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1. Introduction

There is continuing interest in improving the numerical methods used in geophysical fluid

flow simulations (Behrens 2006). Current approaches include finite-volume methods

(Lin and Rood 1996) and spectral element methods (Taylor and Fournier 2010), but the

complex dynamics in these flows is still challenging and it is worthwhile to investigate

alternative methods. As a step in that direction we present a Lagrangian particle/panel

method (LPPM) for the barotropic vorticity equations on a rotating sphere (Bosler

2013, Wang 2010). In this method, the particles carry vorticity and the panels are

used in discretizing the Biot-Savart integral for the velocity. A number of previous

studies of vortex dynamics on a sphere have dealt with point vortices, vortex patches,

and vortex sheets (e.g. Dritschel 1988, Kidambi and Newton 1998, Surana and Crowdy

2008, Sakajo 2009, Kropinski and Nigam 2013), but the present work is concerned with

general smooth vorticity distributions.

In many Lagrangian particle simulations of fluid flow the particles initially lie on

a regular grid, but they typically become disordered and the numerical error increases

in time (Perlman 1985). Previous investigators addressed this problem with remeshing

and refinement schemes (e.g. Russo and Strain 1994, Koumoutsakos 1997, Barba et al

2005), and we follow the same approach here, although the specific techniques we use

are different. In particular, we use an adaptive panel refinement scheme motivated by

prior work on vortex sheets (Feng et al 2009) and a new Lagrangian remeshing scheme

that avoids directly interpolating the vorticity (Bosler 2013). We use the point vortex

approximation to discretize the Biot-Savart integral and rely on the refinement and

remeshing schemes to maintain the accuracy of this approach. We note that several

other Lagrangian methods have been developed for geophysical fluid flow (e.g. Dritschel

et al 1999, Alam and Lin 2008).

First we present the Eulerian form of the barotropic vorticity equations (BVE) on

a rotating sphere, then the Green’s function based solution of the Poisson equation,

then the Lagrangian form of the BVE, followed by the discretization, the remeshing

and refinement schemes, numerical results, discussion, and finally conclusions. A

preliminary account of this work was presented at the IUTAM Symposium on “Vortex

Dynamics: Formation, Structure and Function”, March 10-14, 2013, Fukuoka, Japan.

2. Eulerian form

All quantities are dimensionless except as noted. Our presentation follows Vallis (2006).

Let S denote the unit sphere representing the Earth with rotation rate Ω about the

z-axis. For the case of incompressible flow considered here, the fluid velocity u(x, t) is

related to the stream function ψ(x, t) by

u = ∇ψ × x, (1)
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where x ∈ S is a point on the sphere. The stream function and relative vorticity ζ(x, t)

satisfy the Poisson equation,

∆ψ = −ζ, (2)

where the operator on the left is the spherical Laplacian or Laplace-Beltrami operator.

Finally, we have the conservation of absolute vorticity,

D(ζ + f)

Dt
=
∂(ζ + f)

∂t
+ u · ∇(ζ + f) = 0, (3)

where D/Dt is the material derivative and f = 2Ωz is the Coriolis parameter. With an

initial relative vorticity, ζ(x, 0) = ζ0(x), these equations comprise the Eulerian form of

the BVE on a rotating sphere.

3. Poisson equation

Many numerical methods are available for solution of the Poisson equation (2) including

finite-difference, finite-element, and spectral methods. However following Bogomolov

(1977) and Kimura and Okamoto (1987), we employ the spherical Green’s function,

g(x,y) = − 1

4π
log(1− x · y), x,y ∈ S, (4)

from which the stream function is obtained by convolution with the vorticity,

ψ(x, t) =
∫
S
g(x,y)ζ(y, t)dS(y). (5)

Applying (1) to (5) yields the velocity as a spherical Biot-Savart integral,

u(x, t) = − 1

4π

∫
S

x× y

1− x · y
ζ(y, t)dS(y). (6)

4. Lagrangian form

We follow the approach used in deriving the vortex method for incompressible fluid flow

in Euclidean space (Chorin and Marsden 1979, Cottet and Koumoutsakos 2000). The

Lagrangian form of the BVE is based on the flow map. For a given velocity field u(x, t),

the flow map x(a, t) is defined by the equations

∂x

∂t
(a, t) = u(x(a, t), t), x(a, 0) = a, (7)

where a ∈ S is a Lagrangian parameter. Hence the flow map gives the current location

of the fluid particle which was initially located at a.

Next, substituting (6) into (7), changing variables using the flow map y = x(b, t),

and noting that the Jacobian determinant is unity for incompressible flow, we obtain

∂x

∂t
(a, t) = − 1

4π

∫
S

x(a, t)× x(b, t)

1− x(a, t) · x(b, t)
ζ(x(b, t), t)dS(b). (8)

The conservation of absolute vorticity (3) is expressed as

Dζ

Dt
(x(a, t), t) = −2Ω

∂z

∂t
(a, t), ζ(a, 0) = ζ0(a). (9)
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Equations (8)-(9) are a coupled system of evolution equations for the flow map and

relative vorticity, and this is the desired Lagrangian form of the BVE on a rotating

sphere. The advection of a passive tracer is given by the equation

φ(x(a, t), t) = φ(a, 0). (10)

5. Discretization

The flow map is discretized using a particle/panel method as in recent three-dimensional

vortex sheet computations (Feng et al 2009). The sphere is expressed as a set of panels,

S = ∪Nk=1Ak, (11)

where each panel Ak defines a region in the spherical Lagrangian parameter space. We

consider two types of panels shown in figure 1, (a) icosahedral triangles, and (b) cubed-

sphere quadrilaterals.

(a) (b)

Figure 1. Panel discretization of sphere, (a) icosahedral triangles, (b) cubed-sphere

quadrilaterals.

In addition, as shown in figure 2 each panel has associated particles, an active

particle xj(t) ≈ x(aj, t), j = 1 : N at the center and passive particles yi(t) ≈ y(ai, t), i =

1 : M at the vertices. The particles carry vorticity, ζi,j(t) ≈ ζ(x(ai,j, t), t), associated

with a Lagrangian parameter value. The particles are advected in the flow; the active

particles contribute their vorticity to the Biot-Savart integral, and the passive particles

define the panel domains.

(a) (b)

Figure 2. Panels, (a) triangle, (b) quadrilateral; each panel has an active particle at

the center (•), and passive particles at the vertices (◦).
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The Biot-Savart integral in (8) is discretized by the midpoint rule, and then

combined with the conservation of absolute vorticity (9), we obtain a set of ordinary

differential equations,

dxj
dt

= − 1

4π

N∑
k=1
k 6=j

xj × xk
1− xj · xk

ζkAk, j = 1 : N, (12)

dyi
dt

= − 1

4π

N∑
k=1

yi × xk
1− yi · xk

ζkAk, i = 1 : M, (13)

dζi,j
dt

= −2Ω
dzi,j
dt

, (14)

where Ak is the spherical area of panel k which is invariant in time due to

incompressibility. Note that the singular term k = j in (12) is omitted; hence these

equations describe a system of point vortices on a rotating sphere. Previous work has

investigated point vortex dynamics on a sphere (Newton 2001), but here the system (12)-

(14) arises by discretizing the Lagrangian form of the BVE and we are concerned with

convergence to a smooth vorticity distribution as the number of points becomes large.

The initial conditions are treated as follows. The initial particle positions ai,j are

determined by the choice of the Lagrangian mesh, i.e. icosahedral triangles or cubed-

sphere quadrilaterals. The initial particle vorticity is obtained from a given distribution,

ζi,j(0) = ζ0(ai,j). Following (10), each particle also has a passive tracer value which is a

material invariant, φi,j(t) = φ0(ai,j). In this work the passive tracer is chosen to be the

latitude of the initial particle position.

The ODEs (12)-(14) are solved by the 4th order Runge-Kutta method. The particle

positions are expressed in Cartesian coordinates; this avoids the pole singularities present

in spherical coordinates and will facilitate extension to three-dimensional flows in future

work. Hence the particles are not constrained to lie on the sphere, but in practice they

remain close to the sphere as long as the flow is well-resolved.

The code was written in Fortran90/95. Several data structures keep track of the

particles and panels. The 3D spherical plots were made with the Visualization Toolkit

(VTK) and 2D contour plots were done with the NCAR Command Language (NCL).

Most of the computations were done on a Mac desktop (3.4 GHz Intel Core i7, 16 GB

RAM). One computation with a large number of panels, N = 81920, was done in parallel

on the University of Michigan Flux cluster (Intel Core i7 Nehalem, 12 cores per node,

48 GB RAM per node). The parallel computation used MPI and a replicated data

approach to evaluate the sums in (12)-(13), and required 5.8 hr of cpu time on 48 cores.

6. Numerical results

Results are presented for three examples, a Rossby-Haurwitz wave, a Gaussian vortex,

and a perturbed zonal jet. In all cases the sphere rotation rate is Ω = 2π. The initial

vorticity is expressed in terms of longitude λ and latitude θ, where x = (x, y, z)T =

(cosλ cos θ, sinλ cos θ, sin θ)T .
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6.1. Rossby-Haurwitz wave

The first example is a Rossby-Haurwitz (RH) wave for which the stream function is a

spherical harmonic with zonal wavenumber m= 4. The initial vorticity is

ζ0(λ, θ) =
2π

7
sin θ + 30 sin θ cos4 θ cos 4λ. (15)

The RH wave propagates with constant speed and the first term on the right puts the

wave into a steady reference frame so that (15) is also the vorticity for t > 0.

Figure 3 displays the results with N = 5120 triangles and time step ∆t = 0.01,

showing the vorticity (left), panels (middle), and passive tracer (right). Two times are

shown, t= 0 (top), and t= 1 (middle, bottom) corresponding to one revolution of the

sphere. In the vorticity plots, red indicates positive values (counterclockwise rotation)

and blue indicates negative values (clockwise rotation). As noted above, the vorticity

is visualized in a steady frame and is invariant in time; however the fluid velocity is

nonzero, implying that the particles follow time-dependent trajectories, and the passive

tracer is advected in the flow. From the results in figure 3 (top) we see that the solution

is initially well-resolved, but figure 3 (middle) shows that the particle/panel distribution

becomes disordered later in time and this leads to large errors in the vorticity and passive

tracer. This is typical for Lagrangian particle simulations (Perlman 1985).

6.2. Remeshing

Remeshing is often used in particle simulations to restore the particle order and maintain

accuracy. One approach interpolates the vorticity from the current particles xj to a new

set of particles xnj lying on a regular grid (e.g. Koumoutsakos 1997). Here we employ

a new Lagrangian remeshing scheme that avoids directly interpolating the vorticity

(Bosler 2013). The scheme constructs a Delaunay triangulation of the current particles

xj, and the new particles xnj lying on a regular grid are located within the triangulation.

Then the corresponding new Lagrangian parameter values anj are computed by inverse

interpolation of the flow map, xnj = x̂(anj , t), where x̂(a, t) is a discrete approximation

based on the Delaunay triangulation. The vorticity of the new particles is then

evaluated by sampling the initial vorticity at the new Lagrangian parameter values,

ζ nj = ζ0(a
n
j ) + f(anj )− f(xnj ), using the conservation of absolute vorticity. This scheme

was implemented using the Delaunay triangulation and cubic Hermite interpolation

routines from the SSRFPACK library (Renka 1997a, 1997b).

The results in figure 3 (bottom) were obtained by applying this Lagrangian

remeshing scheme every 10 time steps. The computed vorticity at t = 1 is now very

close to the initial vorticity, showing that the scheme succeeds in maintaining accuracy.

We see that passive tracer material from the poles has rolled up smoothly around each

vortex core. At present the number of time steps between remeshing operations is

determined empirically and intervals of 10-20 time steps are used in this work.
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Figure 3. Example 1, Rossby-Haurwitz wave, triangular panels, N = 5120, time step

∆t = 0.01; vorticity (left), panels (middle), passive tracer (right); t = 0 (top), t = 1

(middle, no remeshing), t = 1 (bottom, remeshing every 10 time steps).

6.3. Convergence under mesh refinement

Next we examine convergence of the vorticity under mesh refinement. The error in the

computed vorticity at a given time t is defined by

eN(t) =


N∑
j=1

(ζj − ζex(xj(t), t))2Aj

N∑
j=1

ζex(xj(t), t)
2Aj



1/2

, (16)

where ζex(x, t) is the exact vorticity, which is known in this case. Table 1 gives the error

at time t = 1 as a function of spatial resolution; the time step was ∆t = 0.005, which

ensures that the time discretization error is negligible, and remeshing was performed

every 20 time steps. The first three columns give the number of triangular panels N ,
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the panel angular variation ∆λ, and the equivalent panel edge length ∆s on a sphere

with the Earth’s radius. The fourth column shows that the error eN(1) decreases as the

mesh is refined. The fifth column gives an estimate of the convergence rate determined

by two successive levels of refinement, p = log(eN/4(1)/eN(1))/ log 4; the results indicate

slightly faster than 2nd order convergence.

N ∆λ ∆s eN(1) p

1280 8.6◦ 956 km 4.21e-02 —

5120 4.3◦ 478 km 8.35e-04 2.83

20480 2.2◦ 244 km 3.03e-05 2.39

81920 1.1◦ 122 km 1.29e-06 2.28

Table 1. Example 1, Rossby-Haurwitz wave, triangular panels, N : number of panels,

∆λ: panel angular variation, ∆s: equivalent panel edge length on a sphere with the

Earth’s radius, EN (1): error in vorticity at time t = 1, p: estimated convergence rate,

time step ∆t = 0.005, remeshing every 20 time steps.

6.4. Gaussian vortex

The second example is a Gaussian vortex with initial vorticity

ζ0(x) = 4π exp(−16|x− xc|2) + C, (17)

where the center xc is slightly above the equator at (λ, θ) = (0, π
20

), and the constant

C is computed so that the total relative vorticity on the sphere is zero. The number of

triangles is N = 81920 and the time step is ∆t = 0.005 with remeshing every 20 time

steps. Figure 4 shows the solution at t = 0 and t = 3 (three revolutions of the sphere).

The vortex follows a meandering path to the northwest. At the final time, the vortex

core is elliptically deformed and a thin trailing filament of negative vorticity is present.

The passive tracer is entrained by the vortex and material from different latitudes is

mixed in the vortex core. The trailing filament becomes thinner in time, and some

checker-boarding can be seen in the vorticity at time t = 3, indicating a slight loss of

resolution.

Since the exact vorticity is not known analytically in this case, we compared the

present LPPM results with results computed by James Kent (University of Michigan)

using the Lin-Rood finite-volume scheme (Lin and Rood 1996). The comparison is

shown in figure 5; the Lin-Rood results were computed on a 90× 180 latitude-longitude

grid and the present results were interpolated from the particles to the same grid. There

is good visual agreement between the two sets of results, including the wake structure

behind the vortex, and this serves to further validate the present scheme.

6.5. Adaptive panel refinement

The results presented so far were computed on a Lagrangian particle/panel mesh that

was essentially uniform and hence inefficient in resolving local features. Adaptive mesh
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Figure 4. Example 2, Gaussian vortex, triangular panels, N = 81920, time step

∆t = 0.005, remeshing every 20 time steps, vorticity (left), panels (middle), passive

tracer (right), t = 0 (top), t = 3 (bottom).

Figure 5. Example 2, Gaussian vortex, the vorticity is plotted on a latitude-longitude

grid at time t = 0, 1, 2 (left to right), time step ∆t = 0.005, (a) Lin-Rood scheme,

90 × 180 grid, (b) present scheme (LPPM), N = 20480 triangles, remeshing every 20

time steps.

refinement is a well-established approach for reducing the cost of Eulerian simulations

(Behrens 2006, Jablonowski et al 2006), and in the present context we employ an

adaptive panel refinement scheme similar to those used in vortex sheet computations

(Feng et al 2009). Whenever a remeshing operation is performed, the code examines the
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panels to determine whether any should be refined based on two criteria given below. If

a panel is flagged for refinement, it is divided into four subpanels as shown in figure 6.

The necessary additional particles are computed from the parent panel by cubic Hermite

interpolation (Renka 1997b).

(a) (b)

Figure 6. Adaptive panel refinement, a flagged panel is divided into four subpanels,

(a) triangles, (b) quadrilaterals.

There are two refinement criteria. The first criterion is that the absolute panel

circulation should be less than a given tolerance,

|ζk|Ak < ε1, (18)

where ζk is the vorticity at the panel center andAk is the panel area. The second criterion

is that the Lagrangian variation of the panel should be less than another tolerance,

3∑
i=1

(max ani −min ani ) < ε2, (19)

where the max and min are taken over the vertices of the remeshed panel, and ani are

the Cartesian coordinates of the Lagrangian parameter an associated with a remeshed

vertex.

Figure 7 shows results for the Gaussian vortex using this panel refinement scheme

with tolerances ε1 = 0.0025, ε2 = 0.2, time step ∆t = 0.0025, and remeshing every 20

time steps. The simulation started at t = 0 with N = 6509 triangles and finished at

t = 3 with N = 28319 triangles. There were five levels of refinement; on a sphere with

the Earth’s radius, the largest triangle has edge length 478 km and the smallest triangle

has edge length 32 km. The panels are highly refined in front of the vortex and in the

thin trailing filament. The final results here are slightly better resolved than those in

figure 4, despite using far fewer panels. Hence the adaptive panel refinement scheme

succeeds in maintaining resolution at lower cost.

6.6. Perturbed zonal jet

The third example is a perturbed zonal jet computed using a Lagrangian cubed-sphere

mesh with adaptive panel refinement and remeshing. The initial relative vorticity is

ζ0(λ, θ) = 150 sin(θ − θc(λ)) exp(−300(1− cos(θ − θc(λ)))) + C, (20)

where θc(λ) = π/4 + 0.01 cos 12λ is the jet centerline and the constant C again ensures

zero total relative vorticity. The results are shown in figure 8. The initial vorticity is
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Figure 7. Example 2, Gaussian vortex, triangular panels, adaptive panel refinement

with ε1 = 0.0025, ε2 = 0.2, time step ∆t = 0.005, remeshing every 20 time steps,

vorticity (left), panels (middle), passive tracer (right); t = 0 (top, N = 6509), t = 3

(bottom, N = 28319).

a thin double-layer with a small amplitude perturbation of zonal wavenumber m = 12.

The jet rolls up into an array of counter-rotating vortices that propagate to the east.

The passive tracer is entrained into the jet from both sides.

7. Discussion

As noted above, the point vortex approximation (PVA) is used to discretize the Biot-

Savart integral in (12). This may seem problematic since the point vortex velocity field

is singular and point vortices have chaotic dynamics (Aref 1983). Moreover, there is a

large body of work using vortex-blobs, or regularized point vortices, as an alternative

(Chorin 1973, Krasny 1986, Cottet and Koumoutsakos 2000). Nonetheless, finite time

convergence of the PVA has been proven for smooth solutions of the Euler equations in

Euclidean space (Cottet et al 1991, Goodman et al 1990, Hou and Lowengrub 1990).

The present work is strictly concerned with smooth solutions and our results show

that the PVA is accurate as long as the particles remain relatively well-ordered. The

remeshing scheme introduces a new set of well-ordered particles at regular time intervals,

and in this way we avoid the chaotic dynamics that would eventually occur with a fixed

set of point vortices. Note that the present scheme has no explicit smoothing, filter, or

subgrid model, but if these become necessary, e.g. in longer time simulations or more

complex flow regimes, we have the option to use vortex-blobs in place of point vortices.
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Figure 8. Example 3, perturbed zonal jet, cubed-sphere panels, adaptive panel

refinement with ε1 = 0.0008, ε2 = 0.16, time step ∆t = 0.00125, remeshing every

20 time steps, vorticity (left), panels (middle), passive tracer (right); t = 0 (top,

N = 15024), t = 2 (bottom, N = 47433).

8. Conclusions

We presented a Lagrangian particle/panel method (LPPM) for the barotropic vorticity

equations on a rotating sphere, as a first step in developing a new dynamical core for

geophysical fluid flow simulations. The particles carry vorticity and the panels are

used in discretizing the Biot-Savart integral for the velocity. We implemented adaptive

panel refinement and a new Lagrangian remeshing scheme using inverse interpolation

of the flow map. The results demonstrate the scheme’s accuracy and ability to resolve

small-scale features in the vorticity and passive tracer. One feature of LPPM is that it

avoids discretizing the convective derivative present in the Eulerian form of the problem.

Future work will focus on the following topics.

• A treecode algorithm will be implemented to reduce the cost of evaluating the

Biot-Savart integral from O(N2) to O(N logN) (Lindsay and Krasny 2001, Sakajo

2009).

• The code will be applied to study problems of geophysical interest such as the effect

of sudden stratospheric warming on the stability of the polar vortex (Juckes and

McIntyre 1987, Charlton and Polvani 2007).

• To further improve the code’s accuracy and efficiency, the midpoint rule will be

replaced by a higher order quadrature scheme.
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• A challenging goal is to extend LPPM to the shallow water equations (SWE) and

apply it to benchmark test cases (Williamson et al 1992). Our approach will employ

two Poisson equations, one for the vorticity and stream function, and another

for the divergence and velocity potential function. There are also source terms

involving velocity gradients to compute. Some preliminary ideas in this direction

are discussed by Bosler (2013).
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