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A TREECODE FOR COMPUTING NONBONDED POTENTIAL ENERGY

Introduction

E valuating the potential energy of a molecular
system is an important task in computational

chemistry. In particular, this is a basic element in op-
timization methods for protein conformation1 and
in Monte Carlo techniques for the equilibrium prop-
erties of solvents.2 Here, we consider classical sys-
tems represented by a set of particles {x1, . . . , xN} in
three-dimensional space, and nonbonded potential
energy functions of the form

V =
N∑

i= 1

N∑
j= 1
j 6 = i

qi qj

|xi − xj|ν , (1)

where the qi are scalar weights, |x| denotes the
Euclidean norm, and the parameter ν defines the
pairwise interaction potential. Examples include
the long-range Coulomb potential (ν = 1) and the
short-range London dispersion potential (ν = 6).

The cost of evaluating the potential energy is a
critical issue in simulations. The direct summation
method relies on the expression

V =
N∑

i= 1

Vi, (2)

where

Vi =
N∑

j= 1
j 6 = i

qiqj

|xi − xj|ν . (3)

The terms Vi are computed by looping over the in-
dex j, and the results are summed to obtain the total
potential energy V. The operation count is O(N2)
and thus direct summation is prohibitively expen-
sive for large systems. Several methods have been
developed to reduce the cost by introducing ap-
proximations. These include cutoff techniques2 and
particle-mesh algorithms.3 The present work is con-
cerned with an alternative class of methods known
as treecodes. A treecode has three basic features:
(a) the particles are divided into a nested hierar-
chy of groups or cells, (b) the far-field influence
of a group is approximated using a multipole ex-
pansion, and (c) a recursive procedure is applied
to evaluate the required force or potential. Strictly
speaking, a cell is a region of space containing a
group of particles, but we use the terms interchange-
ably.

Two of the early treecodes were developed for
gravitational simulations by Appel4 and Barnes and

Hut.5 Both methods used monopole approxima-
tions and recursive evaluation procedures, but Ap-
pel allowed the cells to have arbitrary shape while
Barnes and Hut used cubical cells. Greengard and
Rokhlin6, 7 developed an approach called the Fast
Multipole Method, in which they retained the use of
cubical cells but employed higher order multipole
approximations to improve the accuracy. In addi-
tion, they evaluated the far-field multipole approx-
imations by converting them to local Taylor series.
Much effort has been devoted to extending and opti-
mizing the performance of treecode algorithms.8 – 18

In recent years, treecodes have been successfully ap-
plied in classical molecular simulations,19 – 30 as well
as in quantum electronic structure calculations.31 – 34

Treecodes can be applied to speed up the eval-
uation of the total potential energy V by using the
code to rapidly compute the terms Vi and then sum-
ming the results. This is a particle–group procedure
because each term Vi represents the interaction be-
tween a particle xi and the entire group {x1, . . . , xN}.
This is the most straightforward way of applying a
treecode to compute V. Here, we consider an alter-
native approach based on the expression

V =
∑
A,B

VAB, (4)

where A, B are appropriate groups of particles, and

VAB =
∑
xi∈A
xj∈B

qiqj

|xi − xj|ν (5)

is the energy due to interactions between the parti-
cles in group A and the particles in group B. In (5),
it is understood that if the groups A, B intersect,
then the sum omits the diagonal terms xi = xj.
In case the groups are identical, the energy VAB

is denoted VAA. If the groups A, B are well sepa-
rated, then VAB can be computed using a multipole
approximation.35 Otherwise, VAB can be computed
recursively by subdividing the groups and consid-
ering interactions among the subgroups. This leads
to a group–group procedure for computing the total
potential energy V. This approach is closely related
to Appel’s algorithm,4 although his article dealt
with computing individual particle forces rather
than the total potential energy of the system.

Note that the particle–group expression (2)–(3) is
a special case of the group–group expression (4)–(5),
obtained by setting A = {xi} and B = {x1, . . . , xN}.
The advantage of a group–group procedure is that
it avoids computing the N individual terms Vi in fa-
vor of computing a potentially smaller number of
terms VAB. Despite this potential advantage, there
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has been relatively little investigation of this ap-
proach. In this context we note that Pérez–Jordá and
Yang25 described a group–group procedure for com-
puting the total Coulomb potential energy, while
Xue, Zall, and Pardalos28 developed a version of
Appel’s algorithm for the Lennard–Jones potential.

This article describes a treecode algorithm for
computing the total potential energy V using the
group–group procedure outlined above. The algo-
rithm treats the general nonbonded potential energy
function in (1). A multipole approximation for VAB

is derived by Taylor expansion in Cartesian coordi-
nates, and the necessary coefficients are computed
using a recurrence relation. To gain efficiency, we
employ several adaptive techniques developed for
particle methods in fluid dynamics.36, 37 The tree
consists of nonuniform rectangular cells adapted to
the particle distribution. An error bound is derived
and used to select the order of approximation for
each group–group interaction. A run-time choice is
made between multipole approximation and direct
summation based on estimates of the required exe-
cution times. Three parameters are specified by the
user: ε, an accuracy parameter; pmax, the maximum
order of multipole approximation; and N0, the max-
imum number of particles in a leaf of the tree.

We present results for the Coulomb and Lon-
don dispersion potentials. The tests include dense
and sparse particle distributions, and systems with
neutral and nonneutral net charge. The proposed
treecode is significantly faster than direct summa-
tion for systems having a large number of parti-
cles. In itself this is not a new finding, because
existing treecodes already provide a speedup over
direct summation, but there is still intense inter-
est in optimizing performance within the class of
treecode algorithms. The present work aims to con-
tribute by calling attention to the advantages of
a group–group procedure for evaluating the total
potential energy in classical systems. Another im-
portant issue affecting performance is the choice of
coordinate system. Spherical harmonics are often
preferred for high-order multipole approximation
of the Coulomb potential, but we show that Taylor
approximation in Cartesian coordinates can be effi-
ciently implemented for a general class of potential
functions using a simple recurrence relation. Finally,
we propose several new adaptive techniques for the
tree structure and error control.

Multipole Approximation

This section derives a multipole approximation
for the group–group potential energy VAB defined

FIGURE 1. Two groups of particles A, B, with xi ∈ A,
xj ∈ B. The cell associated with a group of particles is the
smallest rectangular box containing the particles. The
cell centers are xA, xB, the cell radii are rA, rB, and the
distance between the cell centers is R = |xA − xB|.

in (5). We use Cartesian coordinates x = (x1, x2, x3)
and standard multiindex notation.38 Figure 1 shows
two groups of particles A, B, with xi ∈ A, xj ∈ B.
The cell associated with a group of particles is the
smallest rectangular box containing the particles
(the sides of the box are parallel to the coordinate
axes). Given a group A, the center (denoted xA) is
the geometric center of the cell, and the radius (de-
noted rA) is the distance from the center to a vertex
of the cell. The distance between the cell centers is
R = |xA − xB|.

Define the potential function

φν(x) = |x|−ν . (6)

Let x, x be two points and consider the pth order
Taylor approximation of φν(x) at x = x,

φν(x) ≈
p∑

||n|| = 0

Tn(x)(x− x)n, (7)

where n = (n1, n2, n3), ||n|| = n1 + n2 +
n3, Tn(x) = 1

n! D
n
xφν(x) is the nth Taylor coefficient,

n! = n1!n2!n3!, Dn
x = Dn1

x1 Dn2
x2 Dn3

x3 , and (x − x)n =
(x1 − x1)n1 (x2 − x2)n2 (x3 − x3)n3 . Next, let x = xi − xj,
x = xA − xB in (7), apply the binomial formula, and
substitute the result in (5), to obtain

VAB ≈
p∑

‖n‖ = 0

Tn(xA − xB)
∑
k≤n

(
n
k

)
(−1)||n−k||mk

Amn−k
B ,

(8)

where k ≤ n means ki ≤ ni for i = 1, 2, 3,(n
k

) = n!
k! (n−k)! is a binomial coefficient, and mk

A =∑
xi∈A qi(xi − xA)k is the kth multipole moment of

group A (similarly for mn−k
B ).
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Equation (8) is a pth order multipole approxima-
tion for VAB. For ν = 1, the term with ‖n‖ = 0
is a monopole–monopole interaction between the
groups, the terms with ‖n‖ = 1 are monopole–
dipole interactions, the terms with ‖n‖ = 2
are monopole–quadrupole or dipole–dipole interac-
tions, and similarly for higher order terms.35 Several
features contribute to an efficient computation of the
expression in (8). The cell moments mk

A can be pre-
computed and stored, and then used as required;
they do not have to be recomputed if group A ap-
pears in more than one term VAB in (4). Also, the
Taylor coefficients Tn(xA − xB) depend only on the
group centers and are independent of the number
of particles in the groups. Explicit formulas for the
high-order Taylor coefficients are cumbersome, and
in the next section we derive a recurrence relation
permitting rapid computation of these coefficients.

Recurrence Relation

First note that φν(x) satisfies the differential equa-
tion

|x|2Dx1φν(x)+ νx1φν(x) = 0. (9)

Applying the operator Dn1−1
x1 and using Leibniz’s

rule for differentiating a product, we obtain

|x|2Dn1
x1φν(x)+ (2n1 + ν − 2)x1Dn1−1

x1 φν(x)

+ (n1 − 1)(n1 + ν − 2)Dn1−2
x1 φν(x) = 0. (10)

Next, we apply the operator Dn2
x2 Dn3

x3 to obtain

|x|2Dn
xφν(x)+ 2n3x3Dn−e3

x φν(x)

+ n3(n3 − 1)Dn−2e3
x φν(x)

+ 2n2x2Dn−e2
x φν(x)+ n2(n2 − 1)Dn−2e2

x φν(x)

+ (2n1 + ν − 2)x1Dn−e1
x φν(x)

+ (n1 − 1)(n1 + ν − 2)Dn−2e1
x φν(x) = 0, (11)

where e1, e2, e3 are the standard Cartesian basis vec-
tors. Dividing (11) by n! and setting Tn = Tn(x) =
1
n! D

n
xφν(x), we obtain

|x|2Tn + 2
3∑

i= 1

xiTn−ei +
3∑

i= 1

Tn−2ei

+ ν − 2
n1

(x1Tn−e1 + Tn−2e1 ) = 0. (12)

Two more equations are obtained by replacing the
index 1 in the last term of (12) by 2 and 3. Multiply-
ing these equations by n1, n2, n3, respectively, and

summing the results, we obtain

||n|| · |x|2Tn +
(
2||n|| + ν − 2

) 3∑
i= 1

xiTn−ei

+ (||n|| + ν − 2
) 3∑

i= 1

Tn−2ei = 0. (13)

Equation (13) is the desired recurrence relation for
the Taylor coefficients Tn. It is understood that
Tn = 0 whenever an index ni is negative. In practice,
the recurrence relation is applied with x replaced by
xA − xB for specified groups A, B.

There is a connection between the recurrence
relation (13) and a result from the theory of orthog-
onal polynomials.39 The Gegenbauer polynomials
Cν/2

n (y) of degree n and order ν/2 satisfy the recur-
rence relation

nCν/2
n (y)− (2n+ ν − 2) y Cν/2

n−1(y)

+ (n+ ν − 2)Cν/2
n−2(y) = 0, (14)

with Cν/2
0 (y) = 1, Cν/2

1 (y) = νy. Note the similarity
between the three-dimensional recurrence relation
for Tn in (13) and the one-dimensional recurrence
relation for Cν/2

n (y) in (14). This similarity is not
surprising, because the Taylor coefficients arise by
expanding the potential function φν(x) in Cartesian
coordinates about a point x = x, while the Gegen-
bauer polynomials arise by expanding the same
function with respect to a radial spherical coordi-
nate,

φν(x) =
∞∑

||n|| = 0

Tn(x)(x− x)n

=
∞∑

n = 0

Cν/2
n

(
x
|x| ·

x− x
|x− x|

) |x− x|n
|x|n+ν . (15)

The two expansions for φν(x) in (15) have been
used before in treecode simulations,20, 22, 26 but as far
as we know, the three-dimensional recurrence rela-
tion (13) has not previously appeared.

The pth order multipole approximation for VAB

in (8) requires O(p3) Taylor coefficients, and these
can be computed in O(p3) operations using the
recurrence relation (13). Then assuming the cell
moments are available, the approximation (8) can
be evaluated in O(p6) operations. The high cost of
this step for large values of p is a result of using
Taylor approximation in Cartesian coordinates. The
treecode algorithm uses adaptive techniques to re-
duce the cost associated with this step; for example,
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in the case of the Coulomb potential, the order p is
chosen to be the minimum value satisfying a certain
accuracy criterion. In the next section we derive an
error bound that defines this criterion.

Error Bound

Our immediate goal is to bound the error in the
pth order Taylor approximation of φν(x) in (7). First
note that the sum of the nth order terms in (15) is∑
‖n‖ = n

Tn(x)(x− x)n = Cν/2
n

(
x
|x| ·

x− x
|x− x|

) |x− x|n
|x|n+ν .

(16)

This can also be checked explicitly using the recur-
rence relations for Tn(x) and Cν/2

n (y). In our applica-
tion we are concerned with two groups of particles
A, B with xi ∈ A, xj ∈ B, x = xi − xj, x = xA − xB (see
Fig. 1). This yields

|x− x|
|x| =

|xi − xj − (xA − xB)|
|xA − xB| ≤ rA + rB

R
≡ r, (17)

where rA, rB are the cell radii and R = |xA − xB|
is the distance between the cell centers. Assum-
ing r < 1, and using the fact that |Cν/2

n (y)| ≤
0(ν + n)/0(ν)0(n+ 1) for |y| ≤ 1, we can bound the
sum of the terms in (15) for n ≥ p+ 1 to obtain
∞∑

n= p+1

∑
‖n‖ = n

∣∣Tn(x)(x− x)n
∣∣ ≤ ∞∑

n= p+1

0(ν + n)
0(ν)0(n+ 1)

rn

Rν

= 1
Rν

1
0(ν)

dν−1

drν−1

(
rp+ν

1− r

)
. (18)

The expression on the right side of (18) is the desired
error bound. Note that it depends on the exponent
ν of the potential function, the order of approxima-
tion p, and the geometric parameters r, R specifying
the size and separation of the groups A, B.

In some applications it may be desireable to use a
smooth interaction potential. For example, consider
the function

φν,δ(x) = (|x|2 + δ2)−ν/2, (19)

where δ is a smoothing parameter. This type
of potential is used in computational fluid
dynamics36, 37, 40, 41 and a similar expression
was proposed to smooth the energy surface in
global optimization techniques for molecular
conformation.44 It can be shown that the Taylor
coefficients of the smooth potential (19) satisfy
the recurrence relation (13) with |x|2 replaced by
|x|2 + δ2. Also, the error bound (18) is still valid.
Hence, the present treecode algorithm can be

applied to particle systems governed by this type of
smooth interaction potential.

Accuracy Criterion

We require the error bound on the right side
of (18) to be less than a user-specified parameter ε.
If this criterion is satisfied, then the groups A, B are
effectively well-separated and VAB can be evaluated
using the multipole approximation (8). More specifi-
cally, we employ the following strategies depending
on the type of interaction.

1. Long-range interaction: The primary example is
the Coulomb potential, ν = 1, for which the
criterion is

1
R

rp+1

1− r
≤ ε. (20)

Given a pair of groups A, B with geometric
parameters r, R, the code selects the minimum
order p satisfying (20).

2. Short-range interaction: The London dispersion
potential, ν = 6, is the main example. In this
case the Taylor approximation (7) converges
slowly as the order p increases.22 Hence, we fix
the value p = 2 and then the criterion becomes

1
R6

1
0(6)

d5

dr5

(
r8

1− r

)
≤ ε. (21)

Although the order p is fixed, the algorithm
can still reduce the parameter r to satisfy the
criterion (21).

In summary, if the accuracy criterion ((20) or (21))
is satisfied, then VAB can be evaluated using the
multipole approximation with the specified order p.
If the criterion is not satisfied, the code subdivides
one of the groups; this has the effect of reducing
the parameter r. This continues until the criterion is
satisfied or until the groups are so small that direct
summation is faster than multipole approximation.
The procedure will be described below in more de-
tail.

Treecodes generally use a fixed order of ap-
proximation, although we note that Petersen, Soel-
vason, Perram, and Smith10 obtained a speedup
using variable-order approximation in their imple-
mentation of the Fast Multipole Method. In the
present approach, variable order approximation for
the Coulomb potential is especially effective in com-
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bination with nonuniform adaptive cells. The next
section describes the procedure for constructing
these cells.

Tree Construction

The tree construction procedure divides the set
of particles into a nested hierarchy of cells. Most
treecodes use an oct-tree structure in which the
cells on level L are uniform cubes with side length
proportional to ( 1

2 )L. In some implementations5, 8 a
cell is left undivided if it contains fewer than a
user-specified number of particles N0. This yields
an adaptive tree that takes advantage of any local-
ized gaps in the particle distribution. The present
algorithm follows this approach, but enhances the
adaptivity by using nonuniform rectangular cells
instead of cubes. The root cell (level L = 0) is
the smallest rectangular box containing the entire
set of particles. The root is divided in half in each
coordinate direction, resulting in eight subcells or
children. Before further subdivision, each subcell is
shrunk into the smallest rectangular box containing
its particles; these cells form the next level in the
tree. The process continues until the number of par-
ticles in a cell is less than N0; these cells form the
leaves of the tree. Figure 2 shows an example with
N0 = 20 for a dense random set of particles in two-
dimensional space.

Shrinking the cells this way is not costly, and the
resulting tree is well adapted to the particle distri-
bution. The cell radii on a given level are smaller
than they would be without shrinking. Hence, the
accuracy criterion can be satisfied using a lower or-
der approximation, and this leads to a speedup in
execution time. This is the sense in which variable-
order approximation is especially effective in com-
bination with nonuniform adaptive cells.

Note that Clarke and Tutty42 developed a
treecode with rectangular cells in which all the cells
on a given level have the same number of particles.
The aim was to facilitate load balancing on a par-
allel computer, but there is a tradeoff because extra
computation is required to determine where to split
the cells. Also, their scheme might split some nat-
ural particle clusters that would be left intact by the
present scheme, and this can adversely affect the
code’s performance.

Potential Energy Evaluation

The procedure for evaluating the total potential
energy uses the two recursive functions shown in

FIGURE 2. Example of tree construction for particles in
two-dimensional space; three levels, L = 0, 1, 2; N0 = 20.
A cell is the smallest rectangular box containing its
particles. (—):cells on a given level, (– – –): cells on the
previous level.

Figure 3. The first function, V1(A), returns the en-
ergy VAA due to interactions among the particles in
cell A. The initial call is V1(root). If A is a leaf, VAA

is computed by direct summation. If A is not a leaf,
VAA is computed by summing the group–group in-
teractions among the children of A. The latter step
uses the second function, V2(A, B), which returns
the energy VAB due to interactions between the par-
ticles in cell A and the particles in cell B.

Consider a call to V2(A, B). Suppose first that
the accuracy criterion (20) or (21) is satisfied. In
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FIGURE 3. Recursive functions used in evaluating the
potential energy. (a) V1(A) returns the energy VAA due to
interactions among the particles in cell A; (b) V2(A, B)
returns the energy VAB due to interactions between the
particles in cell A and the particles in cell B.

this case, a pth order multipole approximation can
be used, but the code checks to see whether di-
rect summation is faster. If so, then VAB is com-
puted by direct summation, and if not, then VAB

is computed by multipole approximation. The de-
cision is made with the help of the function di-
rect_is_faster (A, B), which accesses a lookup
table of precomputed execution times; it returns
true if direct summation is faster and false oth-
erwise. The execution time for direct summation
depends on the product NA · NB of the number of
particles in group A and group B, and the execution
time for multipole approximation depends on the
order p. Table I is the lookup table used here with
ν = 1.

Suppose, on the other hand, that the accuracy
criterion is not satisfied. If both cells are leaves of
the tree, then VAB is computed by direct summa-
tion. If one cell is a leaf and the other is not, then
interactions are computed between the leaf and the
children of the other cell. If neither cell is a leaf, then

TABLE I.
Execution Time Required to Evaluate the
Group–Group Potential Energy VAB.

p Tma NA · NB Tds

0 2.9 1 1.3
1 3.4 4 4.6
2 5.7 9 8.2
3 8.9 25 19.5
4 17.6 36 27.3
5 25.9 64 49.2
6 46.8 100 75.2
7 79.3 169 124.5
8 122.7 289 208.5
9 219.8 400 286.7

10 296.2 441 315.9

This table refers to the case of the Coulomb potential, ν = 1.
Tma: time required for pth order multipole approximation.
Tds: time required for direct summation with NA ·NB particles.
Times are in units of µs on a Sun UltraSPARC-II workstation.

interactions are computed between the smaller cell
and the children of the larger cell.

This type of recursive evaluation procedure was
introduced by Appel.4 Note that the recursion ter-
minates if the accuracy criterion is satisfied for a
given pair of cells. As a result, the number of group–
group interactions VAB entering into the compu-
tation of V is not fixed in advance but is instead
determined adaptively.

Implementation Details

The algorithm was coded in the C programming
language, and the computations were performed
in double precision on a Sun UltraSPARC-II work-
station. The code first constructs the tree and then
evaluates the potential energy by calling V1( root) .
The cell moments mn

A for ||n|| ≤ pmax are com-
puted and stored during tree construction. In the
simulations below, the maximum order of multi-
pole approximation is pmax = 10 for the Coulomb
potential and the order is fixed at p = 2 for the
London dispersion potential. The size of the system
ranges from N = 500 to N = 128, 000 particles.
The enclosed volume varies with N to ensure that
the particle density is fixed. The maximum number
of particles in a leaf is N0 = 30, 10, 20, respec-
tively, in the three test cases. In each case, results
are presented for three values of the accuracy pa-
rameter, ε = 10−3, 10−5, 10−7. A direct summation
code (using pairwise symmetry) is the benchmark
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for comparing errors and execution times. In the
treecode, loops for the recurrence relation and mul-
tipole approximation are expanded to in-line code
using a separate utility program. The particles are
stored in a linear array with group members appear-
ing in consecutive locations. The execution times
in Table I were precomputed; the timings depend
on the computer hardware and coding of the algo-
rithms so each user must prepare their own version
of Table I. The expression on the left side of (21) is
interpolated from a look-up table containing several
values of the parameter r.

Numerical Results

The first test case is the Coulomb potential for
a dense random set of particles. The charges are
qi = ±1 with equal probability. Figure 4a plots the
execution time required for direct summation and
the treecode as a function of the number of par-
ticles N. As expected, the direct summation time
increases at the rate O(N2). Direct summation is
faster for small systems, and the treecode is faster
for large systems. The crossover point depends on
the accuracy parameter ε; it varies from N = 1000
for ε = 10−3 to N = 8000 for ε = 10−7. Past
the crossover point, the treecode execution time in-
creases at a rate close to but slightly greater than
O(N). For a given value of N, the treecode execu-
tion time increases as ε is reduced. Figure 4b plots
the relative error in the energy computed by the
treecode. For a given value of ε, the error amplitude
is close to ε, and it varies little over the range of N.
For a given value of N, the error decreases as ε is
reduced.

The second test case is the London dispersion po-
tential for the same particle distribution as above
but with uniform weights qi = 1. The results, shown
in Figure 5, display the same trends as in the first
test case, but some details are different. In Figure 5a,
the execution time for direct summation is roughly
the same as in Figure 4a, but the treecode time for
large N is less than in Figure 4a. The crossover point
varies from N = 1000 for ε = 10−3 to N = 2000 for
ε = 10−7. The treecode time in Figure 5a increases
at a rate close to O(N) over the entire range of N for
all three values of ε. The relative error in Figure 5b
has similar qualitative behavior as in Figure 4b with
respect to the accuracy parameter ε and the number
of particles N.

The third test case is the Coulomb potential for
particles lying on a B-spline curve representing a
supercoiled DNA molecule.43 The curve, shown

FIGURE 4. First test case: Coulomb potential, random
particle distribution, random charges (qi = ±1 with equal
probability). (a) Execution time for direct summation,
treecode with accuracy parameter ε = 10−3, 10−5, 10−7;
(b) relative error in potential energy V computed by
the treecode.

schematically in Figure 6, is defined in Figure 3b
of ref. 43. The particles represent phosphate groups
with uniform charge and uniform spacing along the
curve; the latter condition was enforced using the
algorithm in ref. 43. In contrast to the dense ran-
dom set of particles in the first two test cases, this is
a sparse localized distribution in three-dimensional
space. The results are shown in Figure 7. The
treecode execution time in Figure 7a is close to O(N)
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FIGURE 5. Second test case: London dispersion
potential, random particle distribution, uniform weights
(qi = 1). (a) Execution time for direct summation,
treecode with accuracy parameter ε = 10−3, 10−5, 10−7;
(b) relative error in potential energy V computed by
the treecode.

over the entire range of N, and it increases only
slightly as ε is reduced. The crossover point is be-
low N = 1000 for all three values of ε. The relative
error in Figure 7b increases slightly with N, but for a
given value of N the error decreases as ε is reduced.

In all three test cases there is a systematic vari-
ation in the error as a function of the number of
particles N, either periodic, or increasing, or a com-
bination of these. The source of this variation is not

FIGURE 6. Schematic diagram of third test case,
particles on a B-spline curve representing a supercoiled
DNA molecule.43 The particles have uniform charge and
uniform spacing along the curve.

known. Aside from this, the results indicate that the
treecode algorithm is performing generally as ex-
pected in terms of execution time and accuracy.

Table II presents the speedup, defined as the ra-
tio of execution times for direct summation and
the treecode. In each test case, the speedup im-
proves if the system becomes larger (increasing N)
or if less accuracy is requested (increasing ε); this
is characteristic of treecodes. Comparing case 1 and
case 2 shows the effect of the potential function; the
speedup is better for a short-range potential than
for a long-range potential. Comparing case 1 and
case 3 shows the effect of the particle distribution;
the speedup is better for a sparse localized set than
for a dense random set (this was also observed in
previous studies using adaptive treecodes8, 30).

Concluding Remarks

We presented a treecode algorithm for rapid
computation of the nonbonded potential energy in
classical molecular systems. The algorithm treats a
general form of pairwise particle interaction with
the Coulomb and London dispersion potentials as
special cases. The energy is computed as a sum
of group–group interactions VAB using a variant
of Appel’s recursive strategy.4 Several adaptive
techniques are employed to reduce the execution
time. These include an adaptive tree with nonuni-
form rectangular cells, variable order multipole
approximation, and a run-time choice between di-
rect summation and multipole approximation to
evaluate VAB. The multipole approximation is de-
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FIGURE 7. Third test case: Coulomb potential,
particles uniformly spaced on a B-spline curve (Fig. 6),
uniform charges (qi = 1). (a) Execution time for direct
summation, treecode with accuracy parameter ε = 10−3,
10−5, 10−7; (b) relative error in potential energy V
computed by the treecode.

rived by Taylor expansion in Cartesian coordinates,
and the necessary coefficients are computed us-
ing a recurrence relation. An error bound was de-
rived and used to select the order of approximation
for VAB.

Tests were conducted for two types of particle
distributions—a dense random set and a sparse lo-
calized set. For the London dispersion potential on
a dense set (case 2) and the Coulomb potential on

a sparse set (case 3), the execution time was close
to O(N). The performance was less favorable for the
Coulomb potential on a dense set (case 1), but a
significant speedup over direct summation was still
achieved. It is well known that treecodes perform
better than direct summation for large systems, but
there is still intense interest in optimizing perfor-
mance within the family of treecode algorithms. The
aim of this work is to call attention to the advan-
tages of a group–group procedure for computing
the total potential energy in classical systems, to
demonstrate the feasibility of using Taylor approx-
imation in Cartesian coordinates, and to introduce
several adaptive techniques. This approach has the
following advantages: it is applicable to a wide class
of potential functions, the analytical basis is rela-
tively simple, and the enhanced adaptivity ensures
good performance for a variety of systems.

The most expensive step in the algorithm is eval-
uating the pth order multipole approximation for
VAB in (8); due to the use of a three-dimensional
Taylor expansion the operation count is O(p6). The
code employs several techniques to reduce the cost
associated with this step. First, a low-order p is used
whenever possible; the minimum order p satisfying
the accuracy criterion is used for the Coulomb po-
tential, and the fixed order p = 2 is used for the
London dispersion potential. Second, the recursion
terminates whenever the accuracy criterion is satis-
fied and this limits the number of times the O(p6)
step is computed. Finally, the run-time choice be-
tween direct summation and multipole approxima-
tion eliminates some of the O(p6) computations.

The Fast Multipole Method6, 7 can also be applied
to compute the total potential energy, and in this
case, the most expensive step is the multipole-to-
local transformation with an O(p4) operation count.
Analytical techniques have been developed to re-
duce the cost of this step by using rotation-based
translations,16 – 18 the fast Fourier transform,14 or
plane wave translations.18 The operation count has
been reduced to O(p2), but these codes generally use
a fixed-order p, and they traverse the tree from root
to leaves with a fixed interaction list at each level. In
contrast, the present approach retains an O(p6) oper-
ation count, but uses adaptive techniques to lower
the order p and to reduce the number of times the
costly step is computed. There are various tradeoffs
between these alternatives in terms of speedup, ac-
curacy, memory usage, range of applicability, and
ease of implementation, but it is beyond the scope
of this work to make a detailed quantitative com-
parison; this is a topic for future investigation.
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TABLE II.
Speedup (Ratio of Execution Times for Direct Summation and the Treecode).

Case 1 Case 2 Case 3

N ε = 10−3 10−5 10−7 10−3 10−5 10−7 10−3 10−5 10−7

500 0.6 0.6 0.6 1.6 1.2 0.9 1.1 0.7 0.7
1000 1.0 0.7 0.7 3.0 2.6 1.6 2.4 1.5 1.3
2000 1.6 0.8 0.7 6.6 4.9 3.1 3.8 3.6 2.7
4000 3.0 1.3 0.8 11.4 8.8 5.1 7.3 6.2 5.2
8000 4.8 2.1 1.0 21.0 17.1 8.9 13.4 11.8 9.6

16,000 8.5 3.3 1.5 42.2 33.1 18.4 25.7 21.7 18.4
32,000 17.2 5.6 2.2 76.1 59.4 31.6 46.7 40.8 33.9
64,000 30.5 10.7 3.8 148.8 116.4 65.2 86.0 76.1 65.0

128,000 57.1 18.9 6.7 299.4 232.2 127.2 171.3 151.9 132.0

N: number of particles, ε = 10−3, 10−5, 10−7: accuracy parameter.
Case 1: Coulomb potential, random particles, random charges (qi = ±1).
Case 2: London dispersion potential, random particles, uniform weight.
Case 3: Coulomb potential, particles on a B-spline curve, uniform charge.
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