
Journal of Computational Physics172,879–907 (2001)

doi:10.1006/jcph.2001.6862, available online at http://www.idealibrary.com on

A Particle Method and Adaptive Treecode
for Vortex Sheet Motion in
Three-Dimensional Flow

Keith Lindsay∗ and Robert Krasny†
∗National Center for Atmospheric Research, P. O. Box 3000, Boulder, Colorado 80307-3000; and†Department

of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109
E-mail:∗klindsay@cgd.ucar.edu,†krasny@math.lsa.umich.edu

Received September 18, 2000; revised June 19, 2001

A particle method is presented for computing vortex sheet motion in three-dimens-
ional flow. The particles representing the sheet are advected by a regularized Biot–
Savart integral in which the exact singular kernel is replaced by the Rosenhead–
Moore kernel. New particles are inserted to maintain resolution as the sheet rolls
up. The particle velocities are evaluated by an adaptive treecode algorithm based on
Taylor approximation in Cartesian coordinates, and the necessary Taylor coefficients
are computed by a recurrence relation. The adaptive features include a divide-and-
conquer evaluation strategy, nonuniform rectangular clusters, variable-order approx-
imation, and a run-time choice between Taylor approximation and direct summation.
Tests are performed to document the treecode’s accuracy and efficiency. The method
is applied to simulate the roll-up of a circular-disk vortex sheet into a vortex ring.
Two examples are presented, azimuthal waves on a vortex ring and the merger of
two vortex rings. c© 2001 Academic Press

Key Words:particle method; adaptive treecode; vortex sheet; vortex ring; three-
dimensional flow.

1. INTRODUCTION

Vortex sheets are widely used in fluid dynamics to model thin shear layers in slightly
viscous flow. In this case, the shear layer is replaced by a jump discontinuity across the sheet
surface and the evolution of the layer is reduced to tracking the self-induced motion of the
sheet. The present work develops a Lagrangian particle method for computing vortex sheet
motion in three-dimensional flow. There is a large body of work dealing with the application
of such methods to three-dimensional vortex dynamics, and several survey articles and texts
can be consulted for an overview [1–5].

879

0021-9991/01 $35.00
Copyright c© 2001 by Academic Press

All rights of reproduction in any form reserved.

880 LINDSAY AND KRASNY

We start by describing a number of special difficulties that arise in vortex sheet com-
putations. In two-dimensional flow, the point vortex method replaces a continuous vortex
sheet by a set of discrete point vortices [6, 7], but the method fails to converge past a finite
critical time when a curvature singularity forms in the underlying sheet [8–11]. One way
to proceed is to regularize the problem by applying the vortex-blob method, and this ap-
proach captures the spiral roll-up of the vortex sheet past the critical time [12–14]. Aside
from the issue of singularity formation, another difficulty arises because perturbations in-
troduced by machine roundoff error are amplified by Kelvin–Helmholtz instability, leading
to the rapid loss of computational accuracy [7, 10]. This can be prevented by using higher
precision arithmetic or filtering [10], and more generally the severity of the problem can
be reduced by applying the vortex-blob method [14]. There is also a difficulty due to
the fact that the sheet is a material surface and its shape can become quite convoluted in
time. Unless some precaution is taken, the numerical resolution of the surface will dete-
riorate. Here too the vortex-blob method can be applied, to limit the deformation of the
surface, but there is still a need for an efficient method of resolving the surface, especially
in the case of three-dimensional flow. One remedy represents the sheet as a collection
of vortex filaments and uses cubic spline interpolation to insert new particles as the fila-
ments deform [15]. Another approach represents the sheet as a triangulated surface and
uses panel methods to perform adaptive mesh refinement [16–18]. Here we will repre-
sent the sheet as a set of material lines, and we maintain resolution by using local cubic
polynomial interpolation to insert new particles and material lines as the sheet rolls up
[19].

Another important issue, and the main topic of this work, is the large amount of CPU time
required in vortex sheet computations. To explain how this arises we need to briefly describe
our numerical method. The sheet is represented at the discrete level by a set of particles
xi (t)with vector-valued weightswi , for i = 1, . . . , N, and the particles are advected by the
equations

dxi

dt
=

N∑
j=1

K δ(xi , x j)× w j , (1)

where

K δ(x, y) = − 1

4π

x− y
(|x− y|2+ δ2)3/2

(2)

is the Rosenhead–Moore kernel, a regularized form of the Biot–Savart kernel [20, 21]. This
is an example of a vortex-blob method whereinδ is an artificial smoothing parameter. The
exact kernel is recovered by settingδ to zero, but the simulations use a nonzero value in
order to overcome the problems mentioned above due to singularity formation, Kelvin–
Helmholtz instability, and surface resolution. More details about the discretization will be
given below. The Rosenhead–Moore kernel is popular in three-dimensional vortex sheet
computations [15–18], but other expressions are sometimes also used [22, 23].

Evaluating the sum in (1) fori = 1, . . . , N is an example of anN-body problem, anal-
ogous to problems involving point charges or point masses in classical physics [24]. The
simplest evaluation procedure is direct summation, but this requires computingO(N2)

VORTEX SHEET MOTION 881

particle–particle interactions and hence is prohibitively expensive whenN is large. Several
approaches have been developed to reduce the computational cost, and in the context of
three-dimensional vortex sheet motion these include a vortex-in-cell method [25] and a
level-set method [26]. The present work takes a different approach using the concept of a
treecode algorithm.

In a treecode algorithm, the particles are divided into a nested set of clusters and the
O(N2) particle–particle interactions are replaced by a smaller number of particle–cluster
interactions which can be efficiently evaluated using a multipole approximation. The earliest
treecode algorithms used a monopole approximation and a divide-and-conquer evaluation
strategy [27, 28]. The fast multipole method (FMM) uses higher order approximations,
either a Laurent series in two dimensions or a classical multipole expansion involving
spherical harmonics in three dimensions [29, 30]. The FMM also employs a more elaborate
evaluation procedure in which the far-field multipole approximation is converted to a local
approximation. Treecode algorithms reduce the operation count toO(N log N) or O(N).
They have had great impact in particle simulations and there is ongoing interest in optimizing
their performance [31–39].

Treecodes are a natural choice to consider for evaluating the sums in (1), but there is
an obstacle; the Rosenhead–Moore kernel (2) is nonharmonic whenδ > 0 and so it cannot
be expanded in a classical multipole series. One way of overcoming this problem is to
replace (2) by a different form of regularized kernel in which the smoothing effect decays
more rapidly with distance. Then direct summation can be applied to compute regularized
particle–particle interactions inside a specified cutoff radius, while a treecode using a clas-
sical multipole expansion can be applied outside the cutoff radius where the regularization
effectively vanishes [23, 40].

Here we want to retain the Rosenhead–Moore kernel and in order to do so we develop
a treecode algorithm based on Taylor approximation in Cartesian coordinates rather than
a classical multipole expansion involving spherical harmonics. The Taylor approximation
converges because the kernel (2) is real analytic, and moreover, the necessary Taylor coef-
ficients can be efficiently computed by a recurrence relation. This approach was originally
developed for vortex sheet computations in two-dimensional flow [41, 42] and was later
extended to the case of three-dimensional flow [43a, 43b]. The algorithm uses a divide-and-
conquer strategy to evaluate the particle velocities [27, 28] and it employs several adaptive
techniques to gain efficiency. The tree consists of nonuniform rectangular clusters adapted
to the particle distribution. For each particle–cluster interaction, the order of approximation
is chosen adaptively, and a run-time choice is made between Taylor approximation and di-
rect summation based on empirical estimates of the required CPU time. Tests are performed
to document the treecode’s accuracy and efficiency, and the results show that the algorithm
is significantly faster than direct summation for systems having a large number of particles.
The particle method and adaptive treecode algorithm are then applied to simulate the roll-up
of a circular-disk vortex sheet into a vortex ring. Two examples are presented, the growth
of azimuthal waves on a vortex ring and the merger of two vortex rings moving side by
side.

The paper is organized as follows. Section 2 describes the particle method for computing
vortex sheet motion in three-dimensional flow. Section 3 presents the treecode algorithm
for evaluating the particle velocities and Section 4 documents the algorithm’s accuracy
and efficiency on a test case. Section 5 presents the vortex sheet simulations. The work is
summarized in Section 6.

882 LINDSAY AND KRASNY

2. PARTICLE METHOD

2.1. Lagrangian Formulation

The simulations are based on the Lagrangian formulation of vortex sheet motion in
three-dimensional flow [44–46]. For the intended application to vortex rings we view the
sheet as a parametrized surfacex(0, θ, t) composed of closed material lines, where0
measures circulation across the lines andθ is a 2π -periodic parameter along the lines.
Figure 1 depicts the initial parametrization of a circular-disk vortex sheet defined in terms
of Cartesian coordinates,x(0, θ,0) = (x1, x2, x3), where

x1 = (1− 02)1/2 cosθ, x2 = (1− 02)1/2 sinθ, x3 = 0, (3)

and 0≤ 0 ≤ 1, 0≤ θ ≤ 2π . Equation (3) describes the bound vortex sheet associated with
potential flow past a circular disk. The lines of constant circulation0 correspond to vortex
lines. Note that0 = (1− r 2)1/2, wherer = (x2

1 + x2
2)

1/2 is the radial coordinate of a point
on the sheet measured from the centerr = 0. The square-root singularity in0(r) at r = 1
causes the edge of the sheet to roll up into a spiral fort > 0.

With this parametrization, the equation governing the motion of the sheet is

∂x
∂t
=
∫ 2π

0

∫ 1

0
K δ(x, x̃)× ∂ x̃

∂θ
d0̃dθ̃ , (4)

wherex = x(0, θ, t), x̃ = x(0̃, θ̃ , t), andK δ(x, x̃) is the Rosenhead–Moore kernel. The
right side of (4) is a regularized form of the Biot–Savart integral specialized to the case of
a vortex sheet, and the equation states that the sheet is a material surface moving in its self-
induced velocity field. The term∂ x̃/∂θ accounts for vortex stretching. With the circular-disk
initial condition given in (3), the sheet rolls up into an axisymmetric vortex ring [47, 48].
In Section 5 we perturb this initial condition to obtain examples of fully three-dimensional
motion.

FIG. 1. Parametrization of a circular-disk vortex sheet (3). (a) parameter space (0, θ); (b) physical space
(x1, x2, x3). 0 measures circulation across the vortex lines andθ is a 2π -periodic parameter along the lines. The
sheet lies in the planex3 = 0.

VORTEX SHEET MOTION 883

FIG. 2. Discretization of a circular-disk vortex sheet into particles (d). (a) parameter space (0, θ); (b) physical
space (x1, x2, x3).

2.2. Discretization

The sheet is represented by a set of Lagrangian particlesxi (t), i = 1, . . . , N, corre-
sponding to a discretization of the0 − θ parameter space. The initial discretization for a
circular-disk vortex sheet is shown schematically in Fig. 2. First the sheet is discretized in
circulation0 to obtain a finite set of material lines and then each line is discretized inθ to
obtain the particlesxi (t). In practice, the0-mesh is dense near the edge of the disk in order
to resolve the spiral roll-up. Theθ -mesh is chosen so that the particle spacing along each
line is roughly uniform.

Given a set of particles, the integral in (4) is discretized using the trapezoid rule with
respect to0 andθ , in that order. This yields a system of ordinary differential equations
for the motion of the particles, shown in (1). The particle weights are defined byw j =
Dθ (x j)10 j1θ j , whereDθ (x) is a second-order finite-difference approximation to∂x/∂θ ,
and10 j ,1θ j are the quadrature weights. The system (1) is solved by the fourth-order
Runge–Kutta method using the treecode to evaluate the particle velocities.

2.3. Particle Insertion Scheme

New particles are inserted during the computation to maintain resolution as the sheet
rolls up. This can occur in two ways (a) inserting a particle on a material line (refining
theθ -mesh for a given value of0) and (b) inserting particles to create a new material line
(refining the0-mesh). The insertion scheme relies on two user-specified parameters,εθ

andε0.
Figure 3a depicts the scheme for inserting a new particle on a material line [19]. A new

particle is inserted between two adjacent particles if the distance between the particles is
greater thanεθ . Theθ -value of the new particle is the averageθ -value of the two adjacent
particles. The location of the new particle is computed using a cubic interpolating polynomial
in θ based on the four adjacent particles, two on each side.

Figure 3b depicts the scheme for inserting particles to create a new material line. A new
line is created between two adjacent lines if the maximum distance between the lines is
greater thanε0. The0-value of the new line is the average0-value of the two adjacent
lines. Theθ -values of the particles on the new line are transferred from an adjacent line. To
compute a new particle location for a givenθ -value, we use a cubic interpolating polynomial

884 LINDSAY AND KRASNY

FIG. 3. Particle insertion scheme. (a) inserting a new particle on a material line (refining theθ -mesh for a
given value of0); (b) inserting particles to create a new material line (refining the0-mesh). Particle (d); new
particle (s); auxiliary particle (e); material line (——); new material line (- - -).

in 0 based on particle locations on the four adjacent lines, two on each side. If there is no
particle at a givenθ -value on these lines, auxiliary particles are created using a cubic
interpolating polynomial inθ .

The simulations start from simple initial conditions that are well-resolved by a small
number of particles. As the sheet rolls up, many new particles are inserted and direct
summation becomes impractical. In the next section we present a treecode algorithm to
deal with this problem.

3. TREECODE ALGORITHM

3.1. Overview

The treecode algorithm is used by the time-integration routine to compute the particle
velocities on the right side of (1). There are two main steps (a) constructing the tree for a
given set of particles and (b) computing the particle velocities with the aid of the tree. The
tree is constructed by subdividing the particles into a nested set of clusters. Once the tree is
constructed, each particle velocity is expressed as a sum of particle–cluster interactions

dxi

dt
=
∑

c

Nc∑
j=1

K δ(xi , y j)× w j , (5)

wherec = {y j , j = 1, . . . , Nc} denotes a cluster of particles andw j is the weight associated
with y j . The clustersc appearing in (5) are determined adaptively for each particlexi using
a divide-and-conquer strategy [27, 28, 36].

Figure 4 depicts a particlexi and a disjoint clusterc (there and sometimes below, a
two-dimensional schematic is shown). The associated cell is defined to be the smallest
rectangular box containing the particles inc, and the cell centeryc is the geometric center
of the box. Strictly speaking acell is a region of space containing aclusterof particles, but
we use the terms interchangeably. The particle–cluster interaction gives the velocity of the
particlexi induced by the clusterc. As explained below, the interactions are evaluated using
either Taylor approximation or direct summation.

VORTEX SHEET MOTION 885

FIG. 4. A particlexi and a disjoint clusterc = {y j , j = 1, . . . , Nc}. The associated cell is defined to be the
smallest rectangular box containing the particles inc, and the cell centeryc is the geometric center of the box.

The remainder of this section describes the components of the treecode algorithm: the
Taylor approximation for a particle–cluster interaction (Section 3.2), the recurrence relation
for the Taylor coefficients of the regularized kernel (Section 3.3), the criterion for choosing
the order of approximation (Section 3.4), the tree construction procedure (Section 3.5), and
the divide-and-conquer strategy for evaluating the particle velocities (Section 3.6).

3.2. Taylor Approximation

Our aim is to derive a Taylor approximation for a particle–cluster interaction. Referring
to the right side of (5), we expandK δ(xi , y j) in a Taylor series with respect toy about the
cell centeryc. Using Cartesian coordinates and standard multi-index notation, this yields

Nc∑
j=1

K δ(xi , y j)× w j =
Nc∑
j=1

K δ(xi , yc + (y j − yc))× w j

=
Nc∑
j=1

∑
k

1

k!
Dk

y K δ(xi , yc)(y j − yc)
k × w j

=
∑

k

ak(xi , yc)×mk(c), (6)

wherek = (k1, k2, k3) is an integer multi-index with allki ≥ 0,

ak(xi , yc) = 1

k!
Dk

y K δ(xi , yc) (7)

is thekth Taylor coefficient ofK δ(xi , y) aty = yc, and

mk(c) =
Nc∑
j=1

(y j − yc)
kw j (8)

is thekth moment of clustercabout its centeryc. The approximation is obtained by truncating
the infinite series in (6),

Nc∑
j=1

K δ(xi , y j)× w j ≈
∑
‖k‖<p

ak(xi , yc)×mk(c), (9)

886 LINDSAY AND KRASNY

where‖k‖ = k1+ k2+ k3 and the orderp is chosen to ensure that the error is small. We
refer to the right side of (9) as apth-order particle–cluster approximation; it will be shown
in Section 3.4 that the error isO(hp), whereh = r/R is the ratio of the cluster radius

r = max{|y j − yc|, j = 1, . . . , Nc} (10)

and the regularized distance between the particle and the cell center

R= (|xi − yc|2+ δ2)1/2. (11)

Note that the Taylor coefficientsak(xi , yc) are independent of the particlesy j in clusterc,
and the cluster momentsmk(c) are independent of the particlexi . These features permit an
efficient computation of apth-order particle–cluster approximation (9) as follows.

Step 1: Compute the Taylor coefficientsak(xi , yc) for ‖k‖ < p. There areO(p3) coeffi-
cients and each of them can be computed inO(1) operations using the recurrence relation
derived below.

Step 2: Compute the cluster momentsmk(c) for ‖k‖ < p, unless they are already avail-
able from a previous interaction. There areO(p3) moments and altogether they can be
computed inO(p3Nc) operations. However, when the moments of a particular clusterc
are first computed, they are stored and used again in subsequent interactions betweenc and
other particlesxi . In practice, the cost of computing the moments is a small fraction of the
total CPU time required by the treecode.

Step 3: Sum the truncated series on the right side of (9). The sum hasO(p3) terms and
each of them can be computed inO(1) operations.

The key point is that the operation counts for Steps 1 and 3 are independent of the number
of particles in the clusterNc. Thus assuming the cluster moments are available, apth-order
particle–cluster approximation can be computed inO(p3) operations.

3.3. Recurrence Relation

To evaluate thepth-order particle–cluster approximation in (9), we require the Taylor
coefficients of the regularized kernelak(x, y) for ‖k‖ < p (for clarity we write (x, y)
instead of (xi , yc)). Explicit formulas for the coefficients can be derived, but the expressions
become unwieldy as‖k‖ increases. Instead we derive a recurrence relation permitting rapid
computation of the coefficients.

Consider the following regularized Newtonian potential,

φδ(x, y) = 1

4π

1

(|x− y|2+ δ2)1/2
, (12)

also known as the Plummer potential in the context of gravitational attraction [36]. Note
that the Rosenhead–Moore kernel (2) is the gradient of the Plummer potential,

K δ(x, y) = ∇xφδ(x, y) = −∇yφδ(x, y). (13)

Let

bk(x, y) = 1

k!
Dk

yφδ(x, y) (14)

VORTEX SHEET MOTION 887

be thekth Taylor coefficient ofφδ(x, y) with respect toy. It follows from (13) that the
Taylor coefficients of the Rosenhead–Moore kernel and the Plummer potential satisfy the
relation

ak =−
3∑

i=1

(ki + 1)bk+ei ei , (15)

whereei is the i th Cartesian-basis vector (here and sometimes below we omit (x, y) for
clarity). Hence to compute the coefficientsak , it is sufficient to derive a recurrence relation
for bk .

PROPOSITION3.1. The Taylor coefficients bk of the Plummer potential satisfy the recur-
rence relation

‖k‖R2bk − (2‖k‖ − 1)
3∑

i=1

(xi − yi)bk−ei + (‖k‖ − 1)
3∑

i=1

bk−2ei = 0 (16)

for ‖k‖ ≥ 1, where b0 = φδ(x, y), bk = 0 if any ki < 0, and R2 = |x− y|2+ δ2.

Proof. The Plummer potentialφδ(x, y) satisfies the differential equation

(|x− y|2+ δ2)Dy1φδ − (x1− y1)φδ = 0. (17)

Applying the operatorDk1−1
y1

and using Leibniz’s rule for differentiating a product we obtain

(|x− y|2+ δ2)Dk1
y1
φδ − (2k1− 1)(x1− y1)D

k1−1
y1

φδ + (k1− 1)2Dk1−2
y1

φδ = 0. (18)

Next we applyDk2
y2

Dk3
y3

and substitute the definitions ofbk andR2 to obtain

k1R2bk − 2k1

3∑
i=1

(xi − yi)bk−ei + k1

3∑
i=1

bk−2ei − (x1− y1)bk−e1 − bk−2e1 = 0. (19)

Equation (19) is a recurrence relation forbk in which the index 1 plays a special role.
Similar equations can be obtained for indices 2 and 3. Summing these equations, we obtain
the symmetric form in (16). j

Equation (16) is the recurrence relation used to compute the Taylor coefficientsbk of
the Plummer potential. Figure 5 shows the order in which the coefficients are computed
in practice. Since there areO(p3) indices satisfying‖k‖ ≤ p and each application of the
recurrence relation requiresO(1) operations, the necessary coefficientsbk can be computed
in O(p3) operations. Then using (15), the Taylor coefficientsak of the Rosenhead–Moore
kernel can be computed with an additionalO(p3) operations.

Note that there is a similarity between the three-dimensional recurrence relation forbk

in (16) and the one-dimensional recurrence relation for the Legendre polynomialsPn(x),

nPn(x)− (2n− 1)x Pn−1(x)+ (n− 1)Pn−2(x) = 0 (20)

for n ≥ 2, whereP0(x) = 1 andP1(x) = x [49]. This is not surprising since the Taylor co-
efficientsbk arise by expanding the Plummer potential with respect to Cartesian coordinates
while the Legendre polynomialsPn(x) arise by expanding the Newtonian potential with
respect to spherical coordinates. The error analysis below makes use of this observation.

888 LINDSAY AND KRASNY

FIG. 5. Steps showing the order in which the Taylor coefficientsbk are computed for|| k || ≤ p using the
recurrence relation (16); current step (×); later step (s); previous step (d).

3.4. Error Analysis

Next we analyze the error in a particle–cluster approximation (9) to obtain a criterion
for choosing the orderp. First define a vector potential associated with a particle–cluster
interaction

Nc∑
j=1

φδ(x, y j)w j , (21)

and note that the curl of the vector potential is the velocity,

∇x ×
Nc∑
j=1

φδ(x, y j)w j =
Nc∑
j=1

K δ(x, y j)× w j . (22)

Following the steps leading to the approximation of the velocity (9), the vector potential
has the approximation

Nc∑
j=1

φδ(x, y j)w j ≈
∑
‖k‖<p

bk(x, yc)mk(c). (23)

We will analyze the error in the approximation of the vector potential (23); the velocity error
can be treated similarly and we comment on this below. Using the definition of a cluster

VORTEX SHEET MOTION 889

moment (8), the sum of the neglected terms in (23) is

∑
‖k‖≥p

bk(x, yc)mk(c) =
∑
n≥p

Nc∑
j=1

Bn(x, yc, y j)w j , (24)

where

Bn(x, yc, y j) =
∑
‖k‖=n

bk(x, yc)(y j − yc)
k . (25)

We will obtain an alternative expression forBn(x, yc, y j).

PROPOSITION3.2. The quantity Bn(x, yc, y j) satisfies the recurrence relation

nR2Bn − (2n− 1)αBn−1+ (n− 1)β2Bn−2 = 0 (26)

for n ≥ 1, where B0 = φδ(x, yc), B−1 = 0, α = (x− yc) · (y j − yc), β = |y j − yc|, and
R2 = |x− yc|2+ δ2.

Proof. Multiplying the recurrence relation forbk in (16) by (y j − yc)
k and summing

over all indicesk with ||k|| = n, we obtain

nR2
∑
||k||=n

bk(y j − yc)
k − (2n− 1)

∑
||k||=n

3∑
i=1

(xi − yci)bk−ei (y j − yc)
k + (n− 1)

×
∑
||k||=n

3∑
i=1

bk−2ei (y j − yc)
k = 0. (27)

Recalling thatbk = 0 if any indexki is negative, it can be shown that∑
||k||=n

bk−lei (y j − yc)
k−lei = Bn−l (28)

for l = 0, 1, 2. The result follows by substituting (28) into (27).j
Comparing (20) and (26), it follows that

Bn(x, yc, y j) = 1

4πR

(
β

R

)n

Pn

(
α

βR

)
, (29)

wherePn(x) is thenth Legendre polynomial. Using the fact that|Pn(x)| ≤ 1 for |x| ≤ 1
and the bound ∣∣∣∣ αβR

∣∣∣∣ = ∣∣∣∣ (x− yc) · (y j − yc)

|y j − yc|(|x− yc|2+ δ2)1/2

∣∣∣∣ ≤ 1, (30)

we obtain

|Bn(x, yc, y j)| ≤ 1

4πR

(|y j − yc|
R

)n

. (31)

890 LINDSAY AND KRASNY

It follows that the approximation error for the vector potential, given in (24), is majorized
by a geometric series. A strict error bound can be derived, but it overestimates the actual
error. Instead, we take the first term of the series in (24) as a heuristic estimate of the error;
with (31) this yields the criterion

Mp(c)

4πRp+1
≤ ε, (32)

where

Mp(c) =
Nc∑
j=1

|y j − yc|p|w j | (33)

is thepth absolute moment of the cluster andε is a user-specified parameter for controlling
the accuracy. In practice, when a particle–cluster approximation is to be evaluated, the
orderp is set to the minimum value satisfying (32). This leads to a variable-order treecode
algorithm. The velocity error can be treated similarly [43] and the resulting criterion is

(p+ 1)2Mp(c)

4πRp+2
≤ ε. (34)

We call (32) the potential criterion and (34) the velocity criterion; they will be tested and
compared in Section 4. In either case it follows that the error in apth-order particle–
cluster approximation isO(hp), whereh = r/R is the ratio of the cluster radiusr and the
regularized distanceR between the particle and cluster.

Before concluding this section, we note that error estimates have previously been imple-
mented in variable-order treecode algorithms [35, 36]. In particular, [36] analyzed the error
in the Cartesian Taylor approximation for the Newtonian potential and the Plummer poten-
tial, although that work recommendedpmax= 2 for the maximum order of approximation.
In contrast, we find that higher order approximations are cost-effective when evaluated
using the recurrence relation (16) and we setpmax= 8 in the simulations presented below.

3.5. Tree Construction

The tree construction procedure divides the particles into nested cells that are used in
evaluating the velocity. Treecode algorithms typically use an oct-tree structure in which the
cells on each level are uniform cubes; the cells on one level are obtained by bisecting the
cells on the previous level in the three coordinate directions. The tree is often adapted to
the particle distribution by leaving undivided any cell containing fewer than a user-specified
number of particlesN0.

The present algorithm follows this general approach but enhances the adaptivity by
shrinking the cells at each step in the construction. The procedure starts with the root cell
containing all the particles. Figure 6 shows how a cell is subdivided into subcells. First the
cell is bisected in its long directions, i.e., any direction in which its length is greater than
L/
√

2, whereL is the length of the longest edge. This yields two, four, or eight subcells,
depending on the aspect ratio of the original cell. Before further subdivision, each subcell is
shrunk to the smallest rectangular box containing its particles. The shrunken subcells form
the next level in the tree. The bisect-and-shrink procedure continues until a cell has fewer
thanN0 particles.

VORTEX SHEET MOTION 891

FIG. 6. Subdividing a cell into subcells. (a) cell and (b) subcells before shrinking (- - -), subcells after shrinking
(——).

This procedure is especially effective for nonhomogeneous particle distributions. Figure 7
shows the cells constructed for a set of particles lying on a vortex sheet spiral, by the standard
scheme and the present scheme. The nonuniform rectangular cells constructed by the present
scheme are well adapted to the particle distribution; the cell radii on a given level are smaller
than for the standard scheme and this leads to a reduction in CPU time since the accuracy
criterion ((32) or (34)) is satisfied by a lower order approximation. This explains why we
bisect a cell only in the long directions; bisecting in a short direction does not significantly
reduce the cell radius. There is little extra work involved in shrinking the cells, but it yields
a substantial benefit for vortex sheet computations.

The choice ofN0 affects the treecode’s performance. IfN0 is too small, the tree has
many levels and memory usage is high, while ifN0 is too large, the cell radii are large and
high-order approximation is required, leading to increased CPU time. Tests were performed
to determine a suitable value [43] and the present simulations useN0 = 500.

We note that nonuniform rectangular cells have previously been used in a two-dimensional
treecode for viscous flow [50]. To achieve load balancing on a parallel processor, in [50] all
cells on a given level of the tree were required to have the same number of particles. The
present scheme does not enforce this condition. In general, the optimal choice of particle
clusters is an interesting problem for future investigation.

3.6. Evaluation of Particle Velocities

The treecode is applied to evaluate the particle velocities in each stage of the Runge–Kutta
time integration scheme. This is accomplished using two functions. Figure 8a describes the
first function,stage(c0, ε), which takes the root cellc0 and accuracy parameterε as input
and returns the particle velocities. The function starts by constructing the tree associated
with c0 and then computes the velocity of each particle by calling the second function.
Note thatstage(c0, ε) is called with a differentc0 in each of the four stages comprising one
timestep of the Runge–Kutta scheme.

Figure 8b describes the second function,compute velocity(x, c, ε), which returns the
velocity of particlex induced by clusterc using a divide-and-conquer strategy [27, 28]. It
starts by determining the minimum orderp satisfying the accuracy criterion (either (32) or
(34)) for the input parametersx,c,ε. The function then determines the CPU time required for
pth-order Taylor approximation (tapp) and direct summation (tdir). The times are estimated
empirically as follows. A stand-alone program was written to evaluate the particle–cluster
velocity by Taylor approximation and by direct summation for various values ofp andNc.

892 LINDSAY AND KRASNY

FIG. 7. Example of tree construction for a set of particles lying on a vortex sheet spiral. (a) standard scheme
(bisect) and (b) present scheme (bisect-and-shrink).

Assuming the cell moments are available, the approximation timetapp depends only on the
orderp, and the measured values oftapp are stored in a lookup table. The direct summation
time tdir depends linearly on the number of particles in the clusterNc, and the stand-alone
program determines the parameters in a linear least squares fit. Whencompute velocity is
called for a given particle–cluster interaction, it accesses the lookup table and least-squares
parameters to determinetapp andtdir . Note that these estimated CPU times depend on the
coding of the algorithm and on the hardware; if these change, then the lookup table and
least-squares parameters should be recomputed.

Next compute velocity compares the estimated CPU times for Taylor approximation
and direct summation. If approximation is faster (tapp< tdir) and the required order is small
(p ≤ pmax, wherepmax is a user-specified parameter), then the approximation is performed
by evaluating the right side of (9). If direct summation is faster or high-order approximation
is required, then direct summation is performed ifc is a leaf(Nc ≤ N0). Otherwise, the
code descends to the next level of the tree and recursively callscompute velocity for each
child ĉ of clusterc. The rationale for descending the tree is that the children have smaller

VORTEX SHEET MOTION 893

(a) stage(c0, ε)
construct tree associated with root cellc0

for i = 1 : N
compute velocity(xi , c0, ε)

end for
return particle velocities

(b) compute velocity(x, c, ε)
p = minimum order satisfying accuracy criterion
tapp = CPU time required forpth order approximation
tdir = CPU time required for direct summation
if tapp < tdir and p ≤ pmax

compute Taylor coefficientsak(x, yc) for ||k|| < p
compute cell momentsmk(c) for ||k|| < p (if necessary)
compute particle-cluster velocity usingpth order approximation
return velocity

else
if Nc ≤ N0

compute particle-cluster velocity by direct summation
return velocity

else
for each childĉ of clusterc

compute ˆε
compute velocity(x, ĉ, ε̂)

return sum of returned velocities
end for

end if
end if

FIG. 8. Functions used in the treecode. (a)stage(c0, ε) takes the root cellc0 and accuracy parameterε as
input and returns the particle velocities; (b)compute velocity(x, c, ε) returns the velocity of particlex induced
by clusterc using a divide-and-conquer strategy [27, 28].

radii and fewer particles, so it is more likely that the accuracy criterion will be satisfied.
The recursive call tocompute velocity for a child ĉ of clusterc requires a value ˆε of the
accuracy parameter; in the present work this is taken to be

ε̂ = M0(ĉ)

M0(c)
· ε, (35)

where

M0(c) =
Nc∑
j=1

|w j | (36)

is the total weight of the particles in clusterc. In words, the accuracy parameterε is
distributed to the children ofc in proportion to their weight.

This completes the description of the treecode algorithm. The code was implemented in
the C programming language using double precision arithmetic and dynamic memory allo-
cation. The computations were performed on Sun and SGI workstations. Several parameters

894 LINDSAY AND KRASNY

are specified by the user:N0, the maximum number of particles in a leaf of the tree;pmax,
the maximum order of Taylor approximation; andε, the treecode accuracy parameter. Tests
were performed to study the effect of these parameters [43]. The simulations below use the
valuesN0 = 500, pmax= 8. The effect ofε is discussed in the next section.

4. TREECODE PERFORMANCE

In this section we examine the accuracy, CPU time, and memory usage of the treecode
algorithm in comparison with direct summation. The test case is a fixed surface representing
a rolled-up vortex sheet; no time evolution is involved. The sheet was discretized in the man-
ner previously described and the number of particlesN was made to vary by changing the
refinement. The valueδ = 0.1 was chosen for the smoothing parameter. The exact velocity
of each particle was computed using direct summation, and an approximation was com-
puted using the treecode for three values of the accuracy parameter,ε = 10−2, 10−3, 10−4.
Results were obtained using both the potential criterion (32) and the velocity criterion (34).
The recorded error is the maximum norm over all particles of the difference between the
exact velocity and the treecode approximation.

Figure 9 plots the error as a function of the accuracy parameterε for several values of
N. The solid lines are based on the potential criterion and the dashed lines are based on
the velocity criterion. In both cases, the error decreases asε is reduced. Using the potential
criterion the error is between one and two orders of magnitude smaller thanε, while using
the velocity criterion the error is between three and four orders of magnitude smaller thanε.
The error is fairly insensitive to the number of particlesN.

Figure 10 plots the treecode CPU time as a function of the error for the same values of
ε and N as in Fig. 9. Each connected line denotes a specific number of particlesN. As
above, the solid lines are based on the potential criterion and the dashed lines are based

FIG. 9. Test case. The treecode error is plotted as a function of the accuracy parameterε = 10−2, 10−3, 10−4

for several values ofN. (—–) potential criterion (32) and (– –) velocity criterion (34).

VORTEX SHEET MOTION 895

FIG. 10. Test case. The treecode CPU time is plotted as a function of the error for the same values ofε and
N as in Fig. 9. Each connected line denotes a specific value ofN; (—–) potential criterion (32) and (– –) velocity
criterion (34). Each symbol on a connected line denotes a value of the accuracy parameterε, decreasing to the left
on each line.

on the velocity criterion. Each symbol on a connected line denotes a value of the accuracy
parameterε, decreasing to the left on each line. For example, using the potential criterion
with N= 51,276 andε = 10−3, the error is less than 3× 10−5 and the treecode CPU time
is about 175 s. The results show that the CPU time increases as the error is reduced. Note
that for each value ofN, the solid line falls below the corresponding dashed line; this means
that the potential criterion requires less CPU time than the velocity criterion to achieve a
specified error. This effect becomes more pronounced asN increases. In this sense, the
potential criterion is more efficient and so we use it instead of the velocity criterion in the
remainder of this work.

Figure 11a plots the CPU time for direct summation and the treecode as a function of the
number of particlesN. The same three values of the accuracy parameterε are used. The
treecode requires more CPU time asε is reduced, but it is still faster than direct summation
in each case displayed. Figure 11b plots the speedup, defined as the ratio of the direct
summation time and treecode time. For example, withN= 102,684 andε = 10−3, the
treecode is 10 times faster than direct summation. It is difficult to analyze the operation
count for the present adaptive algorithm, but the data in Fig. 11 are consistent withO(N
log N), the expected rate for a particle–cluster treecode [27, 28, 36].

Figure 12 plots the memory usage as a function ofN. The memory usage for direct
summation isO(N). The memory usage for the treecode is higher and increases at a rate
slightly faster thanO(N) due to the storage required for the cell moments, but even so it
remains less than twice the value required for direct summation up toN= 154,108.

The results presented in Figs. 9–12 show that the treecode algorithm is significantly faster
than direct summation for systems having a large number of particles and that the error can
be controlled by varying the accuracy parameter. In the next section we apply the particle
method and adaptive treecode algorithm to simulate time-dependent vortex sheet motion in
three-dimensional flow.

896 LINDSAY AND KRASNY

FIG. 11. Test case. (a) CPU time for direct summation and the treecode as a function of the number of particles
N; (s) measured data; (×) projected data. (b) speedup= direct summation time / treecode time.

5. VORTEX SHEET SIMULATIONS

There is widespread interest in vortex ring dynamics from theoretical, experimental, and
numerical points of view [51, 52]. Here we present two examples in which a circular-disk
vortex sheet rolls up into a vortex ring. Our aim is mostly to demonstrate the capability of
the numerical method, and although we present some preliminary analysis of the fluid flow,
more detailed study is reserved for future work.

FIG. 12. Test case. (a) memory usage as a function of the number of particlesN; (– · –) direct summation;
(—–) treecode; (s) measured data; (×) projected data. (b) ratio= treecode usage / direct summation usage.

VORTEX SHEET MOTION 897

The simulations below use the valueδ = 0.1 for the smoothing parameter. This is meant as
a representative value; the effect of varyingδ has been studied in two-dimensional [14, 19],
axisymmetric [47, 53], and three-dimensional vortex sheet simulations [17], and although
the sheet rolls up more tightly asδ is reduced, the large-scale structure of the sheet surface
does not depend strongly on the precise value ofδ. Once a value ofδ is chosen, the remaining
numerical parameters must be determined to provide adequate resolution. In the present
work, the timestep lies in the range 0.07≤ 1t ≤ 0.1, the particle insertion parameters are
ε0 = 0.075 andεθ = 0.05, the treecode accuracy parameter isε = 10−3, the maximum
order of Taylor approximation ispmax= 8, and the maximum number of particles in a leaf
of the tree isN0 = 500.

In this work, the vortex sheet was visualized using the surface rendering tool in the AVS
graphics package. On input, the tool requires a tensor product grid of particles, and on
output, it produces a surface that interpolates the particles. Since the discretization in the
particle method is not a tensor product in the0-θ parameter space, it was necessary to
create such a grid for plotting purposes. Therefore, using the piecewise cubic interpolation
scheme from Section 2.3, a set of particles was obtained having uniform increment1θ

along each material line. Due to memory constraints1θ could not be chosen too small, and
hence some material lines in the tensor product grid had fewer particles than in the original
discretization. As a result, the rendered surface may not be sufficiently well resolved in
some cases even though the underlying particle discretization was accurate. We shall see
an instance of this at the final time in the second example below.

5.1. Azimuthal Waves on a Vortex Ring

When fluid is ejected from a circular tube, the separating shear layer rolls up into a
vortex ring that propagates away from the tube exit plane [53]. At early times the ring
is axisymmetric, but experiments show that azimuthal waves develop later in time, and
numerical studies have documented the relation between the azimuthal wavenumber and
the perturbation growth rate [54, 55]. To simulate these waves, we introduce a transverse
perturbation in the circular-disk vortex sheet defined in (3). Thex1 andx2 coordinates are
unchanged, but the third coordinate changes fromx3 = 0 tox3 = 0.1r 2 coskθ , where(r, θ)
are polar coordinates in thex1-x2 plane andk is the perturbation wavenumber. The factor
r 2 is included to smooth the perturbation at the originr = 0.

Figure 13 plots the resulting motion for two values of the perturbation wavenumber,k = 5
andk = 9, at timest = 0, 2, 4, and 6. The edge of the sheet rolls up into a spiral, forming
a vortex ring withk azimuthal waves around the circumferential ring axis. Figure 14 plots
a section of the sheet surface to reveal the spiral core. The azimuthal instability appears
to be stronger withk = 9 than withk = 5. This is supported by Fig. 15, showing a subset
of material lines in the core of the ring. Withk = 5, the lines undergo small amplitude
oscillation about a circular shape. Withk = 9, the lines evolve in a more complex manner
leading to the formation of hairpins that wrap around the core as observed in previous
simulations [54, 56, 57].

5.2. Vortex Ring Merger

A number of laboratory experiments have been performed to study the interaction of
two vortex rings moving side by side in the same direction [58–63]. As time proceeds, the
rings are drawn together and they merge into a single ring that later splits apart again into
two rings. The change in ring topology is due to vortex reconnection and this is a topic of

898 LINDSAY AND KRASNY

FIG. 13. A circular-disk vortex sheet with transverse perturbation of wavenumberk. The sheet rolls up into a
vortex ring withk azimuthal waves around the circumferential ring axis.k = 5 (left); k = 9 (right). t = 0, 2, 4,
and 6.

VORTEX SHEET MOTION 899

FIG. 14. Section of the sheet surface from Fig. 13.k = 5 (left); k = 9 (right). t = 0, 2, 4, and 6.

900 LINDSAY AND KRASNY

FIG. 15. A subset of material lines in the core of the ring from Figs. 13, 14.k = 5 (left); k = 9 (right). t = 0,
2, 4, and 6.

fundamental interest [64]. The experimental results have inspired many numerical studies
[65–72]. Here we simulate the ring merger problem using two circular-disk vortex sheets
initially inclined at 30◦ from the horizontal. Figure 16 plots the resulting motion at times
t = 0, 1, 2, 3, and 4. The sheets roll up into a pair of vortex rings that interact with each
other. At early times(t = 1) the rings are nearly axisymmetric and the core radius is almost
uniform around the circumferential ring axis. At later times(t ≥ 2) the core radius becomes
increasingly nonuniform.

Figure 17 shows a closeup of the sheet surface at timet = 4. One can distinguish two
regions, an inner region where the rings are close together, and an outer region where they
are further apart. The core radius is nonuniform; it is small in the inner region and large
in the outer region. In the inner region, the rings form a pair of antiparallel vortex tubes

VORTEX SHEET MOTION 901

FIG. 16. Simulation of vortex ring merger. Two circular-disk vortex sheets are initially inclined at 30◦ from
the horizontal. Sheet surface (left); section (right).t = 0, 1, 2, 3, and 4.

902 LINDSAY AND KRASNY

FIG. 17. Closeup of sheet surface from Fig. 16 at timet = 4.

that propagate vertically as a dipole. Note that the outer region of each ring is shaped like a
horseshoe, and the inner region is shaped like an arch connecting the legs of the horseshoe,
while the transition zone between the two regions is shaped like a funnel. The texture of the
sheet surface in the outer region is smooth, but there are small-scale features on the sheet
surface in the inner region; these are not due to errors in the particle method, but rather to
inadequate resolution in the rendered surface as explained earlier in this section.

Examining Fig. 16, one can see that the core radius in the outer region increases mono-
tonically in time, while the core radius in the inner region increases until timet = 2 and then
decreases at later times. The decrease in core radius at later times is associated with material
stretching in the inner region along the circumferential ring axis. There are several factors
that contribute to this stretching (a) the self-induced dipole velocity of the arch causes it to
move away from the legs of the horseshoe and (b) the velocity induced by one horseshoe
causes the legs of the other horseshoe to separate in time. Presumably, there is also axial
flow in the core of the ring at later times, but this is left for future study.

Figure 18 plots a time sequence of vorticity isosurfaces in the ring merger simulation
(these are surfaces on which the vorticity field has constant magnitude). To obtain this plot,
the vorticity was evaluated on a uniform grid by taking the curl of the regularized velocity
field. Two isosurface levels are shown:1

3 (light gray) and2
3 (dark gray) of the initial peak

value. Four views are displayed: perspective, front, side, and top. Initially, the isosurfaces
of one ring are disjoint from those of the other ring, but the isosurfaces merge as the rings

VORTEX SHEET MOTION 903

perspective front side top

FIG. 18. Vorticity isosurfaces in the ring merger simulation. Two isosurface levels are shown:1
3

(light gray)
and 2

3
(dark gray) of the initial peak value. Four views are displayed: perspective, front, side, and top.t = 0, 1, 2,

3, and 4.

approach each other in time; the1
3-isosurfaces merge att = 2 and the2

3-isosurfaces merge
at t = 3. At the final time, the2

3-isosurface is effectively a single ring. The1
3-isosurface

surrounds this ring and also forms an arch spanning the middle of the ring. These results
are in qualitative agreement with previous studies [64].

It is important to emphasize the difference between the vortex sheet (Figs. 16, 17) and
the vorticity isosurfaces (Fig. 18). The vortex sheet is a material surface and it remains
topologically equivalent to a disk as it rolls up. In contrast, the vorticity isosurfaces are
not material surfaces and their topology is not preserved in time. In a real flow, topological

904 LINDSAY AND KRASNY

changes in the vorticity field are attributed to viscous reconnection [64], but since the
present model is nominally inviscid, there must be another explanation for the topological
changes seen in Fig. 18. We suggest that when regions of opposite-signed vorticity are in
close proximity, for example, the antiparallel vortex tubes in the arch, the contributions
that these regions make to the regularized Biot–Savart integral cancel each other; in other
words, integration provides a mechanism whereby opposite-signed vorticity is cancelled
and this permits topological changes to occur in the regularized vorticity field. While this
may explain what is happening in Fig. 18, the physical validity of these results is still
uncertain and can only be determined by comparison with genuine viscous simulations and
experiments.

To conclude this section, we note that the ring merger simulation started with about
15,000 particles and ended with about 350,000 particles. At the final time, each timestep
required approximately 2.5 h of CPU time on an SGI Power Challenge workstation (75 MHz,
128 Mbytes).

6. SUMMARY

We presented a Lagrangian particle method for computing vortex sheet motion in three-
dimensional flow. The particles are advected by a regularized Biot–Savart integral in which
the exact singular kernel is replaced by the Rosenhead–Moore kernel. A particle insertion
scheme is applied to maintain resolution as the sheet rolls up. The particle velocities are
evaluated by a treecode algorithm which replaces the particle–particle interactions by suit-
able particle–cluster interactions using a divide-and-conquer strategy [27, 28, 36]. Since
the Rosenhead–Moore kernel is nonharmonic, the particle–cluster interactions are approx-
imated by Taylor expansion in Cartesian coordinates rather than a classical multipole ex-
pansion involving spherical harmonics. The necessary Taylor coefficients are efficiently
computed by a recurrence relation [41, 43]. Several adaptive techniques are employed to
gain efficiency. The tree consists of nonuniform rectangular cells adapted to the particle
distribution. For each particle–cluster interaction, the order of approximation is chosen
adaptively, and a run-time choice is made between Taylor approximation and direct sum-
mation based on empirical estimates of the required CPU time. Tests were performed to
document the algorithm’s accuracy and efficiency, and simulations using up to 350,000
particles were performed on a workstation, which would have been impractical by direct
summation.

The method was applied to simulate the roll-up of a circular-disk vortex sheet into a
vortex ring. Two examples were presented, the growth of azimuthal waves on a vortex ring
and the merger of two vortex rings moving side by side. The particle method is well suited
for tracking the deformation of the material sheet surface. This type of regularized vortex
sheet model has previously been validated in several cases by comparison with viscous
simulations [25] and experiments [53]. An important goal in future work will be to extend
such comparisons to three-dimensional vortex ring dynamics.

Finally we note that the treecode algorithm developed here for the Rosenhead–Moore
kernel can be applied to a variety of other kernels; the main prerequisite is that the Taylor
coefficients of the kernel should satisfy a simple recurrence relation. This approach has
recently been applied to problems involving screened electrostatics and general power-law
interactions in molecular dynamics [73–75].

VORTEX SHEET MOTION 905

ACKNOWLEDGMENT

This work was supported by the National Science Foundation through Grants DMS-9506452 and DMS-
9973293.

REFERENCES

1. A. Leonard, Computing three-dimensional incompressible flows with vortex elements,Annu. Rev. Fluid
Mech. 17, 523 (1985).

2. E. G. Puckett, Vortex methods: An introduction and survey of selected research topics, inIncompressible
Computational Fluid Dynamics-Trends and Advances, edited by M. D. Gunzburger and R. A. Nicolaides
(Cambridge Univ. Press, Cambridge, UK, 1993), p. 335.

3. E. Meiburg, Three-dimensional vortex dynamics simulations, inFluid Vortices, edited by S. I. Green (Kluwer
Academic, Dordrecht/Norwell, MA, 1995), p. 651.

4. G.-H. Cottet and P. D. Koumoutsakos,Vortex Methods: Theory and Practice(Cambridge Univ. Press,
Cambridge, UK, 2000).

5. A. J. Majda and A. Bertozzi,Vorticity and Incompressible Flow(Cambridge Univ. Press, Cambridge, UK,
2001).

6. L. Rosenhead, The formation of vortices from a surface of discontinuity,Proc. Roy. Soc. London Ser. A134,
170 (1931).

7. D. W. Moore, On the point vortex method,SIAM J. Sci. Stat. Comput.2, 65 (1981).

8. D. W. Moore, The spontaneous appearance of a singularity in the shape of an evolving vortex sheet,Proc.
Roy. Soc. London Ser. A365, 105 (1979).

9. D. I. Meiron, G. R. Baker, and S. A. Orszag, Analytic structure of vortex sheet dynamics. 1. Kelvin–Helmholtz
instability,J. Fluid Mech.114, 283 (1982).

10. R. Krasny, A study of singularity formation in a vortex sheet by the point-vortex approximation,J. Fluid Mech.
167, 65 (1986).

11. M. J. Shelley, A study of singularity formation in vortex-sheet motion by a spectrally accurate vortex method,
J. Fluid Mech.244, 493 (1992).

12. A. J. Chorin and P. S. Bernard, Discretization of a vortex sheet, with an example of roll-up,J. Comput. Phys.
13, 423 (1973).

13. C. R. Anderson, A vortex method for flows with slight density variations,J. Comput. Phys.61, 417 (1985).

14. R. Krasny, Desingularization of periodic vortex sheet roll-up,J. Comput. Phys.65, 292 (1986).

15. W. T. Ashurst and E. Meiburg, Three-dimensional shear layers via vortex dynamics.J. Fluid Mech.189, 87
(1988).

16. M. E. Agishtein and A. A. Migdal, Dynamics of vortex surfaces in three dimensions: Theory and simulations,
Physica D40, 91 (1989).

17. M. Brady, A. Leonard, and D. I. Pullin, Regularized vortex sheet evolution in three dimensions,J. Comput.
Phys.146, 520 (1998).

18. C. Pozrikidis, Theoretical and computational aspects of the self-induced motion of three-dimensional vortex
sheets.J. Fluid Mech.425, 335 (2000).

19. R. Krasny, Computation of vortex sheet roll-up in the Trefftz plane,J. Fluid Mech.184, 123 (1987).

20. L. Rosenhead, The spread of vorticity in the wake behind a cylinder,Proc. Roy. Soc. London Ser. A127, 590
(1930).

21. D. W. Moore, Finite amplitude waves on aircraft trailing vortices,Aero. Quart.23, 307 (1972).

22. O. M. Knio and A. F. Ghoniem, Three-dimensional vortex simulation of rollup and entrainment in a shear
layer,J. Comput. Phys.97, 172 (1991).

23. G. S. Winckelmans, J. K. Salmon, M. S. Warren, A. Leonard, and B. Jodoin, Application of fast parallel and
sequential tree codes to computing three-dimensional flows with the vortex element method and boundary
element methods, inVortex Flows and Related Numerical Methods II, edited by Y. Gagnon, G.-H. Cottet,

906 LINDSAY AND KRASNY

D. G. Dritschel, A. F. Ghoniem, and E. Meiburg, ESAIM: Proceedings (1996) Vol. 1, p. 225, available at
http://www.emath.fr/Maths/Proc/Vol.1/index.htm.

24. L. Greengard, Fast algorithms for classical physics,Science265, 909 (1994).

25. G. Tryggvason, W. J. A. Dahm, and K. Sbeih, Fine structure of vortex sheet rollup by viscous and inviscid
simulation,J. Fluids Eng.113, 31 (1991).

26. E. Harabetian, S. Osher, and C.-W. Shu, An Eulerian approach for vortex motion using a level set regular-
ization procedure,J. Comput. Phys.127, 15 (1996).

27. A. Appel, An efficient program for many-body simulation,SIAM J. Sci. Stat. Comput.6, 85 (1985).

28. J. Barnes and P. Hut, A hierarchicalO(N log N) force-calculation algorithm,Nature324, 446 (1986).

29. L. Greengard and V. Rokhlin, A fast algorithm for particle simulations,J. Comput. Phys.73, 325 (1987).

30. L. Greengard,The Rapid Evaluation of Potential Fields in Particle Systems(MIT Press, Cambridge, MA,
1988).

31. F. Zhao,An O(N) Algorithm for Three-Dimensional N-Body Simulations, AI-TR-995 (Massachusetts Institute
of Technology, Cambridge, MA, 1987).

32. J. Carrier, L. Greengard, and V. Rokhlin, A fast adaptive multipole algorithm for particle simulations,SIAM
J. Sci. Stat. Comput.9, 669 (1988).

33. L. van Dommelen and E. A. Rundensteiner, Fast, adaptive summation of point forces in the two-dimensional
Poisson equation,J. Comput. Phys.83, 126 (1989).

34. C. R. Anderson, An implementation of the fast multipole method without multipoles,SIAM J. Sci. Stat.
Comput.13, 923 (1992).

35. H. G. Petersen, D. Soelvason, J. W. Perram, and E. R. Smith, The very fast multipole method,J. Chem. Phys.
101, 8870 (1994).

36. J. K. Salmon and M. S. Warren, Skeletons from the treecode closet,J. Comput. Phys.111, 136 (1994).

37. D. W. Elliott and J. A. Board, Jr., Fast Fourier transform accelerated multipole algorithm,SIAM J. Sci.
Comput.17, 398 (1996).

38. J. H. Strickland and R. S. Baty, A pragmatic overview of fast multipole methods.Lect. Appl. Math.32, 807
(1996).

39. H. Cheng, L. Greengard, and V. Rokhlin, A fast adaptive multipole algorithm in three dimensions,J. Comput.
Phys.155, 468 (1999).

40. J. T. Hamilton and G. Majda, On the Rokhlin-Greengard method with vortex blobs for problems posed in
all space or periodic in one direction,J. Comput. Phys.121, 29 (1995).

41. C. Draghicescu and M. Draghicescu, A fast algorithm for vortex blob interactions,J. Comput. Phys.116, 69
(1995), doi:10.1006/jcph.1995.1006.

42. T. Sakajo and H. Okamoto, An application of Draghicescu’s fast summation method to vortex sheet motion,
J. Phys. Soc. Japan67, 462 (1998).

43a. K. Lindsay,A Three-Dimensional Cartesian Tree-Code and Applications to Vortex Sheet Roll-Up, Ph.D.
thesis (University of Michigan, Ann Arbor, MI, 1997).

43b. T. Sakajo, Numerical Computation of a Three-Dimensional Vortex Sheet in a Swirl Flow,Fluid Dyn. Res.
28, 423 (2001).

44. R. E. Caflisch, Mathematical analysis of vortex dynamics, inMathematical Aspects of Vortex Dynamics,
edited by R. E. Caflisch (SIAM, Philadelphia, PA, 1988), p. 1.

45. Y. Kaneda, A representation of the motion of a vortex sheet in a three-dimensional flow,Phys. Fluids A2,
458 (1990).

46. R. E. Caflisch and X. Li, Lagrangian theory for 3D vortex sheets with axial or helical symmetry,Trans. Thy.
Stat. Phys.21, 559 (1992).

47. M. Nitsche,Axisymmetric Vortex Sheet Roll-Up, Ph.D. thesis (University of Michigan, Ann Arbor, MI, 1992).

48. R. Krasny and M. Nitsche, The onset of chaos in vortex sheet flow,J. Fluid. Mech.submitted for publication.

49. G. E. Andrews, R. Askey, and R. Roy,Special Functions(Cambridge Univ. Press, Cambridge, UK, 1999).

50. N. R. Clarke and O. R. Tutty, Construction and validation of a discrete vortex method for the two-dimensional
incompressible Navier–Stokes equations,Comput. Fluids23, 751 (1994).

VORTEX SHEET MOTION 907

51. K. Shariff and A. Leonard, Vortex rings,Annu. Rev. Fluid. Mech.24, 235 (1992).

52. T. T. Lim and T. B. Nickels, Vortex rings, inFluid Vortices, edited by S. I. Green (Kluwer Academic,
Dordrecht/Norwell, MA, 1995), p. 95.

53. M. Nitsche and R. Krasny, A numerical study of vortex ring formation at the edge of a circular tube,J. Fluid
Mech.276, 139 (1994).

54. O. M. Knio and A. F. Ghoniem, Numerical study of a three-dimensional vortex method,J. Comput. Phys.
86, 75 (1990).

55. K. Shariff, R. Verzicco, and P. Orlandi, A numerical study of three-dimensional vortex ring instabilities;
viscous corrections and early nonlinear stage.J. Fluid Mech.279, 351 (1994).

56. A. J. Chorin, Hairpin removal in vortex interactions,J. Comput. Phys.91, 1 (1990).

57. A. J. Chorin, Hairpin removal in vortex interactions II,J. Comput. Phys.107, 1 (1993).

58. T. Kambe and T. Takao, Motion of distorted vortex rings,J. Phys. Soc. Japan31, 591 (1971).

59. T. Fohl and J. S. Turner, Colliding vortex rings,Phys. Fluids18, 433 (1975).

60. Y. Oshima and S. Asaka, Interaction of two vortex rings along parallel axes in air,J. Phys. Soc. Japan42,
708 (1977).

61. P. R. Schatzle,An Experimental Study of Fusion of Vortex Rings, Ph.D. thesis (California Institute of
Technology, Pasadena, CA, 1987).

62. Y. Oshima and N. Izutsu, Cross-linking of two vortex rings,Phys. Fluids31, 2401 (1988).

63. T. T. Lim, An experimental study of a vortex ring interacting with an inclined wall.Exp. Fluids7, 453 (1989).

64. S. Kida and M. Takaoka, Vortex reconnection,Annu. Rev. Fluid Mech.26, 169 (1994).

65. W. T. Ashurst and D. I. Meiron, Numerical study of vortex reconnection,Phys. Rev. Lett.58, 1632 (1987).

66. C. R. Anderson and C. Greengard, The vortex ring merger problem at infinite Reynolds number,Comm.
Pure Appl. Math.42, 1123 (1989).

67. A. Leonard and K. Chua, Three-dimensional interactions of vortex tubes,Physica D37, 490 (1989).

68. H. Aref and I. Zawadzki, Linking of vortex rings,Nature354, 50 (1991).

69. S. Kida, M. Takaoka, and F. Hussain, Collision of two vortex rings,J. Fluid Mech.230, 583 (1991).

70. G. S. Winckelmans and A. Leonard, Contributions to vortex particle methods for the computation of
three-dimensional incompressible unsteady flows,J. Comput. Phys.109, 247 (1993).

71. A. S. Almgren, T. Buttke, and P. Colella, A fast adaptive vortex method in three dimensions,J. Comput.
Phys.113, 177 (1994).

72. J. Steinhoff and D. Underhill, Modification of the Euler equations for “vorticity confinement”: Application
to the computation of interacting vortex rings,Phys. Fluids6, 2738 (1994).

73. Z.-H. Duan and R. Krasny, An Ewald summation based multipole method,J. Chem. Phys.113, 3492 (2000).

74. Z.-H. Duan and R. Krasny, An adaptive treecode for computing nonbonded potential energy in classical
molecular systems,J. Comput. Chem.22, 184 (2001).

75. R. Krasny and Z.-H. Duan, Treecode algorithms for computing nonbonded particle interactions, inMethods
for Macromolecular Modeling, edited by T. Schlick and H. H. Gan, Lecture Notes in Computational Science
and Engineering (Springer-Verlag, Berlin/New York, to appear).

	1. INTRODUCTION
	2. PARTICLE METHOD
	FIG. 1.
	FIG. 2.
	FIG. 3.

	3. TREECODE ALGORITHM
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.

	4. TREECODE PERFORMANCE
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.

	5. VORTEX SHEET SIMULATIONS
	FIG. 13.
	FIG. 14.
	FIG. 15.
	FIG. 16.
	FIG. 17.
	FIG. 18.

	6. SUMMARY
	ACKNOWLEDGMENT
	REFERENCES

