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Abstract—A common approach to modeling kinetic problems in
plasma physics is to represent the plasma as a set of Lagrangian
macro-particles which interact through long-range forces. In the
well-known particle-in-cell (PIC) method, the particle charges
are interpolated to a mesh and the fields are obtained using
a fast Poisson solver. The advantage of this approach is that
the electrostatic forces can be evaluated in time ,
where is the number of macro-particles, but the scheme has
difficulty resolving steep gradients and handling nonconforming
domains unless a sufficiently fine mesh is used. The current work
describes a grid-free alternative, the boundary integral/treecode
(BIT) method. Using Green’s theorem, we express the solution to
Poisson’s equation as the sum of a volume integral and a boundary
integral which are computed using particle discretizations. The
treecode replaces particle–particle interactions by particle–cluster
interactions which are evaluated by Taylor expansions. In addi-
tion, the Green’s function is regularized and adaptive particle
insertion is implemented to maintain resolution. Like PIC, the
operation count is , but BIT avoids using a regular
grid, so it can potentially resolve steep gradients and handle
complex domains more efficiently. We applied BIT to several
bounded plasma problems including a one-dimensional (1-D)
sheath in direct current (dc) discharges, 1-D virtual cathode, cold
two-stream instability, two-dimensional (2-D) planar and cylin-
drical ion optics, and particle dynamics in a Penning–Malmberg
trap. Some comparisons of BIT and PIC were performed. These
results and ongoing work will be reviewed.

Index Terms—Boundary integral method, Coulomb potential,
grid-free, ion optics, multipole expansion, particle-in-cell method,
Penning–Malmberg trap, Poisson solver, sheath formation,
treecode algorithm, two-stream instability, virtual cathode.

I. INTRODUCTION

MANY important problems in plasma physics involve
bounded domains with complex geometry, e.g., space-

craft thuster plume interactions [1], plasma sensors, and
semiconductor fabrication systems [2], [3]. Plasmas also arise
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in unbounded domains in the space environment and give rise
to internal layers (e.g., solar flares). This paper reports on the
development of a novel grid-free approach for simulating these
type of problems.

Nonequilibrium plasmas can be described by a variety of
models depending on the physical conditions. Complete infor-
mation is obtained by solving the Boltzmann equation for the
distribution function of each plasma species

(1)

where is position, is velocity, is the applied/self force,
is mass, and is a convolution integral describing

particle–particle collisions [4]. Because (1) is six-dimensional
plus time, it is not computationally feasible to solve it for each
species. However, to make accurate predictions about the be-
havior of the system, a kinetic description is often necessary for
at least one of the species. For example, the tail of the electron
distribution function (EDF) plays a dominant role in the ioniza-
tion process. Often the energetic tail is far from a Maxwellian
distribution, hence, a kinetic model is necessary to accurately
describe the EDF and thereby correctly describe the ionization
process [5], [6].

Many options are available for the numerical solution of the
Boltzmann equation (1) [7]–[15]. In the case of collisionless
plasma, (1) reduces to the Vlasov–Poisson (VP) system. One
well-accepted approach is solve the VP system using a La-
grangian framework (LF). In an LF, is represented
as a collection of macro-particles in phase space [15]. The
particles are given an initial distribution by sampling phase
space at and the evolution of the system is obtained by
solving Newton’s equations for each particle

(2)

In this approach, collisions can be accounted for by coupling
this method to a Monte Carlo technique [15].

The electrostatic force in three dimensions is given by

(3)

for . Direct summation requires opera-
tions, but can be evaluated in operations by the
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Fig. 1. Coulomb force as a function of distance between two charged particles
within a mesh cell; one, two, and three dimensions compared with linear
weighting PIC [15].

particle-in-cell (PIC) method. PIC involves four steps: particles
are first interpolated to a mesh to give a density, a fast Poisson
solver is used to compute the fields, the force is interpolated
back to the particle locations, and finally the new and are
computed [7], [8].

PIC has optimal performance when the underlying mesh is
uniform. This is because on a nonuniform mesh, standard finite
difference stencils become lower order accurate and more elabo-
rate stencils are required to restore higher order accuracy. Other
mesh-based effects include difficulty in resolving internal layers
[16] and an incorrect description of interparticle forces within a
mesh cell [15]. Moreover, not resolving interparticle forces can
have a significant impact on systems where Coulomb collisions
are important, as in high-density plasmas [17]. To illustrate this,
Fig. 1 plots the exact Coulomb force as a function of distance be-
tween two charged particles within a mesh cell, in one, two, and
three dimensions, compared to the result from a linear weighting
PIC scheme. The PIC results differ considerably from the exact
force. This can lead to spurious plasma heating, but the opposite
occurs in a damped system, i.e., the plasma can be erroneously
cooled [7]. To see why this is a problem, consider a case in which
scattering due to small angle electrostatic collisions is impor-
tant. In a standard PIC scheme, the interparticle force falls to
zero inside a mesh cell (Fig. 1), which is unphysical. The small
angle scatter is then computed incorrectly, leading to unphysical
cooling of some particles.

Much effort has gone into overcoming these difficulties. Fi-
nite element PIC addresses the issues of complex domain ge-
ometry and boundary layers, but there are still problems with in-
ternal layers and resolving interparticle forces within a mesh cell
[18], [19]. The particle–particle/particle-mesh (P3M) method
was developed to address the issue of interparticle forces [8],
but the cost approaches . Another method for handling
short-range Coulomb forces sums the collisions into a single
large angle event [20], [21], but resolving sharp gradients re-
mains an issue. The current state of the art for plasma simu-
lations combines PIC with adaptive mesh refinement (AMR)
[22]–[25], but despite the success of AMR-PIC, some limita-
tions persist. For time-dependent simulations in complex ge-
ometry, AMR requires elaborate meshing tools to generate the

locally refined meshes. Moreover, in regions where coarse and
fine meshes intersect, the change in resolution can lead to spu-
rious features. For hyperbolic transport equations, this is a local
defect that can be corrected, but for elliptic field equations the
difficulty is nonlocal and a small error in one location can affect
the entire solution. Solutions to this problem involve filtering
[25], but this can introduce other artifacts.

Here, we describe an alternative grid-free approach for
plasma simulations in complex domains, the boundary in-
tegral/treecode (BIT) method. Treecodes were introduced
as an efficient method for computing gravitational forces in
systems of point masses [26]. The key idea is to replace the
particle–particle interactions by particle–cluster interactions.
In the simplest case of a monopole approximation, a cluster
of particles is replaced by a single particle carrying the total
mass of the cluster. This reduces the work needed to compute
long-range forces from to . To gain effi-
ciency, the fast multipole method (FMM) uses higher order
multipole expansions and cluster-cluster interactions [27],
[28], while other approaches use variable order expansions and
locally adapted clusters [29].

Treecodes and the FMM have been used extensively in as-
trophysics [30], fluid dynamics [31], and molecular dynamics
[32]. Treecode simulations have also been conducted for dense
plasmas in simple domains with free-space or periodic boundary
conditions [17], [33], [34]. However, realistic plasma systems
generally require Dirichlet, Neumann, or mixed boundary con-
ditions on a domain with possibly complex geometry. In this
case, a boundary integral method can be used to correct the
free-space potential and account for the presence of a boundary
while retaining the essential grid-free nature of the scheme [35],
[36]. Boundary integral methods use Green’s formula and recast
the original partial differential equation, say Poisson’s equation,
as an integral equation [38], which reduces the dimensionality
of the problem by one.

The grid-free BIT approach is an attractive alternative to
mesh-based PIC methods. One advantage of a BIT approach is
that it eliminates errors introduced by interpolation to the mesh.
Moreover, BIT can naturally handle systems with nonuniform
particle density and complex geometry. We have applied BIT
to simulate one-dimensional (1-D) sheath formation in direct
current (dc) discharges, 1-D formation of a virtual cathode,
two-stream instability, two-dimensional (2-D) planar and
cylindrical ion optics, and charged particle dynamics in a
Penning–Malmberg trap. Here, we present preliminary timing
comparisons between BIT and multigrid PIC for 2-D planar
geometry. In the following sections, we outline the BIT method,
discuss its advantages and disadvantages, present a summary
of these applications, and conclude with a discussion of future
prospects.

II. BIT

The BIT scheme combines a grid-free field solver with a
boundary integral method, and we may view the approach from
either of two perspectives. First, BIT is complementary to PIC
in the sense that the mesh-based field solver in PIC is replaced
by a grid-free field solver in BIT. The second perspective is to
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view the Lagrangian macro-particles as marker points on phase
space curves. As the curves evolve, the marker points spread out,
and new points are inserted along the curves to maintain resolu-
tion. Point insertion is performed by interpolation with respect
to a Lagrangian parameter along phase space curves [29], [37].
To accommodate point insertion, the present formulation of the
field equation is more general than in our previous work [35],
[36]. In the following sections, we derive a Green’s function
method for Poisson’s equation, convert the volume integral to a
sum over Lagrangian macro-particles, show how multipole ex-
pansions can be used to evaluate the sum efficiently, and demon-
strate how to handle boundary conditions.

A. Potential Function

Poisson’s equation is

(4)

where is the electrostatic potential at , is
the charge density, is the permittivity of free space, is the
normal derivative, , and the constants , determine the
type of boundary condition (Dirichlet, Neumann, or mixed). To
solve the Poisson equation, we employ Green’s formula

and

in one and two dimensions, respectively. Note that the bold
implies a 2-D integral over the coordinate . We also
use the free-space Green’s function for the Laplace operator,

, which satisfies

where , denotes a jump at
, and depends on the dimension. The free-space Green’s

functions in one and two dimensions are

(5)

and

(6)

respectively. Letting be the solution of Poisson’s equa-
tion (4) and the free-space Green’s function, we express
the potential as

(7)

and

(8)

where . Note that ,
where the volume integral, , is the particular solution of
(4), and the boundary integral, , is the homogeneous so-
lution. For later reference, we record the particular solutions,

(9)

and

(10)

and the homogeneous solutions

(11)

and

(12)
Depending on the boundary conditions, can be repre-
sented as either a single layer or a double layer potential. This
will be discussed below.

B. Volume Integral/Particular Solution

Recall that the charge density in general is given by

(13)

where is the number of velocity dimensions and is the
number of species. We consider two approaches for obtaining
the potential .
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Particle Approximation: In our first approach, we represent
the phase space distribution as a set of delta functions

where is the weight at . Substituting this into the
equation for gives

and the particular solution then reduces to

(14)

This is the same as in PIC, where the phase space particles
are viewed as macro-particles.

Integral Form: In our second approach, we restrict attention
to the Vlasov equation so that the collision operator in the Boltz-
mann equation (1) is set to zero. We make this assumption in
order to focus on problems in which diffusive effects due to col-
lisions are negligible. In the absence of such diffusive effects,
the solution of the Vlasov equation can develop fine scale fea-
tures and these are handled here by point insertion. Extending
this approach to collisional plasmas is a topic for future work.

In this approach, we employ ideas from Lagrangian vortex
methods in computational fluid dynamics [31]. The volume in-
tegral over for , given above, is recast as a volume integral
over coordinates , where

is the flow map in phase space, i.e., is the initial con-
dition (location, velocity) that maps into at a later time .
The initial condition is a Lagrangian parameterization
of phase space and this is critical to the point insertion scheme,
as explained below. The volume integral over initial condition
for is then discretized using the trapezoidal rule.

Before recasting the integral for , it helps to think about
how we treat the distribution function . Consider a volume
in phase space at the initial time and a later time
as in Fig. 2. Note that the sketch is intended to represent one,
two, or three dimensions in space and velocity. Using the change
of variables formula, the integral of over volume can be
expressed as an integral over the initial volume

(15)

Fig. 2. Flow map in phase space. : Initial time. : Later time.

where is the Jacobian determinant of
the flow map. It is well known that if the collision operator is
identically zero, the fraction of in a phase space volume
is preserved under the action of external fields, and, therefore,
in the absence of absorbing boundaries, the volume integral of

over phase space must be constant for all

(16)

From (15) and (16), it follows that

(17)

which expresses the conservation of charge in phase space for
the Vlasov–Poisson equation.

Now recall the particular solution in (10). Substituting the
charge density from (13) into that expression gives

Under our change of variables, the integrand is

and using (17), the particular solution becomes

(18)

Assuming now an initial discretization of phase space
and applying the trapezoidal rule, the integral over for each
species can be approximated by

where denotes a single or double sum approximating a single
or double integral in space and denotes a single, double, or
triple sum approximating the velocity integral, and , are
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Fig. 3. Stretching of phase space and particle insertion. Black dots: Original
particles. White dot: Inserted particle.

quadrature weights. Setting , (18)
is approximated by

(19)

where is the phase space weight of a macro-particle. The
sum in (19) resembles the sum in (14).

Due to the stretching of phase space during a simulation, it
often happens that adjacent Lagrangian particles on a curve in
phase space move far apart, as depicted in Fig. 3. In this case,
the quadrature formula becomes inaccurate, but this can be con-
trolled by inserting new particles to maintain resolution. Sup-
pose that a particle needs to be inserted between and

, based on some criterion, as shown in Fig. 3. Recall
that the initial phase space coordinates are Lagrangian param-
eters. We insert a new particle at the midpoint of the interval
between and in phase space at . The
phase space weights of the new particle and the existing par-
ticles and are determined in accord with
the trapezoid rule over the initial condition. The phase space co-
ordinates of the new particle at time are determined using a
cubic interpolating polynomial with respect to the Lagrangian
parameters at particles , , , and

. The same process can be carried out to refine with
respect to velocity as well. It should be noted that, in principle,
intermediate times could be used to define the Lagrangian pa-
rameter for point insertion, however, that is not done here. Fur-
ther details about the particle insertion scheme will be discussed
elsewhere [41]. Related work is in references [29] and [37].

C. Treecode

Evaluating the particular solution in (14) and (19) is an ex-
ample of -body problem and the central processing unit (CPU)
time is an important issue [42]. We employ a treecode to reduce
the operation count from to . In a treecode,
the particles are divided into a hierarchy of clusters and the par-
ticle–particle interactions are replaced by particle–cluster inter-
actions, which are evaluated using multipole expansions. Barnes
and Hut [26] used monopole approximations and a divide-and-
conquer evaluation strategy, while Greengard and Rokhlin [27]
used higher order spherical harmonics expansions and a more
sophisticated evaluation procedure. Treecodes have been very
successful in particle simulations and there is ongoing interest

Fig. 4. Particle–cluster interaction: particle , cluster , cluster center .

in optimizing their performance [43]–[51]. Our approach fol-
lows [29], which extends the Barnes–Hut treecode [26] in var-
ious ways.

Particle–Cluster Interactions: The particular solution can be
cast in the form

(20)

The simplest procedure for evaluating is direct summation,
but this requires operations which is prohibitively ex-
pensive when is large. The key idea in a treecode is to replace
the particle–particle interactions in (20) by suitably chosen par-
ticle–cluster interactions.

The potential is first expressed as

(21)

where

(22)

is the potential due to the interaction between particle and a
cluster of particles (see Fig. 4). The proce-
dure for choosing the clusters will be explained below; for now,
it is enough to assume that the clusters in (21) are nonoverlap-
ping and their union is the entire particle distribution.

Next, perform a Taylor expansion of the Green’s function
about the cluster center

(23)

where is the order of approximation, is the th Taylor
coefficient of the Green’s function, and is the th mo-
ment of the cluster. Note that Cartesian multi-index notation
is used, e.g., in two dimensions if we set and

, then , and so forth. The error in the
approximation is , where is
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Fig. 5. Examples of tree structure. (a) Standard. (b) Adaptive [29].

the cluster radius and is the particle–cluster
distance. The speedup occurs because the cluster moments are
independent of the particle , and the Taylor coefficients are in-
dependent of the number of particles in the cluster . The Taylor
expansion in (23) is a Cartesian analog of the classical spherical
harmonics multipole expansion [52]. A recurrence relation can
be used to efficiently compute the Taylor coefficients to any de-
sired order [29].

Tree Structure: The set of all clusters has a hierarchical tree
structure. In a standard treecode, the clusters on each level of the
tree are uniform cubes obtained from bisecting the previous gen-
eration of clusters in each coordinate direction. This is shown
in Fig. 5(a) for a set of particles on a spiral curve. However,
in many cases, it is beneficial to shrink the boxes as shown in
Fig. 5(b). The nonuniform clusters in the second scheme are
well-adapted to the particle distribution and this can lead to a
savings in CPU time.

Evaluation Strategy: The potential is evaluated using
a recursive divide-and-conquer strategy [26]. As indicated in
(21), the potential at a given point is expressed as a sum
of particle–cluster interactions for suitably chosen
clusters . The treecode has three options for evaluating each
term : Taylor approximation, direct summation, or
descending the tree. The present simulations used the standard
multipole acceptance criterion (MAC), i.e., the Taylor expan-
sion is used only if , where is the radius of the
cluster, is the distance between the particle and the cluster,
and is a user-specified parameter [26], [45]. If the MAC is not
satisfied, the code considers the interactions between particle
and the children of cluster . If the cluster has no children,
then it is a leaf of the tree and is evaluated by direct
summation. The procedure is sketched in Fig. 6.

Electrostatic Force: The method described above can be
adapted to compute the electrostatic force on a particle in
time . Substituting (23) for the particle–cluster in-
teraction into (20) for the particular solution, using the relation

for the electric field at the particle , and noting that
, the electric field is

Then the electrostatic force on due to species is ,
where is the total charge on particle .

Fig. 6. Procedure for evaluating a particle–cluster interaction .

Regularizing the Green’s Function: In two and three dimen-
sions, the interparticle force in the equations of motion (2)
becomes singular as the distance between the particles tends to
zero, placing a constraint on the maximum allowable time step.
Our approach to overcoming this problem is to regularize the
Green’s function [29], [37]. In two dimensions, we use

where is a smoothing parameter, so that the maximum force
is proportional to . The appropriate value of could be de-
termined by physical properties of the system, e.g., in a neutral
plasma, one could use the Debye shielding length to choose .
However, in the work presented here, was treated as a numer-
ical parameter.

D. Boundary Integral/Homogeneous Solution

Having completed our discussion of the particular solution,
next we describe a boundary integral method for the homoge-
neous solution; for an alternative finite element formulation, see
[38]. Recall that the potential function satisfies the Poisson
equation (4) subject to Dirichlet, Neumann, or mixed boundary
conditions depending on the application. The homogeneous so-
lution is given in (11) or (12) and at each point on the boundary
either , , or is specified. As an ex-
ample, consider the case of Dirichlet boundary conditions in
which is known but is unknown. We re-
quire the boundary condition to be satisfied in the sense that

for (24)

A similar relation holds as well for the other possible boundary
conditions.

For our Dirichlet example, this yields an equation for ; a 2
2 linear system in one dimension

(25)

and an integral equation of the first kind in higher dimensions

(26)

where on the right side of (26) is divided by 2 to account
for the singular nature of the limit as approaches the boundary
[53].
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While (25) can be directly solved for the unknowns, (26) will
be solved by a collocation method. First, discretize the boundary
integrals into panels for

(27)

Choosing to be the center of the th panel and letting
and be constant along each panel (for

example), we obtain

(28)

where are Gaussian quadrature points on the th panel and
are the corresponding weights. This yields a linear system

for the

where

and

This formulation worked well in our preliminary work [36].
For geometrically complex domains, the linear system becomes
challenging to solve and an efficient method such as precondi-
tioned generalized minimal residual (GMRES) is required. Due
to the special form of the matrix elements , the matrix-vector
multiplication in each step of GMRES can be computed effi-
ciently using the treecode. Hence, the matrix never needs to
be explicitly constructed and stored, making geometrically com-
plex domains more tractable.

This approach can also be used for problems with Dirichlet
and Neumann conditions on different portions of the boundary

. In this case, we represent as a combi-
nation of single and double layer potentials

where , are unknown functions. This eliminates the need
to compute a boundary integral for each . We found through
numerical experiments that the resulting matrix is well-con-
ditioned when a double layer potential is used for the Dirichlet

boundary and a single layer potential is used for the Neumann
boundary. Mixed boundary conditions can be handled by going
back to the original formulation using (12) for .

III. APPLICATIONS

In this section, we give an overview of the problems to which
the BIT approach has been applied. We divide the discussion
into two sections based on the problem dimension.

A. 1-D Problems

We used BIT to simulate several benchmark 1-D problems
in plasma physics including sheath formation, virtual cathode
formation, and the two-stream instability. In the latter case, we
also used particle insertion.

Sheath Formation: The 1-D sheath domain is bounded by
two parallel metal plates a distance apart, each
held at a potential of zero volts. The domain initially contains a
neutral plasma with equal electron and ion densities. The elec-
trons are lighter and more mobile than the ions, and a fraction of
the electrons near the wall impact the wall on a timescale much
faster than the ion transit time. The reduced electron density near
the wall leaves a net positive charge in a narrow region between
the wall and the main body of the plasma. This gives rise to a po-
tential barrier (sheath) at the walls, and if any of the remaining
electrons are to escape, they must have a large enough velocity
to overcome the sheath potential. Eventually the system reaches
a steady state in which the electrons are electrostatically con-
fined to the interior of the domain.

We looked at this application in order to demonstrate that BIT
can reporoduce the undriven sheath in a decaying plasma as an
initial benchmark. This sheath decay includes some kinetic ele-
ments, since the tail is lost first and the Coulomb collision rate at
these low densities is insufficient to maintain a Maxwell–Boltz-
mann distribution, so kinetic effects are important, and hence
this is best represented by a kinetic model. This type of problem,
decay of an undriven bounded plasma and resulting sheath for-
mation, has been studied by PIC at some length [54]–[56], and
is widely used as a benchmark for other models including fluid
models [57], [58].

In this simulation, the electrons are represented as mobile par-
ticles, while the ions, being much heavier, are immobile. The
Poisson equation takes the form

(29)

where is the electron charge, is the number of electrons
in the simulation, and is the constant background ion den-
sity, chosen such that . The electrons are initially
distributed uniformly in space with a random thermal velocity
sampled from a Maxwellian distribution.

The potential is the sum of three terms

(30)
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Fig. 7. Potential as a function of position across domain for BIT and PIC.

where is due to the electrons, is due to the background ion
density, and is the homogeneous solution needed to enforce
the boundary conditions

(31)

The term is given by (14), is obtained by integrating
twice, and is found by substituting (25) into (11)

(32)

where we have also imposed the boundary conditions
in (11). With these boundary conditions, the limits

in (25) give

(33)

BIT results will be compared with PIC results from [59]. Note
that the 1-D Green’s function in (7) is piecewise linear and so
the first order Taylor approximation is exact; this implies that
BIT computes exact forces and potentials in one dimension,
and gives identical results to direct summation. In the work pre-
sented here, the BIT simulation was initialized using the same
parameter set as in the PIC simulation so that the only difference
was in the field solver. In both simulations, the domain length
is , the number density of each species is ,
and the electron temperature is 1 eV. The initial number of elec-
trons is 4000 in both simulations.

Fig. 7 plots the potential as a function of position across
the domain for BIT and PIC. There is no significant difference
between the two methods, either in magnitude or sheath thick-
ness. The calculated matrix sheath thickness for this domain is
5.4 mm [60], comparable to the computed results of approxi-
mately 10 mm for both BIT and PIC.

Fig. 8. Electron density for BIT and PIC. Ion density is also shown.

Fig. 9. Number of electrons as a function of time for BIT and PIC.

Fig. 8 plots the electron and ion densities for BIT and PIC.
As for the potential, the computed particle densities for the two
methods are almost the same.

Fig. 9 plots the number of electrons in the simulation as a
function of time. Again the agreement between the BIT and
PIC results is very good. Both have an initial depletion rate
that matches the theoretical result. The particle number drops
slightly faster for BIT, resulting in approximately 20 fewer
particles after convergence, but this has negligible effect on
the potential and the particle densities. To examine whether
the additional loss in BIT arises from the initial seed of the
Maxwellian velocity distribution, many additional runs were
done, each using a different seed in the random number gen-
erator. All of the results were within 1–3 particles of the BIT
results in Fig. 9. Note that this does not imply that BIT and PIC
will agree in a full discharge simulation. One explanation for
the discrepancy in the number of particles is that BIT includes
short range Coulomb collisions which are neglected in PIC.
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Hence, we expect that the tail in BIT will be repopulated more
quickly than in PIC. Since the tail is the only part that can
escape the potential well, we then expect BIT to have a higher
loss rate and hence a slightly lower number of particles than
PIC.

Virtual Cathode: Virtual cathodes (VC) are basic structures
that arise in many plasma applications, e.g., they have been used
to explain anomalous acceleration of positive ions in a vacuum
diode [61], and have also been proposed as a confinement mech-
anism for controlled fusion [63]. The formation of a VC is un-
derstood in general terms, but predicting the details is difficult
because the process is highly nonlinear. Such systems are often
simulated using PIC [64], but it is not clear that this is optimal
since sharp gradients in the plasma properties occur near the
VC.

In previous work, we simulated the formation of a virtual
cathode in one dimension using a BIT algorithm [35]. Two infi-
nite parallel flat plates have applied voltages. The gap between
the plates is initially a vacuum, and one of the plates is heated to
the point where electrons are emitted and a current flows across
the gap. For a sufficiently high emission rate, the maximum cur-
rent density between the plates approaches a limiting value
predicted by the Child–Langmuir law. When this happens, a vir-
tual cathode is formed somewhere between the two plates, and
the emitted electrons turn around and strike the emitting plate.
As the electrons repel one another, the potential minimum rises,
thereby allowing the emitted electrons to again start crossing the
gap, and the entire sequence repeats. We considered the classical
formulation in which the electrodes are held at ground and the
emitted electrons have an initial velocity [39].

For this nonlinear oscillator, we compared PIC, BIT, and di-
rect summation (DS). As noted in the section on sheath forma-
tion, DS and BIT agree to machine round off, so the main reason
for the DS calculation is for timing comparisons. For the BIT
and DS runs, the grid-free solution to the Poisson’s equation is
identical to (30), except that is identically zero. The PIC rou-
tine employed here used standard area-weighting. The injected
current was varied by adjusting the charge/mass ratio of the par-
ticles. With a small injected current, the solution converged to a
steady state and all three methods gave the same result to within
plotting accuracy. The mesh size for the PIC simulation was de-
termined by decreasing the value until the solution converged
to the nonoscillatory steady state. This mesh spacing was then
used for the remainder of the PIC simulations.

With a higher injected current, a VC forms and the solution
converges to a time-periodic state with nonuniform spatial struc-
ture. Fig. 10 shows the time trace of the particle density
at three locations between the plates; just past injection,
near the VC, and downstream of the VC. Fig. 10 reveals signifi-
cant differences between the BIT/DS and PIC results. First, the
oscillation period is 5% greater for PIC than for BIT/DS, pro-
ducing a significant phase lag. Fig. 11, shows the particle distri-
bution in phase space at a given time. The plot shows that some
of the emitted particles turn back and approach the emitter plate.
The PIC results have irregular voids, while the BIT/DS results
have a smooth particle distribution.

All three methods used the same particle push and particle
injection/deletion procedures. The only difference between the

Fig. 10. Time trace in the formation of a virtual cathode at three spatial
locations across the channel, . Solid line is BIT/DS
and the dashed line is PIC.

Fig. 11. Phase space plot at time . Irregular voids appear for PIC,
while BIT/DS has a smooth particle distribution.

three routines was the force evaluation kernel. In all simulation
results presented, the time step used was that of the time con-
verged DS method. The criterion for the time step was that the
phase space point wise norm must be less then a user set tol-
erance

at any observed time between and . This guarantees point-
wise convergence in phase space. The observed differences in
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Fig. 12. Two-stream instability; initial electron distribution in phase space.

the simulation results, shown in Figs. 10 and 11, can be at-
tributed to the error in interparticle force within a mesh cell of
a PIC simulation, as shown in Fig. 1. These preliminary runs
were performed using Matlab; PIC required 7 h, BIT 12 h, and
DS seven days. Further work is needed to optimize the run time
of the BIT code, but the results suggest that BIT is capable of re-
solving small-scale features better than a mesh-based PIC code.

Two-Stream Instability: This example concerns a neutral
plasma with equal numbers of ions and electrons in a 1-D
periodic domain. As above, the electrons evolve dynamically
and the ions are immobile. Consider an electron distribution
function of the form , i.e.,
independent of position and an even function of velocity .
This is an unstable equilibrium solution of the Vlasov–Poisson
system. A perturbation in velocity gives the electrons a spatial
variation in momentum. This leads to nonuniformity in the
electron spatial distribution, thereby generating an electric field
which feeds back into the velocity perturbation, causing phase
space to fold up on itself.

As with the virtual cathode, we focus on a cold two-stream
instability in the sense that

if
otherwise

where is the initial unperturbed speed of the electrons. The
initial velocity perturbation has the form

where is the perturbation amplitude. Fig. 12 shows the initial
electron distribution in phase space. The electrons are modeled
as particles while the ions are treated as a constant background
density . The potential of the domain is then described by

with periodic boundary conditions

where is the charge on an electron and is the number of
electrons in the simulation.

As in the sheath formation problem, the particular solution
is the sum of and from (32). The boundary condi-

tions determine the homogenous solution given by (25), i.e.,
, gives

, . Thus, (25) gives

and

Using the periodic boundary conditions and noting that
, we obtain

and

The initial ion and electron density is cm . All the
phase space plots are normalized to the initial electron velocity

. Time stepping was performed using the fourth-order
Runge–Kutta (RK4) method and the results were considered
time accurate when the difference between runs with and

was less then 5%. Spatial (i.e., phase space) convergence
was achieved by systematically increasing the number of sim-
ulation points . Fig. 13, top frame, shows a time converged
result for after 64 000 time steps with

, where . The electron distribution function
is concentrated on a rolled-up curve in phase space. Fig. 13,
middle and bottom frame, shows that the simulation loses spa-
tial accuracy later in time when adjacent particles become sep-
arated.

To overcome the loss of resolution that inevitably occurs
using a fixed number of particles, we implemented a particle
insertion scheme as discussed briefly in Section II-B. In these
results a simple distance criterion is used, i.e., a new particle is
inserted between particles and when

where is the initial particle spacing. Fig. 14 shows the re-
sult obtained using particle insertion, starting with 200 points
and using the same time step as in Fig. 13. This simulation was
checked for convergence both in time as well as in space by
computing with twice as many initial points. The results indi-
cate that particle insertion is an efficient means for maintaining
accuracy as the solution evolves in time. A detailed analysis of
these results, as well as extension to the warm two-stream insta-
bility, are topics for future work.
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Fig. 13. Two-stream instability; phase space plot with . Top frame
. Middle frame . Bottom frame .

B. 2-D Problems

In addition to the 1-D problems discussed above, we also
applied the BIT approach to several 2-D problems, including
planar and cylindrical ion optics, and particle dynamics in a Pen-
ning–Malmberg trap. We performed a detailed timing compar-
ison in 2-D planar geometry between BIT and multigrid PIC.
We start with the timing comparison and then discuss the appli-
cations listed above.

Timing Results: In this section, we compare the efficiency of
BIT and PIC simulations for a 2-D test case, focusing on the

Fig. 14. Two-stream instability; phase space plot using point insertion, initial
. Top frame . Bottom frame .

question: for a given level of accuracy, which method is faster?
In this test, particles were randomly placed in a square do-
main with grounded boundary and the electric field was com-
puted at each particle location using BIT, PIC, and direct sum.

Note that if the homogeneous solution in (12) is computed
exactly, then direct sum yields the exact solution of the test
problem. The Green’s function for a square domain can be
expressed as an infinite series, but we chose to satisfy the
boundary condition using the free-space Green’s function. This
requires solving a boundary integral equation for the homoge-
neous solution. We expressed the homogeneous solution as a
single layer potential and subdivided the boundary into panels
as discussed in Section II-D. In this example, the terms in the
matrix, , can be integrated exactly and
the panel strengths are determined to within roundoff error. The
number of panels in the direct sum solution is chosen so that
the error is less than 1%. The resulting boundary integral direct
sum result is taken as the exact solution.

The error is measured by the expression

error

where is the direct sum electric field at particle and
is the BIT or PIC electric field approximation. Table I shows
timing results versus number of particles for DS, PIC-MG,
and BIT. PIC-M denotes a PIC solution on an grid
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TABLE I
CPU TIME (s) FOR DS, PIC-M, BIT-T (SEE TEXT FOR DEFINITIONS)

TABLE II
ERROR FOR PIC-M, BIT-T (SEE TEXT FOR DEFINITIONS)

using a multigrid solver [62]. BIT-T denotes a boundary
integral/treecode solution using a Taylor expansion of order

(BIT-1 used MAC parameter and BIT-2 used
). Table II shows the corresponding errors.

A few observations can be made. 1) As a function of , DS
is , PIC-MG is almost independent of over this range,
and BIT displays behavior although theoretically it is

. 2) For fixed , the time required for PIC increases
by a factor of 8 when the mesh is refined by a factor of 2 in each
direction. Alternatively, the time required for BIT increases by
a fraction less than one when going from first to second order
Taylor expansion. In terms of accuracy, the PIC-512 and BIT-1
results have comparable errors, while the BIT-2 results have
much smaller errors. Note that PIC would require an exceed-
ingly fine mesh to achieve the same accuracy as BIT-2, with a
correspondingly large increase in the CPU time (estimated to
be at least 2000 s). Note that in Table II, the PIC results display
first-order convergence; this is due to the choice of interpolation
and the effect of differencing the potential to obtain the electric
field.

The timing results imply that for problems where strong
coulomb interactions matter, an extremely fine spatial dis-
cretization may be required to resolve these effects in a PIC
simulation. In summary, for the choice of parameters used in
this strong coulomb interaction test, PIC is more efficient for
10% accuracy and BIT is more efficient for 1% accuracy. This
implies that for a large class of problems, where sharp gradients
in plasma properties develop in localized regions, it may be
ideal to think about a hybrid PIC-BIT algorithm. In such an
algorithm, BIT would only be applied to small patches of the
simulation domain in order to correct the PIC calculation.

Planar Optics: Ion thrusters for spacecraft propulsion op-
erate by electrostatically accelerating ions through a set of ion
optics. The optics consist of a screen grid and an accelerator
grid, each of which typically has many thousands of hexago-
nally-arranged apertures. Ion optics simulations usually focus
on a single aperture and the immediate vicinity upstream and
downstream. Fig. 15 shows the geometry and boundary condi-
tions in the present example. Ions are introduced at the upstream
edge of the domain at a discharge potential of about 2000 V. The
screen grid has a potential 25 V below the discharge potential
and the accelerator grid has a negative potential on the order
of 200 V. Ions are accelerated electrostatically by the drop in
potential, providing thrust. Downstream of the optics, the beam

Fig. 15. Geometry for planar ion optics simulation. D: Dirichlet. N: Neumann.

Fig. 16. Snapshot of particles in a planar ion optics simulation. Also shown
are the leaf clusters in the treecode, assuming a maximum of 200 particles per
leaf.

is neutralized by an electron source, making the downstream
potential approximately zero, although the present BIT simula-
tions included only the ions.

In the present simulations, ions were injected at a rate of
10 per iteration, each with a weight corresponding to number
density . This low density was used because
the absence of neutralizing electrons causes the space-charge
limit to be reached at much lower density than in typical ion
thruster operation. The timestep was s and the par-
ticles were injected with Maxwellian velocities centered about
2000 m/s. The boundaries were modeled using a combination
of single and double layer potentials, with panels uniformly dis-
tributed on each segment. The line integrals of the Green’s func-
tion and its normal derivative were integrated exactly over each
panel—our previous work used quadrature [36], but exact inte-
gration was found to mitigate the effect of the kernel singular-
ities in evaluating particle-boundary interactions. The treecode
used a fourth-order Taylor expansion and the MAC parameter
was .

Fig. 16 shows a snapshot of the computed particle locations.
Also shown are the leaf clusters in the treecode, assuming a
maximum of 200 particles per leaf. The clusters conform to the
particle locations; no effort is expended on empty regions, re-
gions with low particle density have fewer clusters, and regions
with high particle density have many clusters. A detailed anal-
ysis of the results is in preparation.

Cylindrical Optics: In this case, BIT is applied to a more
complex problem than in the previous test cases. One problem
that arises is the inclusion of an electron population for the direct
summation and BIT. The PIC potential solver models a Boltz-
mann electron fluid at the mesh nodes, but BIT has no mesh for
such a simulation and there is no known Green’s function for
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the fully nonlinear problem. The free-space Green’s function
for the axisymmetric case is

(34)

where , have cylindrical coordinates , ,
, , and is the com-

plete elliptic integral of the first kind. The present axisymmetric
treecode is relatively inefficient compared to the planar version
due to the lack of a recurrence relation for the derivatives of
the axisymmetric Green’s function. As a result, in this example,
the treecode CPU time is at least an order of magnitude greater
than the PIC CPU time. The treecode could have been made
more efficient by using a lookup table for the elliptic function
evaluations or a different form of the Green’s function [65]. The
problem does not arise in three dimensions because an efficient
recurrence relation is known for that case [29].

The simulation domain radius was , the upstream
length was , the downstream length was ,
the screen grid was 0.4 mm thick with a 1.6-mm-diameter aper-
ture, and the accel grid was 0.8 mm thick with a 1.0-mm-diam-
eter aperture. As for planar optics, the boundary was modeled
as a combination of single and double layer potentials. The
boundary matrix was constructed using an eight point
Gaussian quadrature rule. To control errors at sharp corners, a
Chebyshev panel spacing was used along boundary segments.
The total number of panels was 512. The upstream domain
boundary potential was 1800 V, the screen grid was 1775 V,
the accel grid was 210 V, the downstream boundary was
22 V (all Dirichlet), and the other upper boundaries were
homogeneous Neumann. The smoothing parameter value was

. The treecode used fourth order Taylor
expansions, the MAC parameter was , and the leaves
had no more than eight particles per lowest level cluster.

The comparison done here is between direct summation and
PIC in order to provide a baseline comparison. Because the dif-
ferences are fairly large in this case, a comparison using the
treecode would appear exactly the same due to its closeness to
direct summation. The direct summation comparison to PIC im-
parts all the relevant information.

Fig. 17 plots the average relative difference in the particle
force between PIC and direct summation and the average elec-
tric field across the domain. In the central region, the imposed
electric field dominates, giving a small relative difference. In the
neutral regions of the domain upstream and downstream of the
ion optics, the electric field is small on average. PIC computes
very small forces in these regions, while direct summation still
sees large interparticle forces. The average PIC force magnitude
in the upstream region is on the order of , while the av-
erage direct sum force is approximately . A detailed
analysis of the results is in preparation.

Penning–Malmberg Trap: A Penning–Malmberg trap is a
grounded conducting cylinder used for confining an electron
plasma [66], [67]. The electrons are confined by applying a
magnetic field along the cylinder axis and holding the cylinder
end caps at constant voltage, so that the electrons bounce
back and forth along the magnetic field lines (see Fig. 18).
For example in [67], the end caps were held at 50 V and the

Fig. 17. Relative force difference between PIC and direct summation.

Fig. 18. Sketch of a Penning–Malmberg trap for confining an electron plasma.

magnetic field strength was . Under these conditions,
the time required for an electron to complete one bounce is
much smaller than the characteristic time scale. In this
case, the plasma is well described by a 2-D particle model in
which the electrons behave like line charges being convected
with velocity [68]. The system has been
investigated experimentally and computationally, and many
interesting phenomena were revealed including metastable
crystalline states and complex dynamics [66], [67].

In our simulations, the applied magnetic field is a specified
constant and the electric field is computed using BIT. In addi-
tion, the particle insertion scheme discussed in Section II-B was
used to maintain resolution of the electron density. The insertion
criterion compares the distance between hypothetical particles
inserted using linear interpolation and cubic interpolation. If the
distance is greater than 5% of the initial particle spacing, a new
particle is inserted. The time integration method used is RK4.
The BIT field evaluation used an eighth order Taylor expansion
and the MAC parameter was . The Dirichlet boundary
condition on the cylinder wall was imposed using a single layer
potential and the terms in the boundary matrix were evaluated
using eight–point Gaussian quadrature. Refinement tests were
carried out in space and time.

Here, we present a simulation of wave breaking in which the
cylinder parameters, size, magnetic field strength, initial elec-
tron density profile, etc., were chosen as in the experiment [69].



162 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 34, NO. 2, APRIL 2006

Fig. 19. Initial condition for wave breaking simulation. (a) Particle curves. (b)
Electron density. The small dark gray patch is four times as dense as the large
background patch.

A small dot of radius is 0.1035 cm and high density
cm is superimposed on a large background electron

disk of radius 0.8 cm and low density cm .
Fig. 19 shows the initial condition with (a) curves on which the
particles were placed, and (b) electron density mapped onto a
mesh. The dot rotates about the center of the disk; Fig. 20 shows
the solution after one rotation and Fig. 21 shows the solution
after four rotations. As the dot rotates, it entrains material from
the disk and causes a wave to form on the disk boundary. The
results are in excellent agreement with experiment [69]. Note
that the filamentation in Fig. 21(a) gives rise to a diffuse region
when mapped to a mesh, as in Fig. 21(b). Since the experimental
results are obtained by crashing the electrons onto a cathode
ray tube and capturing the image with a charge-coupled device
camera, the resulting spatial blurring may be similar to that of
mapping the particles onto a mesh. Hence, the diffuse region
seen in the experiment may be due to filamentation beyond the
experimental resolution. A detailed analysis of the results is in
preparation [41].

IV. FUTURE WORK

Our short term goal is to apply BIT and particle insertion to
simulate the warm two-stream instability. In addition, we are ex-
tending our 2-D field solvers to three dimensions, as well as op-
timizing the treecode approach for solving the linear system as-
sociated with the homogeneous solution. In the future, we plan
to incorporate a mesh-free DSMC code currently under develop-
ment to permit the mesh-free simulation of collisional plasmas.
We plan to begin the development of a nonstatistical collision
operator which will accommodate particle insertion. An addi-

Fig. 20. Wave breaking, one rotation. (a) Particle curves. (b) Electron density.
Color indicates density (red is high; blue is low). The small dark gray patch is
four times as dense as the large background patch.

Fig. 21. Wave breaking, four rotations. (a) Particle curves. (b) Electron
density. Color indicates density (red is high; blue is low). The small dark gray
patch is four times as dense as the large background patch.

tional goal is to incorporate cluster–cluster approximations sim-
ilar in spirit to the fast multipole method [27]. Finally, we plan
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to investigate whether this grid-free approach can be extended
to problems with time-varying magnetic fields.

V. CONCLUSION

We have applied a grid-free boundary integral/treecode
(BIT) field solver to several bounded plasma problems and ob-
tained comparable or better results than traditional mesh-based
methods. We demonstrated that BIT exhibits comparable
timing for a given accuracy and is capable of handling com-
plex geometry, as well as a mixture of boundary conditions.
Further validation is underway. We believe that BIT offers an
attractive alternative to mesh-based approaches for electrostatic
problems. The extension of these grid-free methods to plasma
problems involving time-varying magnetic fields is still a
significant challenge.
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