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Abstract
A Lagrangian panel method is presented for vortex sheet motion in three-
dimensional (3D) flow. The sheet is represented by a set of quadrilateral panels
having a tree structure. The panels have active particles that carry circulation
and passive particles used for adaptive refinement. The Biot–Savart kernel is
regularized and the velocity is evaluated by a treecode. The method is applied
to compute the azimuthal instability of a vortex ring, starting from a perturbed
circular disc vortex sheet initial condition. Details of the core dynamics are
clarified by tracking material lines on the sheet surface. Results are presented
showing the following sequence of events: spiral roll-up of the sheet into a
ring, wavy deformation of the ring axis, first collapse of the vortex core in
each wavelength, second collapse of the vortex core out of phase with the first
collapse, formation of loops wrapped around the core and radial ejection of
ringlets. The collapse of the vortex core is correlated with converging axial
flow.

1. Introduction

Vortex rings are readily formed by ejecting fluid from a circular nozzle. At early times the
ring maintains axisymmetry, but at later times it often undergoes a wavy azimuthal instability
and abrupt transition to turbulence. A detailed understanding of this process is still being
pursued by many investigators. The present work is concerned with numerical simulation of
the azimuthal instability using a vortex sheet model for the ring. Comprehensive reviews on
vortex rings were given by Shariff and Leonard (1992) and Lim and Nickels (1995). First, we
briefly recall some of the relevant prior results, starting with experiments and proceeding to
theory and numerical simulations.
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Experimental visualization of the azimuthal instability must contend with the fact that the
ring translates in space as the instability develops, but nonetheless many detailed features have
been revealed. Maxworthy (1977) found that axial flow develops along the core of the ring due
to azimuthal pressure gradients arising from non-uniform breakdown of the azimuthal waves.
Glezer and Coles (1990) inferred that secondary vortex tubes with alternating circulation are
wrapped around the core of the ring. Weigand and Gharib (1994) observed vortex shedding
from the periphery of the ring accompanied by a stepwise decrease in ring circulation. Naitoh
et al (2002) found that the deformation of the ring axis is correlated with axial flow in the
core. Dazin et al (2006a, 2006b) documented many aspects of the linear and nonlinear stages
of the instability, including the presence of secondary dipole structures in slices through the
ring.

Theoretical analysis of the azimuthal instability is complicated by the curvature of the
ring axis, but the case of a straight vortex tube offers a starting point. For example, Moore
and Saffman (1975) performed a stability analysis of a vortex tube in an external strain field.
From such studies emerged the idea that the azimuthal ring instability involves a competition
between the irrotational strain induced by distant portions of the ring and the self-induced
rotation of the core. Widnall and co-workers presented a series of papers culminating in the
work of Widnall and Tsai (1977), which gave predictions for the instability wavenumber,
growth rate and mode structure in good agreement with experiment. Saffman (1978) studied
the effect of the core vorticity profile and derived a formula for the instability wavenumber
as a function of Reynolds number. Recent work by Fukumoto and Hattori (2005) showed that
the ring’s self-induced dipole field may have an even greater effect than the strain field in
destabilizing the ring.

Numerical simulation of the azimuthal ring instability has been carried out using finite-
differences (e.g. Archer et al 2008, Shariff et al 1994) and vortex methods (e.g. Bergdorf
et al 2007, Cocle et al 2008, Knio and Ghoniem 1990). In most cases the initial condition is a
toroidal core to which a perturbation is applied. The present work instead uses a vortex sheet
model encompassing the spiral roll-up by which the core of the ring is formed. In addition,
we use free-space boundary conditions (i.e. the velocity vanishes far from the ring) instead of
the periodic boundary conditions common in previous simulations.

Vortex methods were reviewed by Cottet and Koumoutsakos (2000). A numerical
method for tracking vortex sheet motion in three-dimensional (3D) flow requires a discrete
representation of the sheet, a quadrature scheme for evaluating the Biot–Savart integral and
an adaptive refinement scheme to maintain resolution as the sheet rolls up. Triangulations
are often used to represent the sheet surface (e.g. Agishtein and Migdal 1989, Brady et al
1998, Pozrikidis 2000, Stock 2006, Stock et al 2008), but filament representations have also
been employed (e.g. Ashurst and Meiburg 1988, Lindsay and Krasny 2001, Sakajo 2001). A
variety of quadrature and adaptive refinement schemes have been developed, and this is still
an active area of research.

The present approach uses a Lagrangian panel method that builds on previous work,
but also incorporates some new techniques (Kaganovskiy 2006, 2007, Feng 2007). Panel
methods are often used in aerodynamics to treat unsteady free vortex sheets as well as bound
vortex sheets on solid surfaces (Katz and Plotkin 2001). Here, we regularize the Biot–Savart
kernel and use a treecode to evaluate the velocity, following Lindsay and Krasny (2001), but
instead of the filament representation used there, we employ a panel representation that is
more effective in resolving the deformed sheet surface. Each panel is a quadrilateral patch
with respect to Lagrangian coordinates. The set of all panels has a quadtree structure distinct
from the octtree structure used in the treecode. The panels have active particles that carry
circulation and passive particles used for adaptive refinement. The refinement scheme tests

2



Fluid Dyn. Res. 41 (2009) 051405 Hualong Feng et al

each panel for deformation and if necessary subdivides the panel into four subpanels. New
particles are inserted by interpolation with respect to Lagrangian coodinates (Krasny 1987).
The quadrature scheme evaluates the circulation element using differences of the flow map.
The numerical method is local in the sense that it requires little communication between
neighboring panels.

The method is applied to compute the azimuthal instability of a vortex ring, starting
from a perturbed circular disk vortex sheet initial condition. Details of the core dynamics
are clarified by tracking material lines on the sheet surface. Results are presented showing
the following sequence of events. Initially the edge of the sheet rolls up into a spiral core,
effectively forming a perturbed vortex ring. While this is happening, the azimuthal waves
steepen, leading to a collapse of the core in each wavelength. Afterward, a second collapse
occurs out of phase with the first collapse, accompanied by the formation of loops wrapped
around the core and radial ejection of ringlets. The collapse of the vortex core is correlated
with converging axial flow, possibly as in the experiments of Naitoh et al (2002). Slices
through the sheet surface reveal dipole structures, possibly resembling those observed by
Dazin et al (2006a, 2006b).

The paper is organized as follows. Section 2 presents the vortex sheet evolution equation.
Section 3 describes the numerical method. Section 4 presents numerical results. Conclusions
are given in section 5.

2. Vortex sheet evolution equation

Following Caflisch (1988) and Kaneda (1990), we present the evolution equation for vortex
sheet motion in 3D flow. The starting point is the Biot–Savart integral for the velocity induced
by a vortex sheet,

u(x) =
∫

S
K (x, y) × d!( y), (1)

where S is the sheet surface, d! is the vector-valued circulation element on the sheet and

K (x, y) = − x − y
4π |x − y|3

(2)

is the Biot–Savart kernel. Note that

d! = (n × U)dS, (3)

where n is a unit normal vector on the sheet, U is the jump in velocity across the
sheet and dS is a scalar area element on the surface. In computations it is advantageous
to regularize the kernel and we employ the form suggested by Rosenhead (1930) and
Moore (1972),

K δ(x, y) = − x − y
4π(|x − y|2 + δ2)3/2

, (4)

where δ is a smoothing parameter. Chorin and Bernard (1973) used a similar approach to
compute vortex sheet motion in 2D flow.

We assume the sheet is a parametrized surface,

x = x(α, β, t), (5)
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(b)(a) (c)

Figure 1. Schematic of circular disk vortex sheet: (a) vortex filaments, (b) panel representation,
(c) azimuthal angles θ1 = π

8 mod π
4 (solid lines), θ2 = 0 mod π

4 (dashed lines).

with Lagrangian coordinates α, β. We also refer to x(α, β, t) as the flow map of the vortex
sheet. Caflisch (1988) and Kaneda (1990) derived the following expression for the circulation
element,

d! =
(

∂'

∂α

∂x
∂β

− ∂'

∂β

∂x
∂α

)
dα dβ, (6)

where ' = '(α, β) is the scalar circulation on the sheet and the Lagrangian derivatives of the
flow map, ∂x/∂α, ∂x/∂β, account for vortex stretching. In the present application to vortex
rings, the vortex filaments are assumed to be closed curves and we take α = ', β = θ , where
the circulation is normalized so that 0! ' ! 1 and θ is an angle variable along the filaments
with 0! θ ! 2π . This yields

d! = ∂x
∂θ

d'dθ (7)

as a special case of equation (6). Finally, we have the vortex sheet evolution equation,

∂x
∂t

=
∫ 2π

0

∫ 1

0
K δ(x, x̃) × d!̃, (8)

a form of equation (1) expressing the idea that the sheet advects in its self-induced velocity
field.

3. Numerical method

In this section, we describe first the panel representation of the vortex sheet, then the
quadrature and adaptive refinement schemes, and finally some coding details.

3.1. Panel representation

Consider Cartesian coordinates x = (x, y, z), where the z-direction is vertical. Figure 1a
depicts a circular disc vortex sheet defined by

x =
√

1 − '2 cos θ, y =
√

1 − '2 sin θ, z = 0, (9)

where 0! ' ! 1, 0! θ ! 2π . The sheet is comprised of circular vortex filaments, i.e. lines
on which the circulation ' is constant. Equation (9) corresponds to the bound vortex sheet
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Figure 2. Definition of a panel. (a) Panel in Lagrangian coordinate space with vertices a, b, c, d
and (b) the same panel in physical space with vertices xa, xb, xc, xd . Arrows indicate panel edges
corresponding to vortex filaments.

in potential flow past a circular disk, and if the sheet is allowed to roll up, it forms an
axisymmetric vortex ring (Taylor 1953). The initial condition for the simulation includes
a perturbation in the z-coordinate, leading to a non-axisymmetric ring. Figure 1(b) is a
schematic of the panel representation of the sheet. A panel is a quadrilateral patch on the sheet
surface with particles at the vertices. The panels cover the sheet and the set of all panels has
a quadtree structure created by adaptive refinement, as explained below. For future reference,
in figure 1(c) we define two sets of azimuthal angles, θ1 ≡ π

8 mod π
4 and θ2 ≡ 0 mod π

4 ; in the
example computed later below, θ1 corresponds to the crests and θ2 corresponds to the troughs
of the perturbation in the direction of ring propagation.

Figure 2 gives more detail about the definition of a panel. Figure 2(a) depicts a panel in
Lagrangian coordinate space with vertices a, b, c, d . A panel is a rectangle with sides parallel
to the coordinate axes, so that either ' = constant or θ = constant on each edge. The lines
of constant ', indicated by arrows, correspond to vortex filaments. Figure 2(b) depicts the
panel in physical space with particles xa, xb, xc, xd at the vertices. The particles are advected
in physical space and the panel retains its definition as a rectangular patch in Lagrangian
coodinate space.

3.2. Quadrature scheme

Let xi , i = 1 : N denote the set of all particles on the sheet. We need to explain how the
particle velocities are computed. The method is conceptually simple; the integral over the
sheet surface in equation (8) is replaced by a sum over panels and the integral over each panel
is evaluated by a 2D trapezoid rule. This leads to a discretization of the form

dxi

dt
=

N∑

j=1

K δ(xi − xj ) × wj , (10)

where wj is the weight associated with particle xj . The weights are given in terms of the
circulation elements d! and we refer to figure 2 to explain how these are computed. One
approach, based on equation (7), has the general form

d! ≈
(

∂x
∂θ

)

v

· ('d − 'a)(θb − θa), (11)

5



Fluid Dyn. Res. 41 (2009) 051405 Hualong Feng et al

(b)(a)

xi

xi

Figure 3. Assigning particle weights, two cases. (a) Particle xi receives weight from panels
p1, p2, p3, p4, and (b) particle xi receives weight from panels p5, p6.

(c)(a) (b)

Figure 4. Adaptive refinement scheme: (a) a panel has active particles (•) and passive particles (◦),
(b) the original panel has been subdivided into four subpanels and (c) adjacent panels can reside
at different levels of subdivision; the particle labeled ©• is passive for the left panel and active for
the two right subpanels of which it is a vertex.

where (∂x/∂θ)v is a finite-difference approximation to the partial derivative of the flow map
at a given vertex v of the panel. This approach was employed by Kaganovskiy (2006), but
he used a finite-difference formula requiring information from neighboring panels to compute
(∂x/∂θ)v and found that accuracy was lost as the sheet surface became increasingly deformed.
Feng (2007) proposed a simple alternative,

d! ≈
( xb + xc

2
− xa + xd

2

)
('d − 'a), (12)

which does not require information from neighboring panels, and this is the form used here.
Hence the vertices of the panel are assigned weights

wa = wb = wc = wd = 1
4 d!, (13)

where d! is given by equation (12). The factor 1
4 amounts to applying a 2D trapezoid rule for

the integral over a panel.
Note that each panel gives rise to particle weights in this manner. The code therefore

loops over the panels and assigns weight to the panel vertices. Figure 3 depicts two cases.
The typical case is that a particle receives weight from four panels (figure 3(a)), but some
particles receive weight from only two panels (figure 3(b)). This concludes our discussion of
the particle weights in equation (10).

3.3. Adaptive refinement scheme

At this point we note that the code actually advects two types of particles, denoted active and
passive. The active particles are the ones dealt with up to now and the passive particles are a
new type used for adaptive refinement. Figure 4(a) shows a panel with active particles (•) at
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(a) (b)

Figure 5. Distances in physical space used to flag panels for refinement. (a) d1: chord length of
edge and (b) d2: distance from passive particle to chord midpoint.

the vertices and passive particles (◦) at the midpoints of the edges and the panel interior. We
emphasize that these are midpoints with respect to Lagrangian coordinates. For example with
reference to the panel in figure 2, a passive particle at the midpoint of edge ab has Lagrangian
coordinates (', θ) = ('a,

1
2 (θa + θb)), and in physical space it lies somewhere on the arc xa xb.

The active particles contribute circulation to the quadrature scheme through equation (12), as
previously described. The passive particles do not contribute circulation, but instead enable
us to account for panel curvature in the refinement scheme. We explain their role below.

When a panel is flagged for refinement, it is subdivided into four subpanels as in
figure 4(b). In this case, the passive particles in the original panel become active particles in the
subpanels, and new passive particles are inserted in the subpanels by quadratic interpolation
with respect to Lagrangian coordinates. For example, along the panel edge where ' = 'a =
'b in figure 2, there are two active particles (with θ = θa, θb) and one passive particle (with
θ = 1

2 (θa + θb)); this information is used to insert passive particles at the midpoints of the
subpanel edges by quadratic interpolation with respect to θ . Also note that the code allows
adjacent panels to reside at different levels of subdivision, as in figure 4(c). In this case the
particle labeled ©• is passive for the left panel and active for the two right subpanels of which
it is a vertex.

Finally we need to explain how a panel is flagged for refinement. This is done by testing
the panel edges using the distances in physical space defined in figure 5. For each edge we
compute d1 (chord length) and d2 (distance from passive particle to chord midpoint). If d1

or d2 exceeds a user-specified tolerance, the panels on either side of the edge are subdivided.
Distance d1 acts in regions where the sheet is being stretched and distance d2 acts in regions
of high curvature. This concludes our discussion of the adaptive refinement scheme.

3.4. Coding details

As explained above, the sheet is represented by a set of panels and particles. A particle has
Cartesian coordinates xi = (xi , yi , zi ), Lagrangian coordinates ('i , θi ) and quadrature weight
wi , and the code uses global linear arrays to store this information. There is also a quadtree
data structure for the panels, with each node containing information about a given panel, e.g.
level of the panel in the quadtree, pointers to subpanels, flags for panel refinement and indices
in the global particle arrays of the particles belonging to the panel. The panel quadtree is
created at time t = 0 and is updated at each time step by the refinement scheme.

Each edge belongs to two adjacent panels (except for edges on the boundary
of the sheet) and when a new passive particle is inserted on an edge, that information needs to
be communicated to the two panels on either side of the edge. To find these panels, a recursive
search of Lagrangian coordinate space is performed using a bisection method. The cost
of the search is logarithmic in the number of panels.
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Figure 6. Vortex sheet roll-up into a vortex ring. The panels representing the sheet surface are
plotted as a wire mesh.

The code was written in Fortran90. There are two components, a main program
and the treecode subroutine. The main program controls input, output, timestepping and
refinement. The treecode subroutine computes the velocity of the particles using the method
described by Lindsay and Krasny (2001). The Fortran90 treecode subroutine is based on
code for electrostatics (Johnston). The quadtree structure of the panels is distinct from the
octtree structure of the particle clusters in the treecode. The results are visualized using
Tecplot.

4. Numerical results

The panel method was applied to compute an example of vortex sheet roll-up into a vortex
ring. A perturbation of the form z = ar2coskθ was imposed on the circular disk vortex sheet in
equation (9), where (r, θ) are polar coordinates on the unperturbed sheet (the factor r2 ensures
that the perturbation is concentrated near the edge of the disk). The perturbation amplitude was
a = 0.1 the azimuthal wavenumber was k = 8, the smoothing parameter was δ = 0.1 and the
fourth-order Runge–Kutta method with (t = 0.05 was used for timestepping. The tolerances
for panel refinement were d1 ! 0.2 (chord length) and d2 ! 0.02 (midpoint-chord distance).
The treecode used pmax = 8 (maximum order), ε = 10−5 (error tolerance) and N0 = 1000
(maximum number of particles in a leaf of the tree). Refinement tests were performed to
ensure that the results are well-resolved. The initial condition has eight-fold symmetry and
although this was not imposed in the simulation, it was preserved to a high degree of accuracy.
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Figure 7. Vortex sheet plotted as a translucent surface, permitting a view of the core.

The computation was stopped at t = 8 when the sheet had become highly distorted. At t = 0
there were 2004 active particles and 7785 passive particles, and at t = 8 there were 274 628
active particles and 1 117 875 passive particles. The code was compiled using gfortran. The
computation was performed on a Mac PowerPC G5 computer and required 52 h of CPU time.

Figure 6 plots the panels representing the sheet surface as a wire mesh. Initially the sheet
is a circular disk with a wavy perturbation in the z-coordinate. At early times the edge of the
sheet rolls up into a spiral, effectively forming a perturbed vortex ring. The ring propagates
in the negative z-direction, and recalling figure 1(c), this means that angles θ1 correspond
to the crests and angles θ2 correspond to the troughs of the perturbation in the direction of
ring propagation. The outer surface of the ring is smooth up to t = 6, but some wrinkling
is evident at t = 7, and this becomes more pronounced at t = 8. As we shall see, there are
complex dynamical events occurring inside the ring.

Figure 7 plots the sheet as a translucent surface, permitting a view of the core. At t = 2
the core is still a smooth wavy tube, but the waves are steepening and by t = 5, a folding of the
core or collapse occurs at angles θ1 around the ring. Details of the collapse will be shown in
subsequent figures. This is followed at t = 6 by a second collapse at angles θ2 around the ring,
out of phase with the first collapse. The second collapse is accompanied by the formation
of loops wrapped around the core. The loops become more narrow and stretched at t = 7
and 8.

Figure 8 plots three isosurfaces of vorticity, high (red), medium (blue) and low (green). In
principle, the vorticity associated with a vortex sheet is a delta-function, but the regularization
of the Biot–Savart kernel, equation (4), yields a smooth vorticity distribution from which
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t=0
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Figure 8. Vorticity isosurfaces: high (red), medium (blue), low (green). A smooth vorticity
distribution is obtained due to the regularization of the Biot–Savart kernel, equation (4).

isosurfaces can be obtained. At early times the red isosurface representing the core is a smooth
wavy tube, but at t = 4 it is disconnected at angles θ1, the site of the first collapse. At t = 8
the red isosurface has reconnected at angles θ1, but it is disconnected at angles θ2, the site
of the second collapse. At t = 8 the blue isosurface defines a connected central core, with
a disconnected portion present in the loops wrapped around the core. The green isosurface
forms a sheath around the entire structure.

Figure 9 plots a set of material lines. The black line at the edge of the sheet rolls up
into the core and is referred to as the core filament. At t = 0 it has a wavy perturbation. Also
plotted are red and blue lines that were initially rays (radial line segments). The blue lines are
at angles θ1 and the red lines are at angles θ2. The red and blue lines roll up into spirals around
the core filament, but they remain in a plane due to the symmetry of the perturbation. At t = 5
a hairpin forms in the core filament at angles θ1, corresponding to the first collapse of the core.
At this time the core filament is still smooth at angles θ2, but it becomes semi-circular there at
t = 6 and undergoes severe distortion at t = 7 and t = 8, corresponding to the second collapse
of the core. At t = 8 the core of the red spiral is ejected radially.

Figure 10 plots vertical planar cross sections of the sheet containing the red and blue
material lines. In an axisymmetric problem, the red and blue lines would be identical and
indeed they are similar up to t = 2. Thereafter for 2! t ! 6 the outer turn of the blue spiral
grows more rapidly and its core is more distorted, in comparison with the red spiral. This is the
effect of the first collapse, which is centered in the plane of the blue spiral. For 6! t ! 8 the
situation is reversed, as the outer turn of the red spiral grows rapidly and its core is distorted.

10



Fluid Dyn. Res. 41 (2009) 051405 Hualong Feng et al

t=0
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Figure 9. Core filament and rays. The black line is the vortex filament at the edge of the sheet and
the red and blue lines are material lines that were initially rays (radial line segments).

This is the effect of the second collapse, which is centered in the plane of the red spiral.
At t = 8 the core of the red spiral is ejected radially.

Figure 11 plots a top view of the core filament (black line), the red and blue lines, and
now also a green line initially midway between the red and blue lines. The red and blue
lines remain in a plane, as noted before, but the green lines can move within each azimuthal
wavelength. Up to t = 3 the green lines stay away from the red and blue lines, but at t = 4
the green lines approach the adjacent blue lines along the core filament. This is an indication
of axial flow in the vortex core, consistent with the findings of Naitoh et al (2002), and in
fact we were motivated to plot these material lines by their experiments in which they used
smoke to detect axial flow in the core. At t = 7 the situation changes as the green lines now
approach the adjacent red lines and stay away from the blue lines. This means that the axial
flow reverses direction in each wavelength between t = 4 and t = 7. Hence we see that the
two successive collapses are correlated with local axial flow converging to the planes at angles
θ1 and θ2, respectively. Figure 11 also supports the finding that ringlets are ejected radially at
t = 8.

Figure 12 plots a top view of horizontal slices through the vortex core. A slice is the
intersection of the sheet surface with a plane and it appears as a set of line segments.
This diagnostic was motivated by the flow visualizations of Dazin et al (2006a, 2006b).
They observed dipole structures on the periphery of the ring and we find similar features
in figure 12. In the present case we infer that the dipole structures are cross-sections of the
loops wrapped around the core.

11



Fluid Dyn. Res. 41 (2009) 051405 Hualong Feng et al

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

Figure 10. Planar cross sections through the sheet. The blue line is in the plane of the first collapse
and the red line is in the plane of the second collapse.

5. Conclusions

A Lagrangian panel method was presented for vortex sheet roll-up in 3D flow. The method
employs some common previous techniques such as regularizing the Biot–Savart integral
and using a treecode to evaluate the velocity, but it also incorporates some new techniques:
(i) representing the sheet by a set of quadrilateral panels having a tree structure, (ii) using
passive particles to account for panel curvature in the refinement scheme and (iii) evaluating
the circulation element by equation (12).

Results were presented for the azimuthal instability of a vortex ring starting from a
perturbed circular disk vortex sheet initial condition. Details of the core dynamics were
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Figure 11. Core filament and rays, top view. The black line is the vortex filament at the edge of
the sheet and the red, blue and green lines are material lines that were initially rays (radial line
segments).

clarified by tracking material lines on the sheet surface. We observed two successive collapses
of the vortex core, out of phase from each other by half an azimuthal wavelength and
correlated with local axial flow converging to the collapse locations. At late times a sequence
of ringlets is ejected radially from the core. Some features were found to resemble recent
experimental findings on vortex rings, for example by Naitoh et al (2002) on axial flow in the
core of the ring and by Dazin et al (2006a, 2006b) on dipole structures around the periphery
of the ring.

There are several directions for future work. The proposed quadrature scheme amounts
to a 2D trapezoid rule and it may be worthwhile to increase the order of accuracy by tracking
more particles on each panel. The panel refinement scheme is effective in resolving the sheet’s
roll-up, stretching and folding, but it is not well suited for regions where the sheet is twisting.
The twisting is an obstacle to further progress and may require a remeshing scheme. However
instead of resetting the particles to lie on a regular mesh, it may be possible to retain the
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Figure 12. Horizontal slices through vortex core, top view.

particles and instead redefine the panels, although the details of such a scheme remain to be
worked out.

Another goal is to simulate vortex ring formation from a wavy orifice (e.g. Naitoh
et al 2002) or an inclined nozzle (e.g. Lim 1998, Webster and Longmire 1998), including
the separation process. This would eliminate the need to impose an ad hoc initial perturbation
in the simulation and might be done by coupling the present 3D vortex sheet method with an
extension of the axisymmetric separation model of Nitsche and Krasny (1994). Their work
was influenced by the experimental study of Didden (1979) on separation at the edge of a
circular nozzle. The corresponding experiments for the case of a non-circular nozzle will be
of great value in guiding future simulations of vortex rings.
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