total computation time. The second step is the most 
time consuming part of the computation. Each 



processor is responsible for the force calculation of N/P 
particles, where P is the number of processors. 
Consequently, the computation time on each processor 
is proportional to (Nlog(N))/P. The third step of the 
algorithm involves an all-to-all communication, but 
fortunately this is the only communication required in 
the method. Once the long-range force evaluation is 
finished, the forces due to other short-range 
interactions, including the reciprocal part of the Ewald 
summation, can be added to obtain the total force on 
each particle. Clearly the cost of this last step is 
proportional to N.  
     In our parallel implementation of the tree-code, the 
tree construction part is sequential although the whole 
computation has substantial parallelism. To minimize 
the computation in tree construction, we optimized this 
common sequential part of the tree-code. In the original 
sequential implementation, eight temporary linked lists 
are used to construct the tree and sort the particles in 
Morton order. When a tree node is divided into eight 
child nodes, the particles belonging to a child node are 
copied into the corresponding linked list. When the 
partition is finished, the particles on the eight linked 
lists are then copied back into the main list according 
to the order illustrated in Figure 1. In the current 
implementation, a variant of quicksort partition is used 
and accordingly the sorting is done in place with no 
need for any linked lists. This partition technique is an 
analog of the K-d tree construction technique. The 
initial list of the particle positions are partitioned along 
the x-axis into two sublists. Each sublist is then 
partitioned along y-axis, and then z-axis respectively. 
The enture process is repeated recursively until the 
number of particles in each node is less than or equal to 
a pre-determined number N0. With this new tree 
construction technique, a substantial amount of tree 
construction time can be saved, thereby reducing the 
sequential computation time in the parallel code. 
     Load balancing is a key issue in the parallelization 
of any MD code, especially when the simulation 
systems under consideration are non-homogenous. The 
workload for computing the force at each particle 
depends on its local particle density and the particle’s 
geometrical position. As pointed out earlier, the 
domain decomposition scheme splits the main list for 
the simulation system into groups of particles. The 
number of particles in each group is approximated 
based on the number of interactions that each particle 
was involved in the previous time step. With this 
weighted equal-size splitting technique a good load 
balancing can be achieved. 
 
4. Numerical Results 
 
     The parallel treecode Ewald method is implemented 
using the C programming language and MPI on the 

IA32 Cluster at the Ohio Supercomputing Center [35]. 
The cluster is a distributed/shared memory hybrid 
system constructed from commodity PC components 
running the Linux operating system. Each compute 
node has two 1.4GHz Athlon MP processors, 2 GB of 
memory, and 70 GB of local scratch space. The nodes 
are connected using Myrinet 2000, a switched 2 Gbit/s 
network. 
     The test data is a set of 15,625 water molecules, 
which consists of 46,875 particles. The TIP4P water 
model [36] is used and a 1.6 picosecond molecular 
dynamics simulation is performed to generate the 
configurations of the water molecules [37]. The real 
space part of the potential and forces are computed 
based on this set of data, and the performance of the 
parallel implementation of the Ewald summation based 
treecode is also measured using this set of data.  
      Figure 2 and 3 show the execution times (wall-
clock times) of the real space sum calculations for one 
time step using a = 5.6/L, rc = L/2, and N0=20. The 
order of the multipole expansion was taken to be p=6 
and p=9 respectively. It is clear that significant 
reductions in runtime have been achieved as more 
processors are added.  In the case of p=6, the execution 
time is reduced from about 100 seconds on one 
processor to less than 2 seconds on 64 processors. In 
the case of p=9, the execution time is reduced from 
about 200 seconds on one processor to less than 3.4 
seconds. Note that the higher the order of the multipole 
approximation, the more computations are needed to 
calculate the forces while the communication cost 
remains the same. Hence, we expect better speedup and 
computational efficiency with higher order multipole 
approximations.  
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Figure 2. Execution time or calculating the real 
space sum using the parallel tree-code with 
the order of the multipole approximation p=6. 
 
     According to Amdahl’s law [38, 39], the speedup of 
a parallel implementation of a computation algorithm 



using P processors without communication cost is 
given by  

               
PfTTf

T
PS

ss

s

/)1(
)(

+−
=                  (13) 

  
012 4 8 16 32 64

0

20

40

60

80

100

120

140

160

180

200

Number of processors

E
xe

cu
tio

n 
tim

e 
(s

)

 
   

Figure 3. Execution time for calculating 
the real space sum using the parallel 
tree-code with the order of the multipole 
approximation p=9. 

 
where Ts is the execution time of the sequential 
algorithm on one processor and f is the fraction of the 
computation that can be parallelized. The parallel 
efficiency is defined as  
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In our calculations, the tree construction part, which 
takes about 0.278 seconds, is not parallelized. Since the 
total sequential computation times with p = 6 and p=9 
are 109.3 seconds and 198.1 seconds, respectively, the 
fraction of parallelizable computation is 99.75% and 
99.86%, respectively. 
     With communication cost, the Amdahl’s model 
needs to be extended as  
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where Tc is the communication time. Based on the 
architecture of the parallel machine used in our study, 
we use the following model to account for the all-to-all 
communication: 
 
                     Tc=(ß + ?N/P) log(P)                           (16) 
 
where ß is the effective startup latency, 1/? is the 
effective bandwidth for sending forces acting on 
particles, N is the number of particles, and P is the 
number of processors. Each processor is responsible 
for the force calculation of N/P particles. The term 
log(P) reflects the number of stages involved in an all-
to-all communication for P processors. Using measured 
communication time and least-squares data fitting, we 

obtain ß = 4.6237×10-3 and ? = 1.3585×10-7. Figure 4 
shows both the measured communication time and that 
predicted by this model. It is clear that the model 
provides a good fit to the actual communication cost. 
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Figure 4. All-to-all communication time. 
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Figure 5. Speedup of the parallel tree-
code with the order of the multipole 
approximation p = 6. 

 
     Figure 5 shows the ideal, measured, and predicted 
speedup using the speedup model Eq. 15 for the force 
calculation with p = 6. It is clear that very good 
speedup has been achieved. With 64 processors, the 
measured speedup is above 55, indicating a parallel 
efficiency of 86%. Further, we note that the speedup 
predicted by the model (Eq. 15) is very close to the 
actual measured speedup. Given the cache and memory 
hierarchy in the processors, computations involving 
smaller data arrays usually maintain better data locality 
and benefit more from high speed cache than those 
involving larger data sets, which means the 
decomposed subtasks can be done more efficiently on 
P processors than can a single task on one processor. 
This is not reflected in the speedup model of Eq. 15, 
which explains why the measured speedup is actually 
better than the predicted speedup.  



     Figure 6 shows the ideal, measured, and predicted 
speedup using Eq. 15 for the force calculation with p = 
9. Since the communication cost does not increase as 
more terms are used in the calculation, the speedup is 
better compared to that in Figure 5. With 64 
processors, the measured speedup is 59.6, indicating a 
parallel efficiency of 93%. For a similar reason as 
discussed in Figure 5, the measured speedup is better 
than the predicted speedup with more significant 
difference since more computations are involved using 
p=9. Although we only use up to 64 processors in our 
computations since it is difficult to obtain access to 
more processors on a shared cluster, the speedup model 
of Eq. 15 predicts a speedup of 104 on 128 processors, 
indicating a parallel efficiency of better than 81%. 
Since the real measured performance is better than the 
model prediction, we expect our algorithm to perform 
well on 128 processors.  
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Figure 6. Speedup of the parallel tree-
code with the order of the multipole 
approximation p = 9. 

 
     It is well known that for a given problem with fixed 
size, the parallel performance will eventually 
deteriorate as the number of processors increases. To 
maintain parallel efficiency, the problem size must 
increase as more processors are used, and a different 
measure, such as effective number of floating point 
operations per second, must be used to measure the 
parallel efficiency.    
 
5. Conclusions 
 
     The work reported in this paper is a first attempt to 
parallelize the Ewald summation based treecode for 
long-range force calculations in a periodic system for 
molecular dynamics simulations. Our effort focused on 
portability, simplicity, and efficiency of the parallel 
code. The predicted results from our communication 

and performance models match the measured results 
well. Timing results obtained using a 46,875-particle 
water system demonstrates that our parallel algorithm 
scales well up to 64 processors. We expect the 
algorithm to maintain this good scalability on more 
processors with increased problem size. Future work 
includes investigation of parallel tree construction to 
increase the fraction f of parallelizable computations, 
and minimization of communication cost Tc to further 
improve parallel efficiency. 
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