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The equations governing periodic vortex sheet roll-up from analytic initial data are 
desingularized. Linear stability analysis shows that this diminishes the vortex sheet model’s 
short wavelength instability. yielding a numerically more tractable set of equations. Com- 
putational evidence is presented which indicates that this approximation converges, beyond 
the critical time of singularity formation in the vortex sheet, if the mesh is relined and the 
smoothing parameter is reduced in the proper order. The results suggest that the vortex sheet 
rolls up into a double branched spiral past the critical time. It is demonstrated that either 
higher machine precision or a spectral filter can be used to maintain computational accuracy 
as the smoothing parameter is decreased. Some conjectures on the model’s long time 
asymptotic state are given. r’ 1986 Asadsmic Press, Inc 

1. INTRODUCTION 

The purpose of this paper is to present a new approach for computing vortex 
sheet roll-up from periodic analytic initial perturbations. The periodically perturbed 
vortex sheet is an asymptotic model for the instability of a parallel shear flow to 
streamwise perturbations. In this model, the transition region between the two 
streams is approximated by a surface across which the tangential velocity com- 
ponent has a jump discontinuity. In recent years, progress has been made in 
understanding vortex sheet evolution but there are still important open questions. 
The basic theoretical result is the short time existence of an analytic vortex sheet 
(Sulem et al. [28]). Asymptotic analysis and numerical evidence suggest that with 
analytic initial data, a singularity forms in the vortex sheet at a finite critical time 
(Moore [19], Meiron et al. [17], Krasny [15]). 

The present approach applies a method of desingularization to investigate the 
possible evolution of the vortex sheet past the critical time. This work should be 
viewed as experimental since there is currently no rigorous theory concerning the 
vortex sheet’s evolution when it stops being analytic and previous numerical 
calculations have not converged past this time (e.g., Pullin [23], van de Vooren 
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~301, Krasny [15]). In pursuing these calculations we have been influenced by 
Gorcos and Sherman [lo] who advocate the use of deterministic models to study 
the coherent structures that occur in turbulent mixing layers. These structures per- 
sist at high Reynolds number (see the survey by Ho and Wuerre [ 141) and a COD 

mon theme in fluid dynamics is that they can be approximated by vortex sheets 

embedded in ideal flow. The present numerical work aims at providing a c,on- 
vergent discretization of periodic vortex sheet roll-up, with the hope that this wil! 
contribute to a better understanding of the underlying physical shear laq’er 
instability. 

A numerica! method for the present problem should be capable of handling Iwo 
difficulties that have beset previous computational studies. 

1. Linear stability analysis of a flat, constant strength vortex sheet shows ihai 
the perturbation equations have solutions whose growth rate increases linearly with 
their wavenumber (Batchelor [4] ). This short viavelength instability (called 
“‘ISeivin-Helmholtz instability”) implies that the linearized initial value problem of 
vortex sheet evolution is ill-posed in the sense of Hadamard {Garabedian [Ii ] ). Ii 
helps to keep in mind Hadamard’s original observation on the initial value problem 
for the Laplace equation: although with analytic initial data a unique analytic 
solution exists locally, that solution does not necessarily depend continuously on 
the initiai data. A practical consequence for the present problem is that any con- 
sistent discretization of the vortex sheet equations will also have a short wavelength 
linear instability. In an actual computation, short waitelength perturbations are 
introduced spuriously by roundoff error and they may grow fast enough te desrroy 
the calculation’s accuracy. With a fixed machine precision, refining the mesh does 
not reduce the computational error since the discretization then resolves shorter 
wavelength modes which grow faster once they are perturbed by roundoff error 
This difficulty can be partially overcome by filtering out the spurious roundoff error 
perturbations in wave number space or by using higher precision arithmetic [IS]. 
An alternative remedy that has been investigated is to dampen the growth of smal! 
scales by locally averaging the computed solution in physical space (Moore [20]). 

? I. Another difficulty arises beyond the initial stage of the evolution, when the 
vortex sheet stops being analytic. At the critical time t,, the vortex s’heet strell3h -b 
has a cusp and the curvature has an infinite jump discontinuity, although the 
sheet’s slope remains bounded and its tangent siector is continuous [19. 14; 15:. 
Some investigators (e.g., Higdon and Pozrikidis [13], van de Vooren [30]) have 
derived methods which are second or higher order accurate for sufficiently differen- 
tiable vortex sheets, but it is likely that such discretizations lose their consisrencg 
and do not converge when the singularity forms in the exact solution. D. Puliin ha< 
conjectured (private communication, 1983) that past the critical time, the vortex 
sheet is a double branched spiral w-ith an infinite number of turns, an 
approached from above, the spiral vanishes in size. This idea is motivated by the 
study of self-similar spiral formation for initially flat vortex sheets which hare a 
singular strength distribution (see Saffman and Baker [Xj, Pullin and Phillips 
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[22]). This suggests that the previous time dependent calculations for the present 
problem have also been hampered in trying to resolve the arbitrarily small spatial 
scales of a spiral using only a finite number of computational elements. 

We adopt the viewpoint expressed by Anderson [l] in a study of an initially cir- 
cular vortex sheet separating fluids of slightly different densities. The exact 
equations governing the vortex sheet’s evolution are replaced by approximate 
(desingularized) equations for which the difficulties mentioned above are mitigated 
and which have numerically tractable solutions. The approximate equations are 
characterized by a smoothing parameter and the exact equations are recovered 
when that parameter is set to zero. Anderson’s idea is to study the limit of solutions 
to these approximate equations as the smoothing parameter vanishes. This type of 
desingularization of vortex sheet evolution, also called the vortex blob method, was 
introduced by Chorin and Bernard [9]. The method has been applied and extended 
to a variety of fluid dynamical situations (see the review by Leonard [ 161). Some 
previous alternative desingularizations of the present problem have incorporated a 
stabilizing physical mechanism into the model. Moore [18] has derived an 
evolution equation for a vortex layer of small thickness. Pozrikidis and Higdon 
[21] have numerically studied a periodically perturbed layer of constant vorticity. 
Pullin [23] has included surface tension terms in the evolution equation. Unlike 
these approaches, the specific form of desingularization that will be used here does 
not correspond precisely to a physical effect. Our approach is more analogous to 
the artificial viscosity method for capturing shocks in compressible flow (Richtmyer 
and Morton [24]) and the regularization techniques of Zabusky and Overman 
[32] for contour dynamics. 

Section 2 introduces the vortex blob method as a way to desingularize the 
equations governing vortex sheet evolution. A linear stability analysis of the 
desingularized equations is performed. Section 3 presents roll-up calculations. 
Numerical evidence indicates that the present desingularization approach converges 
past the vortex sheet’s critical time. The effect of roundoff error in a computation 
using a small value of the smoothing parameter is examined. Some conjectures on 
the vortex sheet’s long time asymptotic state are given. The results are discussed in 
Section 4. 

2. THE GOVERNING EQUATIONS 

2.1. Desingularization 

A vortex sheet embedded in two-dimensional ideal flow may be described by a 
curve (s(T, I), JJ(~, t)) where t is time and r is a Lagrangian parameter which 
measures the total circulation between a fixed material point and an arbitrary 
material point along the curve (Birkhoff [S]). Let 6 be a nonnegative real number 
and consider the “6 equations” 
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where .x = x(f, ;), .U = s( p, t), etc., and where it is understood that :c(T-+ i, : j = 
Z + .u(T, t), and ~,(r+ 1, t) = y(T. t). When 6 = 0 the Cauchy principal value of the 
integrals is to be taken, and in this case, Eqs. (la), ( lb) determine the evolution of a 
periodic vortex sheet [8]. When 6 > 0 the integrals are proper and the equations 
are then a desingularized approximation to the vortex sheet evolution equations. 
The term “vortex sheet” will refer to an exact solution of Eqs. (la ), (lb) with 6 = G, 
as opposed to an approximating curve which is the so!urion of these equations for 
some fised value of 6 > 0. 

A flat vortex sheet of constant strength, given by .>:(I-, I‘) = r, J,(\!-, t) = 0. is an 
equilibrium solution of the 6 equations (la). (lb) for ali 6 3 0. As initial data for 
( 1 a ), ( lb) we shall consider 

.<(r,O)=r+O.Ol sin27cr, ~*(f. O)= -0.01 GnZxT, (z.i 

which is a small amplitude perturbation of the equilibrium solution by a linear 
theory growing mode of the exact equations. With initial condition (2), the vortex 
sheet stops being analytic at the critical time r‘ h 0.375, due to the formation of a 
singularity at f = 0.5 (corresponding to the point x = 0.5, ~3 = 0) [19, 17. 157. 

The choice of desingularization made here allows an explicit linear stab!& 
analysis to be performed which gives insight into the nature of the approximaticn. 
Consider the flat. constant strength vortex sheet with a smail perturbation. 

Substituting expressions (3) into Eqs. { laj, (lb), expanding the denominator and 
retaining only the terms which are linear in x’ and ~8’~ we obtain the following &rear 
equations for the perturbation functions (dropping the primes): 
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Solutions of the form X= Xe2n(wr+ikT) and I’= Ye2X(c”r+ih-T) exist, with constants X 
and Y, when the following relations hold: 

s I 2cox= - Y 1 - e2nikr 
0 1-cos27cr+~2 

dT 
’ 

2c0Y= -x s '(1-e ?nik=)( 1 - (1 + 6’) cos 27C) dr 
0 ( 1 - cos 27rr + b2)2 (5b) 

The integrals may be evaluated by the residue theorem, yielding the dispersion 
relation 

oZ=ql _e-kcosh-‘(l+62))e-kcosh-‘(l+62) 

46(2 + d2)1.‘2 (6) 

The positive branch of o (corresponding to growing perturbations) is plotted in 
Fig. 1 as a function of wavenumber k > 0 for several values of 6. For a fixed value of 
~5 > 0 there is a wavenumber k,, for which the growth rate w(k,,) is maximum and 
in the limit k + m we have o(k) -+ 0. The desingularized equations therefore do not 
exhibit the severe short wavelength instability of the exact equations. The 
approximation’s consistency is verified by noting that in the limit 6 -+ 0 with a fixed 
value of k, we recover o2 z k’/4, the dispersion relation of the exact equations (i.e., 
Kelvin-Helmholtz instability). 

It is interesting to compare the short wavelength behaviour of the linearized 
6 equations with the effect produced by various physical mechanisms. For a con- 
stant vorticity layer of finite thickness there is a certain perturbation wavenumber 
above which the linear growth rate is zero. Surface tension also has this effect on 
the linear stability of a vortex sheet. In contrast, for the related problem of 

0 k 80 

FIG. 1. The linear dispersion relation (6) of the desingularized equations (la), (1 b) for several values 
of the smooting parameter (6 = 0.25, 0.1, 0.05). The straight line is the dispersion relation of 
Kelvin-Helmholtz instability (8 = 0). 
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Rayleigh-Taylor instability, Bellman and Penningron [C;] have shown that 
viscosity causes the linear growth rate to vanish asymptotically with waveiength. 
just as occurs for the 6 equations. While there may be some similarity between the 
effect of viscosity and the particular desingularization used here, the motivation for 
our approach originally came from numericai considerations for solving the 5 = 2 
equations. 

2.3. Discretization 

Standard discretization techniques will1 be applied to solve the initial vaiue 
problem (1, 2 ). For 0 <I-< 1 the curve (.u(T, t), ~(r, t)) is approximated by a tinite 
number of points, (s,(t), yj(t))z (x(Tj, t), y(rj, t)), corresponding to a uniform I‘-- 
mesh, ci= (i- 1) LIT, i= l,...N, N. AT= 1. Trapezoidal quadrature of the integrals 
in ( la), (Lb) yields a system of ordinary differential equations for the points’ trajec- 
tories, 

d-x, - 1 3’ sinh 27r( ~7 - ~1~) -=- 
df 2N c ,=,cosh2~(~.,-?l,)-cos27~(-~~-.~?)+6~’ 

(7a) 

k fi 
dr , 1 .\’ 2=_ c 

sin 27r( .y~ - .I-~) 
dj 2N /i-l Gosh 27C(Jli- ,b’k)-COs 2n(x,-X,) +6”’ 

k 7= j 

If 6 = 0 then (7a): (7b) is the point vortex approximation of Rosenhead I]3j]. The 
initial point positions will interpolate initial condition (2 ), 

xj(0) = ri + 0.01 sin 27crj, yj(0) = - 0.01 sin 2rr[;. (8) 

Note that for any 6 >O, Eqs. (?a), (7b) form a Hamiltonian system for the COP- 
jugate variables -yj’ I!~“~, ~1~. Np1:2 with the Hamiltonian function given by, 

The numerical results to be presented in the next section were obtained using the 
fourth order Runge-Kutta method to integrate Eqs. (7), (8). The calculations were 
performed on a VAX 11/780 computer using, unless otherwise noted, single 
precision arithmetic (7 significant digits). We shall plot the point positions as web 
as an interpolating curve which is defined as follows. Let p”(f, tj be the 
trigonometric polynomial in f of degree N/2 which interpolates the computed per- 
turbation quantities p,(t) = xi(t) - rj + iyj(:iit) for .j = I,..., N. The coefficients ol 
p”(f. t) are approximate Fourier coefficients for the periodic function x(r, ;) - 
I-+ :~,(r, t) and are obtained by taking the fast Fourier transform of the quantities 
pi(r). The interpolating curve that will be plotted is the image of the function 
I+ pzvjf. t) over one period in I-. 

Following Anderson [l], we shall keep 6 fixed while choosing the number of 
points N large enough and the time step dt small enough to obtain an accurate 
solution of the 6 equations (la), (lb). By repeating this process for several values 5f 
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6, it will be possible to say something about the limit 6 --f 0. We emphasize again 
the experimental nature of these investigations; there is presently no rigorous theory 
concerning this limiting process and the vortex sheet’s long time existence and 
regularity are open problems. 

3. NUMERICAL RESULTS 

3.1. Solution for 6 = 0.5 and 6 = 0.25 

Figure 2 shows a time sequence of the numerical solution with the value b = 0.5 
for the smoothing parameter, using N = 400 points and a time step At = 0.1. The 

.275 

,=,l 

Y 

-.275 

t 
t=1 

0 x 2 

FIG. 2. Solution of the ordinary differential equations (7). (8) with 6 =0.5 and N=100 at times I = 
0, 1, 2, 3, 4. The point positions are plotted on the right side and the interpolating curves are plotted on 
the left. 
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point positions are plotted on the right side of Fig. 2 and the interpolating curve is 
plotted on the left. The values of N and At used were determined empirically and il 
was checked that using smaller At and larger N would not change the plotted curve, 

The curve in Fig. 2 achieves a vertical slope between i = 1 and t = 2 and rolls up 
smoothly at later times. For t > 2 there is an inner region or core consisting of turns 
which become more closely spaced as time progresses. The outer region of the ctirve 
becomes elliptical in shape at late times, with the ellipse’s major axis tilted slightly 
from the horizontal. At t = 4 there are two small regions of high curvature on the 
outer turn which are moving in opposite directions, under the influence of the Frye 

1 E r 
0 x ? 

FIG. 3. Solution of the ordinary differential equations (7), (8) with 6 =0.X and hi= QC at WC- 
cessive times I = 0, I. 2. 3,3. The point positions are plotted on the right side and the interFolatir,g cur- 
ves 2re plotted on the left. 
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stream flow, toward the adjacent periods. The uneven spacing of the points on the 
right side of Fig. 2 indicates that the strain rate along the curve is nonuniform. The 
“braid” region (centered at integer values of x and connecting the cores) is most 
strongly stretched. As time progresses, the points travel inward along the curve’s 
arms, being compressed near the ellipse’s major axis and stretched near the minor 
axis. 

For comparison, the calculation was repeated with 6 = 0.25, N= 400, and 
At = 0.05. The results are shown in Fig. 3. As before, the plotted curve is indepen- 
dent of the r and t meshes. In this case a vertical slope is achieved before t = 1. For 
t>2 the core appears more circular than the outer region. The curvature on the 
outer turn at t = 4 reaches a value higher than that in Fig. 2 but, roughly speaking, 
changing the value of 6 from 0.5 to 0.25 has only a small effect on the curve’s outer 
region. With the smaller value of 6, more turns appear at the same time in the core 
than with 6 = 0.5. 

Both of these calculations preserved the value of the Hamiltonian (9) to several 
significant digits. For example in the 6 = 0.25 case, H(0) =0.013299 and H(4) = 
0.013303. 

3.2. Convergence in N and 6 Past the Vortex Sheet’s Critical Time 

For a fixed value of 6 > 0, it was found that the curves constructed from solutions 
of the ordinary differential equations (7a), (7b) converge as the number of points N 

FIG. 4. Solution of the ordinary differential equation (7), (8) with 6 = 0.25 at I = 4 using N= 50, 100, 
and 200. The point positions are plotted on the right side and the interpolating curves are plotted on the 
left. 
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is increased. This convergence occurs at any time. even past the time of singularity 
formation in the vortex sheet (r, = 0.375). Figure 4 illustrates this, showing the 
results at t = 4 for 6 = 0.25 with N= 50, 100, and 200. The time step was small 
enough to ensure that for each value of N the point positions are an accurate 
solution of Eqs. (7) (8) to within the plotting resoluticn. With a small value of ii:, 
the interpolating curve in Fig. 4 is tangled, but as 1V increases, the tangling dis- 
appears. When N= 200, the curve’s shape has already converged to within plotting 
resolution as may be seen by comparison with the S = 400 solution in the iast panel 
of Fig. 3~ It is therefore presumed that the curves in Figs 2 and 3 arc essentially The 
solution of the 6 equations (l), (2) for the two particular values of 6 chosen, over 
the time intervat 0 d t 6 4. Comparable accuracy can be obtained at later times by 
using smaller 3 I and larger N. 

The effect of decreasing 6 at a fixed time (I = 1) greater than the vortex sheet’s 
critical time (TV = 0.375) is shown in Fig. 5 which plots the interpolating curve fc:- 
several values of 6 between 0.2 and 0.05. These calculations used N = 406 and 

b x 1 

FIG. 5. Solution of the 6 equations (1 1. (2) at I = 1.0 using 6 = 0.2. 0.15, 0.1. 0.05 



302 ROBERT KRASNY 

Y 

-.l 

.4 x .6 

FIG. 6. An enlarged view of the inner portion of the 6 = 0.05 case of Fig. 5 

At = 0.05, except for the 6 = 0.05 case which used At = 0.01 and which was perfor- 
med in double precision arithmetic (16 significant digits). The need to use greater 
machine precision with this smaller value of 8 will be discussed later. 

As b decreases with t = 1 in Fig. 5, more turns appear in the core. For 6 = 0.05, 
the core region is tightly packed and an enlarged view (Fig. 6) shows that each 
branch of the spiral contains five complete revolutions. In Fig. 5 the curves’ outer 
region appears to converge as 6 decreases and we shall now quantify this obser- 
vation. Table I contains the curves’ maximum amplitude Y,,,(6) for various values 
of b at t = 0.5 and at t = 1. These values are plotted in Fig. 7 as a function of d, 
along with the polynomials in 6 (quadratic in Fig. 7a, cubic in Fig. 7b) whose coef- 
ficients are determined by least squares fitting to the computed Y,,,(d). The good 
fit seen in Fig. 7 is evidence that a limiting value exists and that the error behaves 
like an asymptotic power series in b as 6 + 0, 

lim Y,,,(d)= Y,,,(O)+c,6+~~6*+~,6~+ .... (10) 
6-O 

At t = 0.5 the computed Ym,, (6) values are well described by a quadratic function 
of 6 for 0.05 < 6 < 0.5. At t = 1, cubic dependence on 6 is shown over the same intcr- 
val of 6 values. This suggests that the coefficients ci in expansion (10) grow in 
magnitude as time increases. 
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FIG. 7. The curve’s maximum amplitude I’,,, as a function of 6. (a I t = 9.5. ib) ! = 1. Tine pln:!ed 
curve is a polycomial m 6 (quadratic in ,a). cubic in (b)) whose coefficients were derermiced by R kasi 
squares fit to the data points in Table 1. 

c . _ . _ . - . - 

, 

---A 
0 6 .z 

FG 8. The convergence of the spiral’s inner structure as 2 decreases. On;y one branch (0 < 1-S 3.5 i 
is piotkd. (a) x-intercepts as a function of 6. (b ) I- valxes at which each intercept occurs. 
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TABLE I 

Dependence on the Smoothing Parameter 6 of 
the Curve’s Maximum Amplitude Y,,, 

(at t = 0.5 and at t = 1) and the Arclength L (at t = 1) 

6 Y,,, (6, t = 0.5) Y,,, (6, t = 1) L(6, t=l) 

0.5 
0.475 
0.45 
0.425 
0.4 
0.375 
0.35 
0.325 
0.3 
0.275 
0.25 
0.225 
0.2 
0.175 
0.15 
0.125 
0.1 
0.075 
0.05 

0.0233 
0.0239 
0.0246 
0.0253 
0.0261 
0.0269 
0.0278 
0.0287 
0.0296 
0.0307 
0.0318 
0.0329 
0.0342 

0.0369 
0.0383 
0.0398 
0.0414 
0.0429 

0.0561 1.034 
0.0590 1.039 
0.0622 1.044 
0.0656 1.051 
0.0693 1.059 
0.0733 1.069 
0.0776 1.082 
0.0821 1.099 
0.0868 1.123 
0.0915 1.158 
0.0960 1.207 
0.1000 1.274 
0.1034 1.358 
0.1064 1.464 
0.1088 1.601 
0.1109 1.774 
0.1128 1.996 
0.1142 2.331 
0.1155 2.790 

Figure 8 contains information about how the core region behaves as 6 decreases, 
keeping t = 1 fixed. In Fig. 8a we plot the curves’ x-axis intercepts as a function of 6 
for a single branch of the spiral (0 <r< 0.5). For example, with 6 = 0.1 each spiral 
branch has four x-axis intercepts (see Fig. 5; the intercept at x = 0.5 is not included 
in Fig. 8). The outermost intercept approaches a value near s = 0.6 as 6 + 0, and 
the next intercept on the spiral branch approaches a value near x=0.45. From 
Fig. Sa it appears that a well defined spiral shape is emerging at t = 1 in the limit 
6 + 0. The r values at which the intercepts occur are plotted in Fig. 8b and they 
also converge. The outermost intercept (X z 0.6) approaches a I’ value near 0.3 as b 
decreases. The convergence as 6 --) 0 is nonuniform in r; it occurs more rapidly 
further away from the spiral’s center (r=O.S). 

The values of the curve’s arclength L(6) at t = 1 are also given in Table I (these 
values were obtained by summing the distances between consecutive pairs of 
points). The reciprocals L-‘(6) are plotted in Fig. 9 together with the quadratic 
polynomial in 6 determined by a least squares fit. The polynomial’s value at 6 = 0 
misses being zero by a fair margin, implying that, if the power series in 6 behavior 
(10) is correct for L-‘(6) as 6 + 0, the spiral which forms in the limit 6 + 0 has 
finite arclength. 

Reducing 6 from 0.1 to 0.05 causes a sharp increase in the number of turns in the 
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-I I-----11_ 
0-t /I 

0 6 .25 

FIG. 9. The reciprocal of the curve’s arclength at I= 1 as a function of 6. The plotted curve is a 
quadratic po!ynomial in 6 whose coefikients were determined by a least squares fit to the \alxs of 
L -‘(6) obtained from Table I. 

curve at t = i (Fig. 5 ). As the value of (2 is decreased, it becomes increasingly- dif- 
ficult to compute accurate solutions of the 6 equations since we encounter com- 
putational difficulties similar to, but not identical with, those cited in the Introduc- 
tion as occuring when 6 = 0. At any fixed time past the vortex sheet’s criticai time, 
the curve becomes a more complicated object as d decreases, and an accurate 
approximation will become more expensive, requiring larger values of X and 
smaller 4 1. For example, the double precision 6 = 0.05 calculation required about 
5 h to run on the VAX 1 l/780. This should not be taken to mean that computations 
using values of 6 smaller than 0.05 are infeasible. The difficulty in numericaily 
resolving such solutions could be overcome to a large extent by using a faster com- 
puter or by using more efficient adaptive r and ; meshes instead of the uniform 
meshes that were used here. We consider now another difficulty affecting com- 
putations with a small value of 8 that is related to, though less severe than, the loss 
of computational accuracy due to roundoff error that occurs in point vortex 
calculations for the present problem 11151. 

Figure 10 contains time sequences of calculations with 6 = 0.05 that were perfor- 
med in single precision (7 digit) and double precision (16 digit) arithmetic. Both 
calculations used N= 400 and At = 0,01. With single precision arithmetic (Fig. lOa), 
the interpolating curve becomes tangled for t > 0.4 but the tangling is absent from 
the double precision calculation (Fig. lob). This tangling occurs not because of 
truncation error (i.e., choosing the value of IV too sma!l, as in Fig. 4 with 6 = 625 
and N= 50 at t = 4) but because roundoff error introduces spurious perturbarions 
which are amplified in time by the 6 equations’ dynamics. 

This can be seen by examining the computed Fourier coefficients. Recali that 
these coefficients are obtained by taking the fast Fourier transform of the computed 
perturbation quantities -u,(t) - r, + Iyj(r). Figure 1 I contains log-linear plots of 
these coeflicients’ a.mplitudes at successive times as a function of wavenumber k for 

both the single and double precision calculations. The initial condition (8) has non- 
zero Fourier coefficients only for modes k = + I. However, as seen in the I = 0 plots 
of Fig. 11, roundoff error is present in all of the higher computational modss. At 



306 ROBERT KRASNY 

.1 1 1 

(b) 
t=.4 

FIG. 10. Solution of the ordinary differential equations (7), (8) with 6 = 0.05 and N = 400 at f = 0.4, 
0.5, 0.6, 0.7. (a) Single precision arithmetic (7digits). (b) Double precision arithmetic (16digits). The 
interpolating curve is plotted in each case. 

later times in single precision, the computed spectrum for k> 10 is jagged and its 
shape is roughly described by the linear dispersion relation (6) (compare Fig. 1 la at 
t = 0.4 with Fig. 1). A band of intermediate wavelength modes around k = 20 has 
been amplified faster than the neighboring modes causing large inaccuracy in the 
computed curve of Fig. 10a for t > 0.4. By comparison in double precision, the com- 
puted spectrum at t = 0.4 remains smooth and decays in amplitude until the roun- 
doff error level is reached (Fig. 11 b). In this case the k > 1 modes have entered the 
computation legitimately, due to the effect of nonlinearity upon the initial k = 1 per- 
turbation. 
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0 k 

FIG. ! 1. Discrete Fourier coefficients of the solution in Fig. 10 (6 = 0.05 ). Ths logarithm of ibe :osf- 
licients’ amplitude is plotted against uavenumber k for several times. (a) Single precision arithmetic 
(7 digits). I =O, 0.2. 0.4, 0.6. (b) Double precision arithmetic (16 digits). L =O, 0.1. 0.1, 0.5, 0.5. 0.7. 

One conclusion to be drawn from Figs. 10 and 11 is that the machine precision 
restricts the computational accuracy which can be achieved for a given value of the 
smoothing parameter 6. As 6 --f 0 the maximum growth rate IS given by i~)(k,,:) ;+ 
0.26-‘, where k ,), z 6 ~ i (see (6)). If the roundoff error amplitude is held constant as 
b decreases, then spurious growth of the modes near k,,, will occur, impairing the 
computation’s accuracy sooner. An alternative to using higher precision arithmetic 
to overcome this difficulty is to filter out the roundoff error perturbations as was 
done for point vortex calculations [ 151. After explaining how the filter works, we 
-will demonstrate its effect on the 6 = 0.05 single precision calculation (Figs. 1Oa 
and lla). 

A fast Fourier transform is performed, as previously described, at the end of each 
time step. If the amplitude of any mode is less than UP7 then that mode is reset to 
zero: the other modes are not disturbed. An inverse transform is then performed to 
adjust the point positions and the calculation proceeds to the next time step. The 
value LO-’ is the computational noise level, set so as to bound the spurious per:or- 
bations in the computed initial spectrum. Once every mode’s amplitude becomes 
greater than the noise level, the filter is turned off and the computation proceeds 
normally. The resulting curve, shown in Fig. 12al is very close to the unfiltered 
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FIG. 12. A single precision calculation (7 digits) for 6 =0.05 filtered at the level 10 -‘. (a) Inter- 
polating curve. (b) Fourier coefficients’ logarithmic amplitudes. The times are the same as those in 
Figs. 10 and 11 b. 

double precision result (Fig. lob). The computed spectrum is shown in Fig. 12b 
along with a horizontal line drawn at the filtering level (In lo-’ z - 16 j. The filter 
prevents the k > 1 modes from entering the calculation prematurely, as had 
occurred in Fig. lla. A comparison of Fig. llb and 12b indicates that, above the 
computational noise level, the spectrum computed in single precision using the filter 
agrees well with its double precision counterpart. 

3.4. Remarks on the Long Time dqmptotic State 

Even though certain physical mechanisms not studied here (e.g. viscosity, 
pairing) become important during the long time evolution of a shear layer, it would 
be interesting to know the asymptotic state of the present solution. In order to get 
some indication about this state, we restarted the 6 = 0.5 calculation of Fig. 2, using 
N= 4000 points interpolated at I = 4 from the previously obtained N= 400 
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solution. The resulting curve and point positions are shown in Fig. 13 up to I = 6. 
The most prominent feature is that the region of high curvature on the curve’s outer 
turn forms a “spike,” crosses into the adjacent period, and continues traveling in 
the free stream direction. Loss of resolution in the braid region, due to the high 
degree of stretching taking place there, prevents us from carrying this calculation to 
later times. It seems plausible, however, that once a portion of the curve has left its 
initial period, it will never return to that period. It may also be conjectured that the 
inner turns successively cross the initial period’s boundary at later times and iA 

the curve becomes a highly elongated and folded ribbon Two contrasting 
possibilities are that a concentrated nonzero core of circulation persists in each 
period, or that each period is depleted entirely of its initial circulation 
asymptotically as t --f ,x8. 

These remarks have bearing on an issue raised by Birkhoff and Fisher [7]. They 
applied the Poincare recurrence theorem (Thompson [29]) to the Hamiltonian 
system (?a), (7b ) in the case of point vortices, i.e., for 6 = 0. The theorem, however. 
remains relevant for 6 > 0. For the theorem to apply, the computational points 
must remain in a bounded region of phase space. Since the phase space is bounded 
in the horizontal direction due to periodicity, the theorem’s hypothesis may be 
satisfied by assuming (plausibly) that the points’ trajectories remain bounded in the 
vertical direction. The theorem’s conclusion states that almost every motion of the 
system will return arbitrarily close to its initial configuration. Birkhoff and Fisher 

FIG. 13. Numerical solution of equations \7), (8) with 6 =0.5 at times I = 5. 5.5. 6. This calcuiatiw 
\\ds restarted at I =il with N =4000 by interpolating from the A’=400 soiution of Fig. 1. The point 
posi!ions are plotted on the right side and the interpolating curves are plaited on the left. 
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interpreted this as implying that even if the discrete approximation rolls up after 
some time, it will almost surely unroll at some later time. 

Figure 13, however, suggests an alternative interpretation of the theorem’s con- 
clusion, in which the points’ roll-up and recurrence of their initial configuration are 
compatible. Any particular point may return close to its initial position in phase 
space either by rotating within its original period or by travelling into another 
period and approaching its initial coordinates shifted by an integral amount in the 
horizontal direction (note that physical points shifted in this manner are identical in 
the phase space). At a late time, the points which initially belonged to a single 
period may be scattered over many periods. In this way, the discrete 
approximation’s initial configuration can recur in phase space even though the 
interpolating curve in physical space does not unroll. 

4. DISCUSSION 

As explained in the Introduction, a numerical method for vortex sheet evolution 
from analytic initial data must deal with two difficulties: 

(1) amplification of short wavelength modes which spuriously enter the com- 
putation through roundoff error, 

(2) loss of the vortex sheet’s analyticity at a finite time t, and the possible 
presence of a spiral in the sheet’s shape at later times. 

The desingularization method used here mitigates both of these difficulties. One 
wants to compute with a large number of points in order to better resolve the 
problem’s small scales. For 6 = 0 the model’s short wavelength instability restricts 
the number of points which can be used for a given machine precision [15]. This 
restriction is loosened when 6 > 0 since then the short wavelength modes are not 
violently unstable, as shown by the linear dispersion relation (6). In the com- 
putations, as long as b was larger than 0.05, single precision arithmetic was suf- 
ficient to keep small scale irregularities due to roundoff error from forming in the 
curve’s shape. Under these circumstances, the number of points used can be as large 
as the computational resources allow. When 6 becomes smaller, however, care must 
be taken to avoid spuriously perturbing those modes whose linear growth rate is 
near the maximum for the particular value of 6 being used. For b = 0.05 this was 
accomplished by using double precision arithmetic, which introduces the spurious 
roundoff error perturbations at a smaller amplitude. Another possible alternative 
that was demonstrated is to filter the spectrum at each time step. We emphasize the 
distinction between smoothing (i.e., putting 6 3 0 in Eqs. (la), (lb)) which changes 
the nature of the initial value problem, and filtering (as presented here and in 
[ 15]), which ensures computational accuracy for a given machine precision as the 
value of 6 is reduced. 

Evidently for any fixed value of 6 > 0, the solution of the 6 equations becomes, 
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for some I > f,, a spiral with a finite number of turns. It was demonstrated in Fig. d 
that such a curve’s evolution can be well approximated using a finite number of 
computational points. As 6 approaches zero, more turns appear at a fixed time 
t > tc (,Fig. 5). It can also be seen by comparing Figs. 2 and 3 with Fig. IOb that 
these turns form on a smaller scale as 6 decreases. These computational results are 
consistent with Pullin’s conjecture, already mentioned in the Introduction. Obtain- 
ing information about the spiral’s inner structure which is independent of 6 will 
require using values of 6 smaller than 0.05, the smallest value used in this paper. 
Further work is needed to understand the relation between the singularity which 
forms in the vortex sheet at t, and the spiral structure which is apparently present 
at later times. 

Making 6 positive in Eqs. (la), (lb) mollifies the singularity that forms in the 
sheet’s shape when 6 = 0. This may be surmised from Fig. 1 i since the solution’s 
approximate Fourier coefficients decay faster at tc = 0.375 when 6 > 0 than v&en 
b = 0 [15]. For the specific purpose of studying singularity formation (i.e., for 
i < t& we doubt that the present approach will be more useful than the point vor- 
tex methodology discussed in [15]. Alternatively, the point vortex approximarion 
does not converge beyond the vortex sheet’s critical time and it appears necessary 
to use some kind of smoothing in order to study the sheet’s later evolution. 

The 6 equations (la), (lb) come from replacing the velocity held of a periodic 
row of point vortices, ( -sinh 27r~, sin 27~s )/2d’, where d’ = cash 2ry - CQS 2nx, by 
that of “vortex blobs,” ( - sinh 27~7, sin 2~~)/2(d’ t 6’). Calculations using 
(( - sinh 2rr~. sin 2nx),!2d’)( 1 - e-“?-“‘)? a periodic vortex blob motivated by the 
convergence theory of Beale and Majda [S] for smooth vorticity fields, gave 
qualitatively similar results. In the work of Hald [ 121, Beale and Majda [5]- 
Anderson and Greengard [Z]. and others, the initial v-alue problem considered is 
t+ell-posed and vortex blobs are used to ensure that the discretization is consisten: 
and stable. This contrasts with the situation for vortex sheet evolution where the 
effect of using vortex blobs is to replace the ill-posed initial value problem with a 
sequence of problems that are better behaved (though still unstable). 

Bearing in mind that our computations here and in [ 151 necessariay use only a 
finite set of 5 values and a finite number N of computaFiona1 points, we shall make 
some conjectures about how the Hamiltonian system (7), (8) behaves in the two 
limits it’ -+ ;t and b + 0. Calculations with point vortices (6 =O) converged as 
N -+ 5~ for t Q t, and they diverged as N + GZ for t > I,. This divergence appeared 
as a tangling in the interpolating curve and it may be a sign of chaotic dynamics 
(see Aref [3] ). By contrast, the present vortex blob calculations (keeping cj r C 
iixed) converge to an untangled curve as N 4 03 for any time. It seems that the two 
limiting processes can be interchanged without affecting the result for t < i, but not 
for 1~ fc. If one first takes N-+ cc and then takes 6 4 0, the result is a double 
branched spiral for any t > t,, but as already mentioned, t e reverse order (first 
6 --+ 0, then N + 02 ) does not converge for t > tc. 

The smoothing parameter B affects the allowable separation between the com- 
putational points. A consequence of the singularity that is present ir the 



312 ROBERT KRASNY 

Hamiltonian (9) when i = k with b = 0 is that if the points’ 4’ coordinates remain 
bounded, then no pair of points can get arbitrarily close to one another (however, 
in the limit N-+ a, the point vortices’ minimum separation does approach zero 
[15]). For t < t, the vortex sheet is continuously differentiable, implying a bound 
on the small scales which are present. In this case it is apparently not necessary to 
allow arbitrarily close approach of the computational points for any fixed value of 
N since the point vortex approximation was observed to converge. Conversely, if 
the vortex sheet is in fact a spiral for t > t,, then it contains spatial scales of all 
order. Putting 6 > 0 not only restores some control over the small spatial scales but 
it removes the singularity in the expression for H(t), thereby allowing the com- 
putational points to approach one another even for a fixed value of N. 

If one evaluates the integrals on the right-hand side of (la) and (lb j at points not 
on the curve, the result (when 6 > 0) is a divergence free velocity field whose curl is 
continuous. This “vorticity” field changes in time as the curve evolves but it is not 
an exact solution of Helmholtz’ vorticity equation. The curves computed with a 
fixed value of 6 > 0 resemble pictures of material curves in shear flow which have 
been obtained by other investigators. For example, our Figs. 2, 3, and 13 display 
features similar to the finite difference solutions of the Navier-Stokes equations 
obtained by Corcos and Sherman [lo] and to the flow visualization obtained by 
Roberts, Dimotakis, and Roshko (see Van Dyke [31, p. SS] j. It would be 
interesting to know precisely in what sense the solution of the S equations (la), (1 b) 
with a fixed value of 6>0 approximates a solution of the Euler or Navier-Stokes 
equations. 

The most important result presented here is the numerical demonstration that the 
desingularization approach converges past the vortex sheet’s critical time, if the 
mesh is refined and the smoothing parameter is reduced in the proper order. While 
this is an improvement over previous numerical studies of periodic vortex sheet 
roll-up, many interesting questions remain open. Granting that solutions of the 
6 equations ( la), (lb) converge to a curve as 6 ---f 0, the significance of this curve 
may be questioned, especially for t > t,. In particular, in what sense is it a solution 
of the original 6 = 0 equation? Some authors [ 19, 171 have felt that the loss of 
analyticity at t, implies a restriction on the validity of the vortex sheet model. This 
view may be unduly pessimistic when one recalls that weak solutions to other 
model systems (e.g., nonlinear hyperbolic equations) can be theoretically justified 
and remain physically relevant beyond the time of singularity formation. For the 
vortex sheet this raises the question of possible nonuniqueness for t > t, and the 
proper formulation of an “entropy” condition (see Sethian [27] for a study of these 
issues in relation to cusp formation for a model of flame propagation j. 

We hope that the computational results presented here will also stimulate further 
theoretical study of the vortex sheet evolution equations. In order to facilitate com- 
parison with laboratory experiments, future computational work should try to 
include physical mechanisms that are neglected in the present model. An 
application of the ideas developed here to the vortex sheet shed by an elliptically 
loaded wing is in progress. 
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