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Abstract

In molecular simulations it is sometimes necessary to compute the electrostatic
potential at M target sites due to a disjoint set of N charged source particles. Direct
summation requires O(MN) operations, which is prohibitively expensive when M and
N are large. Here we consider two alternative tree-based methods which reduce the
cost. The standard particle-cluster treecode partitions the N sources into an octree and
applies a far-field approximation, while a recently developed cluster-particle treecode
instead partitions the M targets into an octree and applies a near-field approximation.
We compare the two treecodes with direct summation and document their accuracy,
CPU run time, and memory usage. We find that the particle-cluster treecode is faster
when N > M , i.e. when the sources outnumber the targets, and conversely, the cluster-
particle treecode is faster when M > N , i.e. when the targets outnumber the sources.
Hence the two treecodes provide useful tools for computing electrostatic potentials in
charged particle systems with disjoint targets and sources.
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Two alternative fast summation treecodes are described for computing electrostatic poten-
tials in charged particle systems with disjoint targets and sources. We compare the treecodes
with direct summation and document their accuracy, CPU run time, and memory usage. The
particle-cluster treecode is faster when the sources outnumber the targets, and conversely,
the cluster-particle treecode is faster when the targets outnumber the sources.
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INTRODUCTION

Charged particle interactions are a key element in molecular simulations1,2. In a system with

N charged particles, evaluating the electrostatic potential at the particle locations by direct

summation requires O(N2) operations, which is prohibitively expensive when N is large. As

a result, many approaches have been developed to reduce the cost and permit the study of

larger systems. For example, particle-mesh methods project the particles onto a regular grid

and apply the Fast Fourier Transform to evaluate the potential. More efficient related meth-

ods include particle-particle/particle-mesh3 and particle-mesh Ewald4–6. Another approach

using interpolation onto multiple nested grids is the multilevel summation method7–10.

An alternative class of tree-based methods use particle clustering and analytic approxi-

mations to reduce the cost. This class includes the treecode11 and the fast multipole method

(FMM)12–14. In a treecode, the particles are divided into an octree of clusters and the

particle-particle interactions are replaced by particle-cluster interactions. Well-separated

interactions are evaluated using a far-field multipole approximation15 and the remaining in-

teractions are evaluated directly. We refer to this approach as a particle-cluster treecode.

In the FMM, the multipole approximations at different levels of the tree are combined and

evaluated by a local approximation at the leaves.

Particle-mesh and tree-based methods reduce the operation count to O(N log N) and

hence they are heavily used in molecular simulations. Nonetheless, there is ongoing interest

in extending the capability of these methods and further optimizing their performance.

Here we consider the problem of evaluating the electrostatic potential at M target sites

due to a disjoint set of N charged source particles, where M 6= N . One potential appli-

cation is in particle-mesh simulations, for example as depicted in Figure 1, with random

charged source particles representing bulk liquid and target sites on a grid. A special case

arises in mesh-based finite-difference solutions of the Poisson-Boltzmann equation for sol-

vated biomolecules, where the sources are the atomic charges representing the biomolecule

and the targets are the boundary points of the finite-difference grid. In this case the high

cost of evaluating the Dirichlet boundary values of the potential is a computational bot-

tleneck16–18, and the approach described here may be able to reduce the cost. Another
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Figure 1: Schematic picture of a particle-mesh simulation, random charged source particles

(◦) representing bulk liquid, target sites (x) on a grid.

potential application arises when the targets and sources represent two distinct molecules,

as in protein docking simulations.

To set notation, consider a set of target sites {xi, i = 1 : M} and a set of source particles

with associated partial charges {yj, qj , j = 1 : N}, where xi,yj ∈ R
3. We consider potentials

of the form

V (xi) =

N∑

j=1

qjφ(xi,yj), i = 1 : M, (1)

where φ(x,y) is a given kernel, and the goal is to compute these quantities accurately and

efficiently. We present results for the Coulomb potential,

φ(x,y) =
1

4πǫ0|x − y|
, (2)

but several other kernels can be treated similarly including the real space Ewald poten-

tial19, power law potential20, the screened Coulomb potential21 and the generalized Born

potential22.

Direct summation of Equation (1) using loops over i and j has operation count O(MN)

and the need arises for more efficient methods when M or N are large. Unlike the case of

coincident targets and sources, the case of disjoint targets and sources has received relatively
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little attention. In one example from computational fluid dynamics, the FMM was used to

compute the stream function at a set of targets due to disjoint sources in a two-dimensional

flow field23.

The present work considers two alternative tree-based methods for computing the po-

tentials in Equation (1), the standard particle-cluster treecode11,20,24 and a recently devel-

oped cluster-particle treecode25. The particle-cluster treecode partitions the N sources into

an octree and applies a far-field approximation, while the cluster-particle treecode instead

partitions the M targets into an octree and applies a near-field approximation. The cluster-

particle treecode was introduced in the context of radial basis function approximations25,

while the present work emphasizes the application to electrostatics, especially for M 6= N .

We compare the two treecodes with direct summation and document their accuracy,

CPU run time, and memory usage. Depending on the required error, the treecodes run at

a fraction of the time taken by direct summation, and their memory usage is a relatively

modest factor more than the direct sum memory usage. We find that the particle-cluster

treecode is faster when N > M , i.e. when the sources outnumber the targets, and conversely,

the cluster-particle treecode is faster when M > N , i.e. when the targets outnumber the

sources. Hence the two treecodes provide useful tools for computing electrostatic potentials

in charged particle systems with disjoint targets and sources.

The remainder of the article is organized as follows. The methodology is explained

in the next section including the procedure for constructing the tree, the particle-cluster

and cluster-particle algorithms, the recurrence relation used for the near-field and far-field

approximations, and some implementation details. This is followed by numerical results for

two test cases in which we present the error, CPU run time, and memory usage, showing how

the treecodes’ performance depends on the system size M, N and the user-specified treecode

parameters. This is followed by concluding remarks.
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METHODOLOGY

Tree construction

Consider a set of particles representing either M targets or N sources. The root cluster

is the smallest rectangular box enclosing the particles, with sides parallel to the Cartesian

axes. The root is divided uniformly into eight child clusters forming the next level in the

tree. The process continues recursively until the number of particles in a cluster is less than

a user-specified value (M0 for a target tree, N0 for a source tree). This yields an octree of

particle clusters11. A cluster at the lowest level of the tree is called a leaf. The number

of levels depends logarithmically on the number of particles. In the following sections we

describe the two versions of the treecode.

Particle-cluster treecode

Particle-cluster treecodes have been applied mainly to systems in which the targets and

sources coincide11,20–22,24, but the approach extends readily to systems with disjoint targets

and sources. In this case the tree construction procedure is applied to the N source particles

{yj}, yielding an octree of source clusters. The potential is written as a sum of particle-

cluster interactions,

V (xi) =
N∑

j=1

qjφ(xi − yj) (3a)

=
∑

C

∑

yj∈C

qjφ(xi,yj), (3b)

where the source clusters C in Equation (3b) depend on the target site xi and are determined

in a manner described below.

Figure 2 depicts a particle-cluster interaction between a target site xi and the source

particles yj in source cluster C, showing the cluster center yc, cluster radius r, and particle-

cluster distance R = |xi − yc|. The algorithm employs a far-field approximation which is

valid when the target site xi is far from the source cluster C.
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xi R yc

yj

r

C

Figure 2: A particle-cluster interaction is depicted between a target site xi and the source

particles yj in source cluster C. The cluster has center yc and radius r, and the particle-

cluster distance is R.

A particle-cluster interaction can be computed by direct summation or by Taylor ex-

panding φ(xi,yj) about y = yc,

∑

yj∈C

qjφ(xi,yj) ≈
∑

yj∈C

qj

p∑

||k||=0

1

k!
∂k
yφ(xi,yc)(yj − yc)

k (4a)

=

p∑

||k||=0

ak(xi,yc)Mk(C). (4b)

In Equation (4a) we used Cartesian multi-index notation, ||k|| = k1 +k2 +k3, k! = k1!k2!k3!,

∂k
y = ∂yk1

1 ∂yk2

2 ∂yk3

3 , (yj − yc)
k = (yj1 − yc1)

k1(yj2 − yc2)
k2(yj3 − yc3)

k3, and in Equation (4b)

we defined the Taylor coefficients of the kernel,

ak(xi,yc) =
1

k!
∂k
yφ(xi,yc), (5)

and the cluster moments

Mk(C) =
∑

yj∈C

qj(yj − yc)
k. (6)

Equation (4b) defines a pth order Taylor approximation for the particle-cluster interaction.

Algorithm 1 describes the particle-cluster treecode11,21. The user-specified parameters

are p (order of Taylor approximation), N0 (maximum number of particles in a leaf), and θ

(defined below). The code loops over the target sites xi to compute the potentials V (xi). A

recursive subroutine compute-pc is called to compute the interaction between a target site

and a source cluster. A target site and source cluster are called well-separated if r/R ≤ θ

and this defines the multipole acceptance criterion (MAC)11,26. If the MAC is satisfied, then
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the interaction is computed by the Taylor approximation in Equation (4b). If the MAC is

not satisfied, then the code descends to the children of the cluster, until a leaf is reached at

which point direct summation is used. The cluster moments are computed on the fly and

stored for re-use with different target sites. The Taylor coefficients are computed using a

recurrence relation given below.

Algorithm 1. Particle-cluster treecode

1 program pc-treecode

2 input : targets xi, sources and charges yj , qj, treecode parameters p, θ

3 output : potentials V (xi)

4 construct tree of source clusters

5 for i = 1 : M ; compute-pc(xi,root); end

6 end program

7 subroutine compute-pc (x, C)

8 if MAC is satisfied

9 compute and store moments of C (if not already available)

10 compute particle-cluster interaction by Taylor approximation (4b)

11 else if C is a leaf

12 compute particle-cluster interaction by direct summation

13 else for each child of C

14 compute-pc(x,child)

15 end subroutine

In the particle-cluster treecode, the tree has O(log N) levels. The operation count for

the cluster moments is O(N log N), since each source particle contributes to a cluster on

every level of the tree. The operation count for computing the potentials is O(M log N),

since the code loops over the targets and descends to the leaves of the tree in each step of

the loop. Note that the operation count for the Taylor approximation (4b) is independent

of M and N , assuming the moments are known. In addition we are not accounting for N0,

the maximum number of particles in a leaf. Hence according to these considerations, the

particle-cluster treecode has operation count O((M + N) log N).
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Cluster-particle treecode

In this case the tree construction procedure is applied to the M target sites {xi}, yielding an

octree of target clusters. Figure 3 depicts a cluster-particle interaction between the target

sites xi in a target cluster C and a source particle yj . The cluster has center xc and radius r,

and the cluster-particle distance is R = |xc − yj |. The target cluster and source particle are

called well-separated if r/R ≤ θ. The algorithm employs a near-field approximation which

is valid for all target sites xi ∈ C and which accounts for interactions with well-separated

source particles yj .

yjRxc

xi

r

C

Figure 3: A cluster-particle interaction is depicted between the target sites xi in a target

cluster C and a source particle yj. The cluster has center xc and radius r, and the cluster-

particle distance is R.

Suppose the tree has L levels, where level 1 is the root and level L contains the leaves. A

given target site xi belongs to a nested sequence of clusters, xi ∈ CL ⊆ · · · ⊆ C1, where the

subscript denotes the level of the cluster in the tree. The center of cluster Cl is denoted by

xl
c for 1 ≤ l ≤ L. Now let Il be the set of source particles yj that are well-separated from Cl

but are not well-separated from Cl−1, . . . , C1, and let D be the set of source particles yj that

are not well-separated from CL, . . . , C1. This effectively divides the source particles into a

set of interaction lists. Then the potential at xi can be expressed as

V (xi) =
N∑

j=1

qjφ(xi,yj) (7a)

=
∑

yj∈D

qjφ(xi,yj) +

L∑

l=1

∑

yj∈Il

qjφ(xi,yj). (7b)
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The first term in Equation (7b) is evaluated by direct summation and the remaining terms

are evaluated by Taylor expanding φ(xi,yj) about x = xl
c to obtain

∑

yj∈Il

qjφ(xi,yj) ≈
∑

yj∈Il

qj

p∑

||k||=0

1

k!
∂k
xφ(xl

c,yj)(xi − xl
c)

k (8a)

=

p∑

||k||=0

mk(x
l
c)(xi − xl

c)
k. (8b)

Equation (8b) is a power series of degree p in the variable xi − xl
c with coefficients

mk(x
l
c) =

∑

yj∈Il

qj(−1)||k||ak(x
l
c,yj), (9)

where we used the definition of the Taylor coefficients in Equation (5) and the relation

∂k
xφ = (−1)||k||∂k

yφ. Equation (8b) defines a pth order Taylor approximation for the cluster-

particle interaction between target sites xi ∈ Cl and source particles yj ∈ Il. We view it as

a near-field approximation since it is valid when xi is close to xl
c.

The cluster-particle treecode is described in Algorithm 2. First the tree construction

procedure is applied to the M target sites to create the target clusters. Then there are two

stages. Stage 1 computes the power series coefficients mk(xc) and the direct sum term in

Equation (7b). Stage 2 computes the remaining terms in Equation (7b) using the near-field

approximation in Equation (8b).

In stage 1 the code loops through the N source particles using subroutine compute-

cp1, and for each source particle yj , it descends the tree of target clusters starting from the

root. If a target cluster and the source particle are well-separated, then the power series

coefficients mk(xc) in Equation (9) are updated. Otherwise the subroutine descends to the

children of the cluster and calls itself recursively. When a leaf CL is reached, if the MAC is

not satisfied, then the first term in Equation (7b) is computed by direct summation for all

target sites xi ∈ CL.

In stage 2 the code uses subroutine compute-cp2 to compute the remaining terms in

Equation (7b). This is done by descending the tree and evaluating the power series in

Equation (8b) for all target sites xi in target clusters C that interacted with source particles

yj by Taylor approximation in stage 1. This completes the evaluation of the potentials V (xi).
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Algorithm 2. Cluster-particle treecode

1 program cp-treecode

2 input : targets xi, sources and charges yj , qj, treecode parameters p, θ

3 output : potentials V (xi)

4 construct tree of target clusters

5 for j = 1, N ; compute-cp1(root,yj); end

6 compute-cp2(root)

7 end program

8 subroutine compute-cp1(C,y)

9 if MAC is satisfied

10 update power series coefficients mk(xc) by Equation (9)

11 else if C is a leaf

12 compute first term in Equation (7b) by direct summation

13 else for each child of C

14 compute-cp1(child,y)

15 end subroutine

16 subroutine compute-cp2(C)

17 if C interacted with a source particle by Taylor approximation in stage 1

18 loop through target sites xi in C

19 compute second term in Equation (7b) using power series Equation (8b)

20 for each child of C

21 compute-cp2(child)

22 end subroutine

In the cluster-particle treecode, the tree has O(log M) levels and the code descends

through the tree in both stages. In stage 1 the code loops through the source particles so

the operation count is O(N log M), and in stage 2 the code accesses the target sites so the

operation count is O(M log M). Note that the operation count for the power series (8b)

is independent of M and N , assuming the coefficients are known. In addition we are not

accounting for M0, the maximum number of particles in a leaf. Hence according to these

11



considerations, the cluster-particle treecode has operation count O((M + N) log M).

Recurrence relation

The recurrence relation19,24 for the Taylor coefficients ak(x,y) of the Coulomb potential is

ak =
1

|x − y|2

[(
1

||k||
− 2

) 3∑

i=1

(xi − yi)ak−ei
+

(
1

||k||
− 1

) 3∑

i=1

ak−2ei

]
, (10)

where ei is the ith Cartesian basis vector. The coefficients for ||k|| = 0, 1 are computed

explicitly and the recurrence relation is used to compute the coefficients for ||k|| ≥ 2. The

procedure assumes that ak = 0 when any index is negative. The particle-cluster treecode

uses (x,y) = (xi,yc) and the cluster-particle treecode uses (x,y) = (xc,yj).

Implementation details

The algorithms were programmed in Fortran90 starting from an open source particle-cluster

treecode27 and the codes are available online28 under the GNU General Public License. The

particle positions and charges are stored in arrays, and a data structure holds information

about the clusters, e.g. spatial extent, pointers to the particles contained in the cluster,

pointers to the children, and cluster moments or power series coefficients. The computations

were performed on an iMAC 2.5GHz quad-core Intel Core i5 processor with 4GB memory

running OS X version 10.6.8, and the codes were compiled using ifort with -fast optimization.

Memory usage was obtained from the Real Mem column of the OS X Activity Monitor.

Following are some details relevant to the cluster-particle treecode. The power series in

Equation (8b) is evaluated efficiently by Horner’s rule29. The idea can be illustrated simply

for a quadratic polynomial in one dimension, c0+c1x+c2x
2 = c0+x(c1+c2x); the expression

on the left requires three multiplications and two additions, while the expression on the right

requires one less multiplication. This can be generalized to higher degree multi-dimensional

power series as in Equation (8b). In stage 1, when the MAC is satisfied for a given target

cluster, a flag is set to indicate that a contribution from that cluster will be required in

stage 2.
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RESULTS

The particle-cluster and cluster-particle treecodes were applied to compute the electrostatic

potential in Equation (1) at M target sites due to N disjoint source particles. We considered

two test cases. In case 1, the targets and sources are randomly distributed in a unit cube,

and in case 2, the targets and sources are chosen to represent a particle-mesh computation.

In both cases the source charges qj are randomly distributed in the interval (−1, 1). The

treecode error is defined by

E =





M∑
i=1

|V (xi) − V̂ (xi)|
2

M∑
i=1

|V (xi)|2





1/2

, (11)

where V (xi) is the exact potential obtained by direct summation and V̂ (xi) is the treecode ap-

proximation. The treecode approximation order spanned the range p = 2k for k = 0, . . . , 10,

and the maximum number of particles in a leaf was set to M0 = N0 = 500. The MAC pa-

rameter θ = 0.75 is considered first and later on we compare with θ = 0.5. These parameter

values are intended as representative rather than optimal values.

Treecode performance in test case 1

In test case 1 the targets and sources are randomly distributed in a unit cube. Figure 4

displays the treecode performance in terms of the error and CPU run time. The number of

targets is M = 104, 105, 106 from left to right, and the number of sources in each frame is

N = 104, 105, 106. The MAC parameter is θ = 0.75.

In Figure 4a we see that the treecode error decreases as the approximation order p

increases. Order p = 0 yields the largest error with E ≈ 10−1 and order p = 20 yields the

smallest error with E ≈ 10−6. For a given order p, both treecodes yield similar errors and

the error is almost independent of the system size M, N .

Next consider the CPU run time in Figure 4b. The direct sum CPU time is shown as a

dashed line. For a given value of M , the direct sum CPU time increases linearly with N ,

and conversely, for a given value of N , the direct sum CPU time increases linearly with M ;
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Figure 4: Test case 1, treecode performance, (a) error, (b) CPU time, M targets and N

sources, order p = 2k, k = 0, . . . , 10 (arrows indicate increasing p), MAC parameter θ = 0.75,

direct sum (∗, dashed line), particle-cluster (#, solid line), cluster-particle (△, solid line).

to make the latter point more clearly, Table 1a displays the direct sum CPU time. These

results confirm as expected that the direct sum CPU time scales like O(MN).

Continuing in Figure 4b, the treecode CPU time is shown as a solid line, with symbols

and color distinguishing between particle-cluster and cluster-particle. The treecode CPU

time increases as the order p increases, but in many instances the treecodes are faster than

direct summation. This is also evident in Table 1b,c which displays the treecode CPU time

with order p = 4, yielding error E ≈ 5 · 10−3. For example when M = N = 106, direct

summation takes 10345.48 s ≈ 2.9 hr, while the particle-cluster treecode takes 51 s, a factor

of 200 times faster.
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Next we note that the two treecodes behave differently when M 6= N . For example in

Table 1 when M = 104, N = 106, particle-cluster takes 1.29 s while cluster-particle takes

34 s, so particle-cluster is faster when the sources outnumber the targets. Conversely, when

M = 106, N = 104, particle-cluster takes 15.58 s while cluster-particle takes 1.60 s, so cluster-

particle is faster when the targets outnumber the sources. For M = N , particle-cluster is

about twice as fast as cluster-particle. Similar trends are seen in Figure 4 for other values

of the order p.

Table 1: Test case 1, CPU time (s) with M targets and N sources, (M, N) ∈ {104, 105, 106},

(a) direct sum, (b,c) treecodes with order p = 4, MAC parameter θ = 0.75, yielding error

E ≈ 5 · 10−3.

M = 104 M = 105 M = 106

(a) direct sum

N = 104 1.01 10.10 101.13

N = 105 10.00 100.38 1015.22

N = 106 100.59 1004.65 10325.48

(b) particle-cluster

N = 104 0.16 1.55 15.58

N = 105 0.37 3.10 30.47

N = 106 1.29 5.81 51.11

(c) cluster-particle

N = 104 0.35 0.67 1.60

N = 105 3.32 6.43 11.31

N = 106 34.00 64.60 111.74

Next we discuss how the CPU time scales with the system size M, N . In examining the

treecode algorithms, we saw heuristically that the operation count is O((M + N) log N) for

the particle-cluster treecode and O((M+N) log M) for the cluster-particle treecode. However

the numerical results indicate different scaling for the actual CPU run time. For example,

the particle-cluster CPU time in Table 1b depends almost linearly on M and sublinearly
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on N , indicating that the run time scales like O(M log N); this is work done in evaluating

the potentials, assuming the moments are known. Conversely, the cluster-particle CPU time

in Table 1c depends almost linearly on N and sublinearly on M , indicating that the run

time scales like O(N log M); this is the work done in stage 1 in the loop over the source

particles. The difference between the expected operation count and the actual CPU run

time scaling may be due to several factors, e.g. (1) the CPU run time is affected not only by

the operation count but also by memory access and communication costs, (2) the treecodes

use direct summation at the leaves of the tree and this was not accounted for in the operation

count, (3) the other terms in the operation count may become more important for larger

system sizes.

Effect of MAC parameter in test case 1

Next we consider the effect of the MAC parameter θ on the treecode performance. Recall

that the Taylor approximation is applied when r/R ≤ θ. Hence smaller θ forces the code to

descend deeper in the tree, where the cluster radii r are smaller, resulting in smaller error

and larger CPU time. Figure 5 displays the CPU time versus error for two MAC parameters,

θ =0.75 and θ = 0.5, and two particle systems, (a) M = 104, N =106, (b) M = 106, N = 104.

The main features are summarized as follows.

• For a given MAC parameter θ, increasing the order p leads to smaller error and larger

CPU time.

• For a given order p, decreasing the MAC parameter θ leads to smaller error and larger

CPU time.

• For a given MAC parameter θ and order p, the two treecodes have similar error. In

addition, the error does not depend strongly on the system size M, N .

• For a given level of error, the particle-cluster treecode has smaller CPU time in Fig-

ure 5a and the cluster-particle treecode has smaller CPU time in Figure 5b. This agrees

with the previous finding that particle-cluster is faster when the sources outnumber

the targets, and cluster-particle is faster when the targets outnumber the sources.
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Figure 5: Test case 1, treecode CPU time versus error, order p = 2k, k = 0, . . . , 10 (increasing

from right to left on each line), MAC parameter θ = 0.75 (#,△), θ = 0.5 (∗, x), M targets

and N sources, (a) M = 104, N = 106, particle-cluster is faster, (b) M = 106, N = 104,

cluster-particle is faster.
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• There is a crossover in CPU time near error E ≈ 10−2 − 10−3. To obtain error larger

than the crossover, it is more efficient to use the larger MAC parameter θ = 0.75.

Conversely, to obtain error smaller than the crossover, it is more efficient to use the

smaller MAC parameter θ = 0.5.

• From Table 1 we see that the direct sum CPU time for these systems is about 100 s, so

depending on the required level of accuracy, the treecode CPU time can be substantially

smaller.

Treecode performance in test case 2

Test case 2 is concerned with particle-mesh computations in a cube. Table 2 displays the

error, CPU time, and memory usage for two systems, (a) M = 323 = 32768 targets on a

grid, N = 106 random sources, and (b) M = 106 random targets, N = 323 = 32768 sources

on a grid. The order is p = 4, 8, 12 and the MAC parameter is θ = 0.75.

Examining first the error in Table 2, we see that (1) the error decreases as the order p

increases, (2) the two treecodes have comparable error for given order p, and (3) the errors

for the two systems are comparable. For example in system (a), order p = 4 yields error

E = 0.575 · 10−2, and order p = 12 yields error E = 0.693 · 10−4, about two orders of

magnitude smaller. System (b) has slightly smaller errors than system (a).

Next considering the CPU time in Table 2, we see that the treecodes are faster than direct

summation, except for cluster-particle with order p = 12. As before, the relative speed of

the two treecodes depends on the system size M, N .

In system (a) with N > M , particle-cluster is about twenty times faster than cluster-

particle for a given order p. However, particle-cluster also uses more memory, although even

with order p = 12, it uses less than four times as much memory as direct summation (117.5

MB versus 32.2 MB). The treecode memory usage depends on the number of clusters in

the tree; note that particle-cluster stores the moments for each source cluster, and cluster-

particle stores the power series coefficients for each target cluster. When N > M , the source

tree has more levels than the target tree, and this explains why particle-cluster uses more

memory than cluster-particle.
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Table 2: Test case 2, treecode performance, two systems (a,b) representing particle-mesh

computations, order p = 4, 8, 12, MAC parameter θ = 0.75.

(a) M = 323 targets on a grid, N = 106 random sources

method p = 4 p = 8 p = 12

error, E particle-cluster 0.575e-2 0.519e-3 0.693e-4

cluster-particle 0.548e-2 0.490e-03 0.764e-4

CPU time (s) particle-cluster 2.4 7.9 21.2

cluster-particle 47.2 169.7 411.9

direct sum 332.8

memory (MB) particle-cluster 39.6 64.7 117.5

cluster-particle 33.3 36.1 42.7

direct sum 32.2

(b) M = 106 random targets, N = 323 sources on a grid

method p = 4 p = 8 p = 12

error, E particle-cluster 0.509e-2 0.419e-3 0.588e-4

cluster-particle 0.478e-2 0.402e-3 0.522e-4

CPU time (s) particle-cluster 21.3 72.0 197.9

cluster-particle 3.8 11.9 28.1

direct sum 330.2

memory (MB) particle-cluster 40.6 43.5 50.1

cluster-particle 49.2 72.1 124.9

direct sum 32.2
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In system (b) with M > N , cluster-particle is about six times faster than particle-cluster

for a given order p. As before, the faster algorithm uses more memory due to the larger

number of clusters in the tree, although even with order p = 12, cluster-particle uses less

than four times as much memory as direct summation (124.9 MB versus 32.2 MB).

CONCLUSIONS

We compared two alternative treecodes for computing electrostatic potentials in charged

particle systems with M targets and N disjoint sources. The particle-cluster treecode par-

titions the sources into an octree and applies a far-field approximation11,19,24, while the

cluster-particle treecode instead partitions the targets into an octree and applies a near-field

approximation25. The cluster-particle treecode was developed recently in the context of

radial basis function approximations25, while the present work concerns the application to

electrostatics, especially for M 6= N .

We documented the accuracy, CPU run time, and memory usage of the treecodes, showing

how their performance depends on the system size M, N , the approximation order p, and

the MAC parameter θ. To keep the discussion simple, we chose representative values for the

maximum number of particles in a leaf, M0, N0.

Depending on the required error, the treecodes run at a fraction of the time taken by

direct summation, and the treecode memory usage is a relatively modest factor more than

the direct sum memory usage. The particle-cluster treecode is faster for N > M , i.e. when

the sources outnumber the targets, and the cluster-particle treecode is faster for M > N ,

i.e. when the targets outnumber the sources. In addition, the code can be optimized with

respect to either CPU time or memory usage by tuning the treecode parameters (order p,

MAC parameter θ). Hence the two treecodes provide useful tools for computing electrostatic

potentials in charged particle systems with disjoint targets and sources.

We mentioned several possible applications of the treecodes for systems with disjoint

targets and sources, e.g. particle-mesh computations and protein docking. In this work we

focused on computing the electrostatic potential, but the treecodes can be readily extended

to compute the gradient of the potential19,24 and hence the electrostatic force. The treecodes
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can also be applied to other kernels for which the necessary recurrence relations are known

including the real space Ewald potential19, power law potential20, and the screened Coulomb

potential21. A particle-cluster treecode has been implemented for the generalized Born

potential22, although as yet only for low order p.

Before concluding we comment briefly on parallelization of treecodes30–32. In the particle-

cluster treecode, the target computations are independent of each other (Algorithm 1, line 5),

so the work can be done concurrently on multiple processors. In this case, if the available

memory on each processor is large enough to hold the entire source tree, then a replicated

data approach can be used33,34. Otherwise a distributed memory approach can be used, for

example as in large-scale gravitational simulations of interacting point masses30,32,35. Several

approaches have been developed for load balancing in parallel treecode simuations30–32,36–38.

In the cluster-particle treecode, the source computations in stage 1 are independent of each

other (Algorithm 2, line 5), so this portion of the work can also be done concurrently.

However a comparison of the parallel performance of the two treecodes is reserved for future

investigation.
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29. G. Dahlquist, Å. Björk, Numerical Methods in Scientific Computing, SIAM, 2008.

30. M. S. Warren, J. K. Salmon, Comput. Phys. Commun. 1995, 87, 266-290.

31. J. P. Singh, C. Holt, T. Totsuka, A. Gupta, J. Hennessy, J. Parallel Distr. Comput.

1995, 27, 118-141.

32. J. Dubinski, New Astronomy 1996, 1, 133-147.

33. D. Liu, Z.-H. Duan, R. Krasny, J. Zhu, Proc. of 18th International Parallel and Dis-

tributed Processing Symposium 2004, IEEE Computer Society Press.

34. W.H. Geng, R. Krasny, J. Comput. Phys. 2013, 247, 62-78.
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