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A particle method is presented for computing vortex sheet motion in three-dimens-
ional flow. The particles representing the sheet are advected by a regularized Biot—
Savart integral in which the exact singular kernel is replaced by the Rosenhead—
Moore kernel. New particles are inserted to maintain resolution as the sheet rolls
up. The particle velocities are evaluated by an adaptive treecode algorithm based on
Taylor approximation in Cartesian coordinates, and the necessary Taylor coefficients
are computed by a recurrence relation. The adaptive features include a divide-and-
conguer evaluation strategy, nonuniform rectangular clusters, variable-order approx-
imation, and a run-time choice between Taylor approximation and direct summation.
Tests are performed to document the treecode’s accuracy and efficiency. The method
is applied to simulate the roll-up of a circular-disk vortex sheet into a vortex ring.
Two examples are presented, azimuthal waves on a vortex ring and the merger of
two vortex rings. © 2001 Academic Press

Key Words:particle method; adaptive treecode; vortex sheet; vortex ring; three-
dimensional flow.

1. INTRODUCTION

Vortex sheets are widely used in fluid dynamics to model thin shear layers in sligh
viscous flow. In this case, the shear layer is replaced by a jump discontinuity across the s
surface and the evolution of the layer is reduced to tracking the self-induced motion of
sheet. The present work develops a Lagrangian particle method for computing vortex s
motion in three-dimensional flow. There is a large body of work dealing with the applicati
of such methods to three-dimensional vortex dynamics, and several survey articles and
can be consulted for an overview [1-5].

879

0021-9991/01 $35.00
Copyright(© 2001 by Academic Press
All rights of reproduction in any form reserved.



880 LINDSAY AND KRASNY

We start by describing a number of special difficulties that arise in vortex sheet co
putations. In two-dimensional flow, the point vortex method replaces a continuous vor
sheet by a set of discrete point vortices [6, 7], but the method fails to converge past a fi
critical time when a curvature singularity forms in the underlying sheet [8—11]. One w:
to proceed is to regularize the problem by applying the vortex-blob method, and this
proach captures the spiral roll-up of the vortex sheet past the critical time [12—-14]. As
from the issue of singularity formation, another difficulty arises because perturbations
troduced by machine roundoff error are amplified by Kelvin—-Helmholtz instability, leadir
to the rapid loss of computational accuracy [7, 10]. This can be prevented by using hig
precision arithmetic or filtering [10], and more generally the severity of the problem c:
be reduced by applying the vortex-blob method [14]. There is also a difficulty due
the fact that the sheet is a material surface and its shape can become quite convolut
time. Unless some precaution is taken, the numerical resolution of the surface will de
riorate. Here too the vortex-blob method can be applied, to limit the deformation of t
surface, but there is still a need for an efficient method of resolving the surface, especi
in the case of three-dimensional flow. One remedy represents the sheet as a colle
of vortex filaments and uses cubic spline interpolation to insert new particles as the f
ments deform [15]. Another approach represents the sheet as a triangulated surface
uses panel methods to perform adaptive mesh refinement [16—18]. Here we will rey
sent the sheet as a set of material lines, and we maintain resolution by using local ci
polynomial interpolation to insert new particles and material lines as the sheet rolls
[19].

Another importantissue, and the main topic of this work, is the large amount of CPU tir
required in vortex sheet computations. To explain how this arises we need to briefly desc
our numerical method. The sheet is represented at the discrete level by a set of part

X; (t) with vector-valued weights;, fori = 1, ..., N, and the particles are advected by the
equations

dx; N

d—tl=ZKa(Xi,Xj)XWj, «y

j=1
where
X —_—
Ks(X,Y) = Y )

A (x— Y2 + 692

is the Rosenhead—Moore kernel, a regularized form of the Biot—Savart kernel [20, 21]. T
is an example of a vortex-blob method whergiis an artificial smoothing parameter. The
exact kernel is recovered by settifido zero, but the simulations use a nonzero value ir
order to overcome the problems mentioned above due to singularity formation, Kelvi
Helmholtz instability, and surface resolution. More details about the discretization will |
given below. The Rosenhead—-Moore kernel is popular in three-dimensional vortex st
computations [15-18], but other expressions are sometimes also used [22, 23].
Evaluating the sumin (1) far=1, ..., N is an example of aiN-body problem, anal-

ogous to problems involving point charges or point masses in classical physics [24].
simplest evaluation procedure is direct summation, but this requires compDtiNg)
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particle—particle interactions and hence is prohibitively expensive Whisriarge. Several
approaches have been developed to reduce the computational cost, and in the contt
three-dimensional vortex sheet motion these include a vortex-in-cell method [25] an
level-set method [26]. The present work takes a different approach using the concept
treecode algorithm.

In a treecode algorithm, the particles are divided into a nested set of clusters and
O(N?) particle—particle interactions are replaced by a smaller number of particle—clus
interactions which can be efficiently evaluated using a multipole approximation. The earli
treecode algorithms used a monopole approximation and a divide-and-conquer evalu:
strategy [27, 28]. The fast multipole method (FMM) uses higher order approximatiol
either a Laurent series in two dimensions or a classical multipole expansion involv
spherical harmonics in three dimensions [29, 30]. The FMM also employs a more elabo
evaluation procedure in which the far-field multipole approximation is converted to a loc
approximation. Treecode algorithms reduce the operation coudthblog N) or O(N).
They have had greatimpact in particle simulations and there is ongoing interest in optimiz
their performance [31-39].

Treecodes are a natural choice to consider for evaluating the sums in (1), but thet
an obstacle; the Rosenhead—Moore kernel (2) is nonharmonicdvhehand so it cannot
be expanded in a classical multipole series. One way of overcoming this problem is
replace (2) by a different form of regularized kernel in which the smoothing effect dece
more rapidly with distance. Then direct summation can be applied to compute regulari
particle—particle interactions inside a specified cutoff radius, while a treecode using a ¢
sical multipole expansion can be applied outside the cutoff radius where the regulariza
effectively vanishes [23, 40].

Here we want to retain the Rosenhead—Moore kernel and in order to do so we dev
a treecode algorithm based on Taylor approximation in Cartesian coordinates rather
a classical multipole expansion involving spherical harmonics. The Taylor approximati
converges because the kernel (2) is real analytic, and moreover, the necessary Taylor
ficients can be efficiently computed by a recurrence relation. This approach was origin.
developed for vortex sheet computations in two-dimensional flow [41, 42] and was la
extended to the case of three-dimensional flow [43a, 43b]. The algorithm uses a divide-:
conquer strategy to evaluate the particle velocities [27, 28] and it employs several aday
techniques to gain efficiency. The tree consists of nonuniform rectangular clusters ada
to the particle distribution. For each particle—cluster interaction, the order of approximat
is chosen adaptively, and a run-time choice is made between Taylor approximation anc
rect summation based on empirical estimates of the required CPU time. Tests are perfor
to document the treecode’s accuracy and efficiency, and the results show that the algor
is significantly faster than direct summation for systems having a large number of partic
The particle method and adaptive treecode algorithm are then applied to simulate the ro
of a circular-disk vortex sheet into a vortex ring. Two examples are presented, the gro
of azimuthal waves on a vortex ring and the merger of two vortex rings moving side
side.

The paper is organized as follows. Section 2 describes the particle method for compu
vortex sheet motion in three-dimensional flow. Section 3 presents the treecode algori
for evaluating the particle velocities and Section 4 documents the algorithm’s accur:
and efficiency on a test case. Section 5 presents the vortex sheet simulations. The wc
summarized in Section 6.
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2. PARTICLE METHOD

2.1. Lagrangian Formulation

The simulations are based on the Lagrangian formulation of vortex sheet motion
three-dimensional flow [44—46]. For the intended application to vortex rings we view tl
sheet as a parametrized surfag®’, 0,t) composed of closed material lines, whdre
measures circulation across the lines @ni$ a 2r-periodic parameter along the lines.
Figure 1 depicts the initial parametrization of a circular-disk vortex sheet defined in ter
of Cartesian coordinates(I’, 8, 0) = (X1, X2, X3), Where

x1=(1—T?Y?cos, x,=(1-T?>Y%sing, x3=0, (3)

and0<T < 1,0 <6 < 27. Equation (3) describes the bound vortex sheet associated wi
potential flow past a circular disk. The lines of constant circulafiaorrespond to vortex
lines. Note thal” = (1 — r?)¥2, wherer = (x2 + x2)¥/2 is the radial coordinate of a point
on the sheet measured from the cemter 0. The square-root singularity in(r) atr =1
causes the edge of the sheet to roll up into a spiral fer0.

With this parametrization, the equation governing the motion of the sheet is

X 2l 0%~ o~
X _ Ks(x. %) x 2df'dd, 4
> /0 /O %) X 4)

wherex = x(T, 0, 1), X = x(I', 6, 1), andK(x, X) is the Rosenhead—Moore kernel. The
right side of (4) is a regularized form of the Biot—Savart integral specialized to the case
a vortex sheet, and the equation states that the sheet is a material surface moving in its
induced velocity field. The terd@X /96 accounts for vortex stretching. With the circular-disk
initial condition given in (3), the sheet rolls up into an axisymmetric vortex ring [47, 48
In Section 5 we perturb this initial condition to obtain examples of fully three-dimension
motion.

2n -

FIG. 1. Parametrization of a circular-disk vortex sheet (3). (a) parameter spaég (b) physical space
(x4, X2, X3). I measures circulation across the vortex lines @isla 27 -periodic parameter along the lines. The
sheet lies in the plang = 0.
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FIG.2. Discretization of a circular-disk vortex sheet into particl®3.((a) parameter spacg,(#); (b) physical
space X1, Xz, Xa).

2.2. Discretization

The sheet is represented by a set of Lagrangian partigleés i = 1,..., N, corre-
sponding to a discretization of tHe— 6 parameter space. The initial discretization for a
circular-disk vortex sheet is shown schematically in Fig. 2. First the sheet is discretize
circulationI” to obtain a finite set of material lines and then each line is discretizeédan
obtain the particles; (t). In practice, thé'-mesh is dense near the edge of the disk in orde
to resolve the spiral roll-up. The-mesh is chosen so that the particle spacing along ea
line is roughly uniform.

Given a set of particles, the integral in (4) is discretized using the trapezoid rule w
respect tol" and@, in that order. This yields a system of ordinary differential equation
for the motion of the particles, shown in (1). The particle weights are defineal;by
Dy (xj) AT AB;, whereDy (x) is a second-order finite-difference approximatiodxgag,
and AT'j, Ap; are the quadrature weights. The system (1) is solved by the fourth-orc
Runge—Kutta method using the treecode to evaluate the particle velocities.

2.3. Particle Insertion Scheme

New patrticles are inserted during the computation to maintain resolution as the st
rolls up. This can occur in two ways (@) inserting a particle on a material line (refinir
thed-mesh for a given value df) and (b) inserting particles to create a new material line
(refining theI’-mesh). The insertion scheme relies on two user-specified paramsgters
ander.

Figure 3a depicts the scheme for inserting a new particle on a material line [19]. An
particle is inserted between two adjacent particles if the distance between the particle
greater thar,. Thef-value of the new particle is the averagealue of the two adjacent
particles. The location of the new particle is computed using a cubic interpolating polynon
in 6 based on the four adjacent particles, two on each side.

Figure 3b depicts the scheme for inserting particles to create a new material line. A r
line is created between two adjacent lines if the maximum distance between the line
greater tharer. TheT'-value of the new line is the averagevalue of the two adjacent
lines. The-values of the particles on the new line are transferred from an adjacent line.
compute a new particle location for a givevalue, we use a cubic interpolating polynomial
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FIG. 3. Particle insertion scheme. (a) inserting a new particle on a material line (refinimgrtiesh for a
given value ofl"); (b) inserting particles to create a new material line (refininglthmesh). Particle®); new
particle ©); auxiliary particle ¢); material line (——); new material line (- - -).

in I" based on particle locations on the four adjacent lines, two on each side. If there is
particle at a giverv-value on these lines, auxiliary particles are created using a cub
interpolating polynomial irg.

The simulations start from simple initial conditions that are well-resolved by a sm:
number of particles. As the sheet rolls up, many new particles are inserted and dil
summation becomes impractical. In the next section we present a treecode algorithr
deal with this problem.

3. TREECODE ALGORITHM

3.1. Overview

The treecode algorithm is used by the time-integration routine to compute the parti
velocities on the right side of (1). There are two main steps (a) constructing the tree fc
given set of particles and (b) computing the particle velocities with the aid of the tree. T
tree is constructed by subdividing the particles into a nested set of clusters. Once the tr
constructed, each particle velocity is expressed as a sum of particle—cluster interactior

dx; Ne
?{=ZZK5(Xi,YJ)XWj, (5)
c j=1
wherec = {y;, j =1, ..., N} denotes a cluster of particles amglis the weight associated

with y;. The clusterg appearing in (5) are determined adaptively for each partjalsing
a divide-and-conquer strategy [27, 28, 36].

Figure 4 depicts a particlg; and a disjoint clustec (there and sometimes below, a
two-dimensional schematic is shown). The associated cell is defined to be the sma
rectangular box containing the particlescirand the cell centey. is the geometric center
of the box. Strictly speaking @ell is a region of space containinghusterof particles, but
we use the terms interchangeably. The particle—cluster interaction gives the velocity of
particlex; induced by the cluster. As explained below, the interactions are evaluated usin
either Taylor approximation or direct summation.
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FIG. 4. Aparticlex; and a disjoint clustec = {y;, j =1,..., N.}. The associated cell is defined to be the

smallest rectangular box containing the particles,iand the cell centey; is the geometric center of the box.

The remainder of this section describes the components of the treecode algorithm:
Taylor approximation for a particle—cluster interaction (Section 3.2), the recurrence relat
for the Taylor coefficients of the regularized kernel (Section 3.3), the criterion for choosi
the order of approximation (Section 3.4), the tree construction procedure (Section 3.5),
the divide-and-conquer strategy for evaluating the particle velocities (Section 3.6).

3.2. Taylor Approximation

Our aim is to derive a Taylor approximation for a particle—cluster interaction. Referril
to the right side of (5), we expari€l;(x;, y;) in a Taylor series with respect joabout the
cell centery.. Using Cartesian coordinates and standard multi-index notation, this yield

Ne

Nc
D K06y x Wi =Y KX, Ye + (V) — Vo)) X W

j=1

j=1
N 1
DD i DYKs 0. Yooy — o x wy
=1 k

a(Xi, Ye) x M (c), (6)
k
wherek = (kq, ko, k) is an integer multi-index with alf, > 0,

1
(X, o) = i DyKs(Xi. yo) (7)

is thekth Taylor coefficient oK;(x;, y) aty =y, and

Ne
Mk(©) = Y (¥} — YW, €
=1

is thekth moment of clusterabout its centey.. The approximation is obtained by truncating
the infinite series in (6),

Ne
D K5,y x Wi A Y a(Xi, Vo) x Mk(©), Q)

j=1 Ikll<p
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where| k| = k; + ko + k3 and the ordeip is chosen to ensure that the error is small. We
refer to the right side of (9) asth-order particle—cluster approximation; it will be shown
in Section 3.4 that the error @(hP), whereh = r /R is the ratio of the cluster radius

r=maxlyj —vel, j=1....,Ng} (10)
and the regularized distance between the particle and the cell center
R=(xi —Yol* + 832 (11)

Note that the Taylor coefficient (x;, ) are independent of the partichgsin clusterc,
and the cluster momenitsy (c) are independent of the partiole These features permit an
efficient computation of gth-order particle—cluster approximation (9) as follows.

Step 1: Compute the Taylor coefficiergx;, y.) for | k|| < p. There areD(p®) coeffi-
cients and each of them can be compute®iil) operations using the recurrence relation
derived below.

Step 2: Compute the cluster momentg(c) for |k|| < p, unless they are already avail-
able from a previous interaction. There & p®) moments and altogether they can be
computed inO(p3N¢) operations. However, when the moments of a particular claster
are first computed, they are stored and used again in subsequent interactions betmcen
other particles;. In practice, the cost of computing the moments is a small fraction of th
total CPU time required by the treecode.

Step 3: Sum the truncated series on the right side of (9). The sui® & terms and
each of them can be computed@{1) operations.

The key pointis that the operation counts for Steps 1 and 3 are independent of the nun
of particles in the clusteN.. Thus assuming the cluster moments are availalyith-a@rder
particle—cluster approximation can be compute®ifp?) operations.

3.3. Recurrence Relation

To evaluate thepth-order particle—cluster approximation in (9), we require the Taylo
coefficients of the regularized kernal(x,y) for | k|| < p (for clarity we write &, y)
instead of i, y¢)). Explicit formulas for the coefficients can be derived, but the expressiol
become unwieldy ajgk || increases. Instead we derive a recurrence relation permitting rag
computation of the coefficients.

Consider the following regularized Newtonian potential,

1 1
¢s(X.y) =

- - 12
4 (X — y[2 + 8912 (12)

also known as the Plummer potential in the context of gravitational attraction [36]. Nc
that the Rosenhead—Moore kernel (2) is the gradient of the Plummer potential,

K(S(X9 y) = VX¢6 (X9 y) = _Vy¢8 (Xv y) (13)

Let

1
bk (X7 y) = E DI;(PS (X, y) (14)
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be thekth Taylor coefficient ofps(x, y) with respect toy. It follows from (13) that the
Taylor coefficients of the Rosenhead—Moore kernel and the Plummer potential satisfy
relation

3
ac=—Y (k +Dbgea. (15)
i=1

whereg is theith Cartesian-basis vector (here and sometimes below we mmyj for
clarity). Hence to compute the coefficiems it is sufficient to derive a recurrence relation
for by.

PropPosITION3.1. The Taylor coefficientsdof the Plummer potential satisfy the recur-
rence relation

3 3
Ikl RPx — 21Kl =)D (% — ¥bkg + (1K =D Y bx2a =0  (16)

i—1 i—1
for ||k|| > 1, where Iy = ¢s(x,y), by =0ifany k < 0,and R = |x — y|? + 8.

Proof. The Plummer potentiad; (X, y) satisfies the differential equation
(X = YI? + 6%)Dy,¢5 — (X1 — yo)ops = 0. (17)
Applying the operatoD';;‘1 and using Leibniz’s rule for differentiating a product we obtain
(IX = y|? + 8Dl ps — (2kq — 1)(x1 — y1) DI~ + (kg — 1)°DI %5 = 0. (18)

Next we applyDt; Diﬁg and substitute the definitions bf and R? to obtain

3 3
kaRPbx — 2k1 Y (6 — Yi)bk e +Ki ) bk 26 — (X1 — Y1)bk e, —bx 26, = 0. (19)

i=1 i=1

Equation (19) is a recurrence relation far in which the index 1 plays a special role.
Similar equations can be obtained for indices 2 and 3. Summing these equations, we ol
the symmetric form in (16). m

Equation (16) is the recurrence relation used to compute the Taylor coeffibients
the Plummer potential. Figure 5 shows the order in which the coefficients are compt
in practice. Since there a@(p?) indices satisfying|k|| < p and each application of the
recurrence relation requir€y(1) operations, the necessary coefficiditsan be computed
in O(p?) operations. Then using (15), the Taylor coefficiemt®f the Rosenhead—Moore
kernel can be computed with an additio@(p®) operations.

Note that there is a similarity between the three-dimensional recurrence relation fot
in (16) and the one-dimensional recurrence relation for the Legendre polyndppials

NP(X) — (2N — DXPr1(X) + (N — D Pr_2(x) =0 (20)

forn > 2, wherePy(x) = 1 andPy(x) = x [49]. This is not surprising since the Taylor co-

efficientsby arise by expanding the Plummer potential with respect to Cartesian coording
while the Legendre polynomialB,(x) arise by expanding the Newtonian potential with
respect to spherical coordinates. The error analysis below makes use of this observati
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FIG. 5. Steps showing the order in which the Taylor coefficiemtsare computed fof| k || < p using the
recurrence relation (16); current step)( later step ©); previous step@®).

3.4. Error Analysis

Next we analyze the error in a particle—cluster approximation (9) to obtain a criteri
for choosing the ordep. First define a vector potential associated with a particle—clusts
interaction

Ne

D s ypw;, (21)

=1

and note that the curl of the vector potential is the velocity,

Nc N
Vx X > s (6 ypWj = Y Ks(X,yj) X Wj. (22)
j=1 j=1

Following the steps leading to the approximation of the velocity (9), the vector potent
has the approximation

Ne
D bYW &Y be(X, YoMk (©). (23)
j=1 Ikli<p

We will analyze the error in the approximation of the vector potential (23); the velocity err
can be treated similarly and we comment on this below. Using the definition of a clus
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moment (8), the sum of the neglected terms in (23) is

Ne
Z bk(xs yC)mk(C) = Z Z Bn(xs y01 y] )W] ’ (24)
Ikl=p nzp j=1
where
Ba(X. Ye. YD = > k(X Yo) () — yo. (25)
Ikll=n

We will obtain an alternative expression g (X, yc, yj).

PrROPOSITION3.2. The quantity B(X, yc, yj) satisfies the recurrence relation
nR2B, — (2n — 1)aBy_1 + (N — 1)B%By_2 =0 (26)

for n> 1, where B = ¢s(X,¥c), BL1 =0, = (X —Yc) - (Y] —Yo), B =1Yj — Yel, and
R? = |x — y¢|? + 82

Proof. Multiplying the recurrence relation fdy in (16) by (y; — o)X and summing
over all indicesk with |[k|| = n, we obtain

3
NR D b(yj =Y —@n—1) Y > (% — Yedbe g (¥j Yo + (N —1)

[Ikl|=n [Ikl]=n i=1
3

X Z Zbkfza yj —yo)k =0. (27)
[Ikl|=ni=1

Recalling thaty = 0 if any indexk; is negative, it can be shown that

Z beie (Y] — Yo)* % = By (28)

[lkl|=n

forl =0, 1, 2. The result follows by substituting (28) into (27m
Comparing (20) and (26), it follows that

Lo L (B (e«
Bn(x,yc,yj)—4nR<R) Pn (ﬂR), (29)

where P,(x) is thenth Legendre polynomial. Using the fact tH#&,(x)| < 1 for |x| <1
and the bound

’ X—=Yo) - (Yj — Yo
Vi — Yel(IX — yel2 + 82)Y2| =

(30)

o
BR

we obtain

1 C v\ "
IBaX Yo, ¥l < 1= ('y' Ry°|) : (31)
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It follows that the approximation error for the vector potential, given in (24), is majorize
by a geometric series. A strict error bound can be derived, but it overestimates the ac
error. Instead, we take the first term of the series in (24) as a heuristic estimate of the el
with (31) this yields the criterion

Mp(C)
I RpH S © (32)
where
Mp(C) = Z Vi — Yol Plw;j | (33)

is the pth absolute moment of the cluster ani$ a user-specified parameter for controlling
the accuracy. In practice, when a particle—cluster approximation is to be evaluated,
orderp is set to the minimum value satisfying (32). This leads to a variable-order treecc
algorithm. The velocity error can be treated similarly [43] and the resulting criterion is

(P+D?Mp(©) _

47 RP+2 - (34)

We call (32) the potential criterion and (34) the velocity criterion; they will be tested ar
compared in Section 4. In either case it follows that the error ipttaorder particle—
cluster approximation i©(hP), whereh = r /R is the ratio of the cluster radiusand the
regularized distancR between the particle and cluster.

Before concluding this section, we note that error estimates have previously been im,
mented in variable-order treecode algorithms [35, 36]. In particular, [36] analyzed the er
in the Cartesian Taylor approximation for the Newtonian potential and the Plummer poti
tial, although that work recommende@d,.x = 2 for the maximum order of approximation.
In contrast, we find that higher order approximations are cost-effective when evalua
using the recurrence relation (16) and we ggix = 8 in the simulations presented below.

3.5. Tree Construction

The tree construction procedure divides the particles into nested cells that are use
evaluating the velocity. Treecode algorithms typically use an oct-tree structure in which
cells on each level are uniform cubes; the cells on one level are obtained by bisecting
cells on the previous level in the three coordinate directions. The tree is often adapte
the particle distribution by leaving undivided any cell containing fewer than a user-specif
number of particleNo.

The present algorithm follows this general approach but enhances the adaptivity
shrinking the cells at each step in the construction. The procedure starts with the root
containing all the particles. Figure 6 shows how a cell is subdivided into subcells. First
cell is bisected in its long directions, i.e., any direction in which its length is greater th:
L/+/2, whereL is the length of the longest edge. This yields two, four, or eight subcell
depending on the aspect ratio of the original cell. Before further subdivision, each subce
shrunk to the smallest rectangular box containing its particles. The shrunken subcells f
the next level in the tree. The bisect-and-shrink procedure continues until a cell has fe
thanNg particles.
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FIG.6. Subdividing acellinto subcells. (a) cell and (b) subcells before shrinking (- - -), subcells after shrinkil

)

This procedure is especially effective for nonhomogeneous particle distributions. Figul
shows the cells constructed for a set of particles lying on a vortex sheet spiral, by the stan
scheme and the present scheme. The nonuniform rectangular cells constructed by the p
scheme are well adapted to the particle distribution; the cell radii on a given level are sme
than for the standard scheme and this leads to a reduction in CPU time since the acct
criterion ((32) or (34)) is satisfied by a lower order approximation. This explains why v
bisect a cell only in the long directions; bisecting in a short direction does not significan
reduce the cell radius. There is little extra work involved in shrinking the cells, but it yielc
a substantial benefit for vortex sheet computations.

The choice ofNy affects the treecode’s performance.N§ is too small, the tree has
many levels and memory usage is high, whil&lifis too large, the cell radii are large and
high-order approximation is required, leading to increased CPU time. Tests were perforr
to determine a suitable value [43] and the present simulationblgise 500.

We note that nonuniform rectangular cells have previously been used in a two-dimensic
treecode for viscous flow [50]. To achieve load balancing on a parallel processor, in [50]
cells on a given level of the tree were required to have the same number of particles.
present scheme does not enforce this condition. In general, the optimal choice of par
clusters is an interesting problem for future investigation.

3.6. Evaluation of Particle Velocities

The treecode is applied to evaluate the particle velocities in each stage of the Runge—k
time integration scheme. This is accomplished using two functions. Figure 8a describes
first function,stag€co, €), which takes the root cetly and accuracy parameteras input
and returns the particle velocities. The function starts by constructing the tree associ
with ¢y and then computes the velocity of each particle by calling the second functic
Note thatstag€co, €) is called with a differenty in each of the four stages comprising one
timestep of the Runge—Kutta scheme.

Figure 8b describes the second functioampute velocity(x, ¢, €), which returns the
velocity of particlex induced by clustec using a divide-and-conquer strategy [27, 28]. It
starts by determining the minimum ordesatisfying the accuracy criterion (either (32) or
(34)) for the input parametexsc, €. The function then determines the CPU time required fo
pth-order Taylor approximatiori4y,) and direct summatiorid;). The times are estimated
empirically as follows. A stand-alone program was written to evaluate the particle—clus
velocity by Taylor approximation and by direct summation for various valugsafd N..
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FIG. 7. Example of tree construction for a set of particles lying on a vortex sheet spiral. (a) standard sche
(bisect) and (b) present scheme (bisect-and-shrink).

Assuming the cell moments are available, the approximationtigpelepends only on the
orderp, and the measured valuestgj, are stored in a lookup table. The direct summatior
time tyir depends linearly on the number of particles in the clukgrand the stand-alone
program determines the parameters in a linear least squares fit. &bimgrute velocity is
called for a given particle—cluster interaction, it accesses the lookup table and least-squ
parameters to determirg,, andtg,. Note that these estimated CPU times depend on th
coding of the algorithm and on the hardware; if these change, then the lookup table
least-squares parameters should be recomputed.

Next compute velocity compares the estimated CPU times for Taylor approximatio
and direct summation. If approximation is fastigp{ < tgr) and the required order is small
(P < pPmax Wherepmaxis a user-specified parameter), then the approximation is performi
by evaluating the right side of (9). If direct summation is faster or high-order approximatit
is required, then direct summation is performed i a leaf(N; < Np). Otherwise, the
code descends to the next level of the tree and recursivelyomatipute velocity for each
child € of clusterc. The rationale for descending the tree is that the children have smal
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(a) stageco, €)
construct tree associated with root agll
fori=1:N
compute velocity(x;, Co, €)
end for
return particle velocities

(b) computevelocity(x, c, €)

p = minimum order satisfying accuracy criterion

tapp = CPU time required fopth order approximation

tgir = CPU time required for direct summation

if tapp < tgir andp < Pmax
compute Taylor coefficients (X, y¢) for ||kK|| < p
compute cell momentsik (c) for ||k|| < p (if necessary)
compute particle-cluster velocity usingh order approximation
return velocity

else
if Ne < Np
compute particle-cluster velocity by direct summation
return velocity
else
for each child of clusterc
computec”
compute velocity(x, €, €)
return sum of returned velocities
end for
end if
end if

FIG. 8. Functions used in the treecode. &ag€c,, €) takes the root celt, and accuracy parameteras
input and returns the particle velocities; ggmpute.velocity(x, c, €) returns the velocity of particlg induced
by clusterc using a divide-and-conquer strategy [27, 28].

radii and fewer particles, so it is more likely that the accuracy criterion will be satisfie
The recursive call teompute.velocity for a child € of clusterc requires a value df the
accuracy parameter; in the present work this is taken to be

¢ = ng e (35)
where
Nc
Mo(©) = > wj| (36)
j=1

is the total weight of the particles in cluster In words, the accuracy parametelis
distributed to the children afin proportion to their weight.

This completes the description of the treecode algorithm. The code was implemente
the C programming language using double precision arithmetic and dynamic memory &
cation. The computations were performed on Sun and SGI workstations. Several param
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are specified by the usexy, the maximum number of particles in a leaf of the trpgx

the maximum order of Taylor approximation; andhe treecode accuracy parameter. Test
were performed to study the effect of these parameters [43]. The simulations below use
valuesNy = 500, pmax = 8. The effect ofe is discussed in the next section.

4. TREECODE PERFORMANCE

In this section we examine the accuracy, CPU time, and memory usage of the treec
algorithm in comparison with direct summation. The test case is a fixed surface represen
arolled-up vortex sheet; no time evolution is involved. The sheet was discretized in the m
ner previously described and the number of partilesas made to vary by changing the
refinement. The valué = 0.1 was chosen for the smoothing parameter. The exact veloci
of each particle was computed using direct summation, and an approximation was ¢
puted using the treecode for three values of the accuracy parametdiQ—2, 10-3, 1074,
Results were obtained using both the potential criterion (32) and the velocity criterion (3
The recorded error is the maximum norm over all particles of the difference between
exact velocity and the treecode approximation.

Figure 9 plots the error as a function of the accuracy pararnadiar several values of
N. The solid lines are based on the potential criterion and the dashed lines are base
the velocity criterion. In both cases, the error decreasessasduced. Using the potential
criterion the error is between one and two orders of magnitude smallee tdrile using
the velocity criterion the error is between three and four orders of magnitude smaller tha
The error is fairly insensitive to the number of partichés

Figure 10 plots the treecode CPU time as a function of the error for the same value:
€ andN as in Fig. 9. Each connected line denotes a specific number of pamiclés
above, the solid lines are based on the potential criterion and the dashed lines are b

10
O N= 6284
» x N=12708
10°F  + N=25572 3
x*
a

error

-2

10 10 10
accuracy parameter ¢

FIG. 9. Testcase. The treecode error is plotted as a function of the accuracy pararetér?, 103, 10~
for several values olN. (—) potential criterion (32) and (— —) velocity criterion (34).
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FIG. 10. Test case. The treecode CPU time is plotted as a function of the error for the same valaesl of
N as in Fig. 9. Each connected line denotes a specific valb& ¢f—) potential criterion (32) and (— —) velocity
criterion (34). Each symbol on a connected line denotes a value of the accuracy patanetezasing to the left
on each line.

on the velocity criterion. Each symbol on a connected line denotes a value of the accu
parametek, decreasing to the left on each line. For example, using the potential criteri
with N =51,276 and = 103, the error is less than 8 10° and the treecode CPU time
is about 175 s. The results show that the CPU time increases as the error is reduced.
that for each value dfl, the solid line falls below the corresponding dashed line; this mea
that the potential criterion requires less CPU time than the velocity criterion to achiev
specified error. This effect becomes more pronouncel ascreases. In this sense, the
potential criterion is more efficient and so we use it instead of the velocity criterion in t
remainder of this work.

Figure 11a plots the CPU time for direct summation and the treecode as a function of
number of particledN. The same three values of the accuracy parametee used. The
treecode requires more CPU timeeds reduced, but it is still faster than direct summation
in each case displayed. Figure 11b plots the speedup, defined as the ratio of the d
summation time and treecode time. For example, Wtk= 102,684 and = 102, the
treecode is 10 times faster than direct summation. It is difficult to analyze the operat
count for the present adaptive algorithm, but the data in Fig. 11 are consister®{th
log N), the expected rate for a particle—cluster treecode [27, 28, 36].

Figure 12 plots the memory usage as a functiorNofThe memory usage for direct
summation iSO(N). The memory usage for the treecode is higher and increases at a |
slightly faster tharO(N) due to the storage required for the cell moments, but even so
remains less than twice the value required for direct summation bp=td 54,108.

The results presented in Figs. 9-12 show that the treecode algorithm is significantly fa
than direct summation for systems having a large number of particles and that the error
be controlled by varying the accuracy parameter. In the next section we apply the part
method and adaptive treecode algorithm to simulate time-dependent vortex sheet motic
three-dimensional flow.
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FIG.11. Testcase. (a) CPU time for direct summation and the treecode as a function of the number of parti
N; (O) measured datax() projected data. (b) speedupdirect summation time / treecode time.

5. VORTEX SHEET SIMULATIONS

There is widespread interest in vortex ring dynamics from theoretical, experimental, ¢
numerical points of view [51, 52]. Here we present two examples in which a circular-di
vortex sheet rolls up into a vortex ring. Our aim is mostly to demonstrate the capability
the numerical method, and although we present some preliminary analysis of the fluid fl
more detailed study is reserved for future work.
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FIG. 12. Test case. (a) memory usage as a function of the number of pami¢les —) direct summation;
(—) treecode;©) measured datax() projected data. (b) ratie: treecode usage / direct summation usage.
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The simulations below use the valiie- 0.1 for the smoothing parameter. This is meant a:
a representative value; the effect of varyiigas been studied in two-dimensional [14, 19],
axisymmetric [47, 53], and three-dimensional vortex sheet simulations [17], and althot
the sheet rolls up more tightly dds reduced, the large-scale structure of the sheet surfa
does not depend strongly on the precise value Gince a value of is chosen, the remaining
numerical parameters must be determined to provide adequate resolution. In the pre
work, the timestep lies in the rangedl@ < At < 0.1, the particle insertion parameters are
er = 0.075 ande, = 0.05, the treecode accuracy parametet is 102, the maximum
order of Taylor approximation ipmax = 8, and the maximum number of particles in a leaf
of the tree isNg = 500.

In this work, the vortex sheet was visualized using the surface rendering tool in the A
graphics package. On input, the tool requires a tensor product grid of particles, anc
output, it produces a surface that interpolates the particles. Since the discretization ir
particle method is not a tensor product in the parameter space, it was necessary tc
create such a grid for plotting purposes. Therefore, using the piecewise cubic interpola
scheme from Section 2.3, a set of particles was obtained having uniform increément
along each material line. Due to memory constraixdscould not be chosen too small, and
hence some material lines in the tensor product grid had fewer particles than in the orig
discretization. As a result, the rendered surface may not be sufficiently well resolvec
some cases even though the underlying particle discretization was accurate. We sha
an instance of this at the final time in the second example below.

5.1. Azimuthal Waves on a Vortex Ring

When fluid is ejected from a circular tube, the separating shear layer rolls up intc
vortex ring that propagates away from the tube exit plane [53]. At early times the ri
is axisymmetric, but experiments show that azimuthal waves develop later in time, ¢
numerical studies have documented the relation between the azimuthal wavenumbel
the perturbation growth rate [54, 55]. To simulate these waves, we introduce a transv
perturbation in the circular-disk vortex sheet defined in (3). Xhandx, coordinates are
unchanged, but the third coordinate changes fxgr 0toxz = 0.1r2 coskd, where(r, 6)
are polar coordinates in thg-x, plane and is the perturbation wavenumber. The factor
r2is included to smooth the perturbation at the origia 0.

Figure 13 plots the resulting motion for two values of the perturbation wavenuknbes,
andk = 9, attimes = 0, 2, 4, and 6. The edge of the sheet rolls up into a spiral, formin
a vortex ring withk azimuthal waves around the circumferential ring axis. Figure 14 plo
a section of the sheet surface to reveal the spiral core. The azimuthal instability app
to be stronger witlk = 9 than withk = 5. This is supported by Fig. 15, showing a subse
of material lines in the core of the ring. With= 5, the lines undergo small amplitude
oscillation about a circular shape. With= 9, the lines evolve in a more complex manner
leading to the formation of hairpins that wrap around the core as observed in previ
simulations [54, 56, 57].

5.2. Vortex Ring Merger

A number of laboratory experiments have been performed to study the interactior
two vortex rings moving side by side in the same direction [58—63]. As time proceeds,
rings are drawn together and they merge into a single ring that later splits apart again
two rings. The change in ring topology is due to vortex reconnection and this is a topic
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FIG. 13. Acircular-disk vortex sheet with transverse perturbation of wavenuiniére sheet rolls up into a
vortex ring withk azimuthal waves around the circumferential ring akis= 5 (left); k = 9 (right). t =0, 2, 4,
and 6.
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FIG. 14. Section of the sheet surface from Fig. 3= 5 (left); k = 9 (right). t = 0, 2, 4, and 6.
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FIG.15. A subset of material lines in the core of the ring from Figs. 13,K.4& 5 (left); k = 9 (right). t = 0,
2,4,and 6.

fundamental interest [64]. The experimental results have inspired many numerical stu
[65—-72]. Here we simulate the ring merger problem using two circular-disk vortex she:
initially inclined at 30 from the horizontal. Figure 16 plots the resulting motion at times
t =0,1, 2,3, and 4. The sheets roll up into a pair of vortex rings that interact with eac
other. At early timesgt = 1) the rings are nearly axisymmetric and the core radius is almo
uniform around the circumferential ring axis. At later tinfes 2) the core radius becomes
increasingly nonuniform.

Figure 17 shows a closeup of the sheet surface attimel. One can distinguish two
regions, an inner region where the rings are close together, and an outer region where
are further apart. The core radius is nonuniform; it is small in the inner region and lar
in the outer region. In the inner region, the rings form a pair of antiparallel vortex tub
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FIG. 16. Simulation of vortex ring merger. Two circular-disk vortex sheets are initially inclined ‘afr8th
the horizontal. Sheet surface (left); section (right}= 0, 1, 2, 3, and 4.
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FIG. 17. Closeup of sheet surface from Fig. 16 at time 4.

that propagate vertically as a dipole. Note that the outer region of each ring is shaped lil
horseshoe, and the inner region is shaped like an arch connecting the legs of the horse
while the transition zone between the two regions is shaped like a funnel. The texture of
sheet surface in the outer region is smooth, but there are small-scale features on the .
surface in the inner region; these are not due to errors in the particle method, but rathe
inadequate resolution in the rendered surface as explained earlier in this section.

Examining Fig. 16, one can see that the core radius in the outer region increases mi
tonically in time, while the core radius in the inner region increases untiltti|a@ and then
decreases at later times. The decrease in core radius at later times is associated with mz
stretching in the inner region along the circumferential ring axis. There are several fact
that contribute to this stretching (a) the self-induced dipole velocity of the arch causes i
move away from the legs of the horseshoe and (b) the velocity induced by one horses
causes the legs of the other horseshoe to separate in time. Presumably, there is also
flow in the core of the ring at later times, but this is left for future study.

Figure 18 plots a time sequence of vorticity isosurfaces in the ring merger simulati
(these are surfaces on which the vorticity field has constant magnitude). To obtain this
the vorticity was evaluated on a uniform grid by taking the curl of the regularized veloci
field. Two isosurface levels are ShOV\é\(light gray) and% (dark gray) of the initial peak
value. Four views are displayed: perspective, front, side, and top. Initially, the isosurfa
of one ring are disjoint from those of the other ring, but the isosurfaces merge as the ri
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FIG. 18. \orticity isosurfaces in the ring merger simulation. Two isosurface levels are srgo(/light gray)
and§ (dark gray) of the initial peak value. Four views are displayed: perspective, front, side, anicdp.1, 2,
3,and 4.

approach each other in time; tléeisosurfaces merge &= 2 and the%-isosurfaces merge
att = 3. At the final time, the%—isosurface is effectively a single ring. Tt%eisosurface
surrounds this ring and also forms an arch spanning the middle of the ring. These re:
are in qualitative agreement with previous studies [64].

It is important to emphasize the difference between the vortex sheet (Figs. 16, 17)
the vorticity isosurfaces (Fig. 18). The vortex sheet is a material surface and it reme
topologically equivalent to a disk as it rolls up. In contrast, the vorticity isosurfaces a
not material surfaces and their topology is not preserved in time. In a real flow, topologi
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changes in the vorticity field are attributed to viscous reconnection [64], but since t
present model is nominally inviscid, there must be another explanation for the topologi
changes seen in Fig. 18. We suggest that when regions of opposite-signed vorticity ar
close proximity, for example, the antiparallel vortex tubes in the arch, the contributio
that these regions make to the regularized Biot—Savart integral cancel each other; in c
words, integration provides a mechanism whereby opposite-signed vorticity is cance
and this permits topological changes to occur in the regularized vorticity field. While tr
may explain what is happening in Fig. 18, the physical validity of these results is s
uncertain and can only be determined by comparison with genuine viscous simulations
experiments.

To conclude this section, we note that the ring merger simulation started with ab
15,000 particles and ended with about 350,000 particles. At the final time, each times
required approximately 2.5 h of CPU time on an SGI Power Challenge workstation (75 Mt
128 Mbytes).

6. SUMMARY

We presented a Lagrangian particle method for computing vortex sheet motion in thr
dimensional flow. The particles are advected by a regularized Biot—Savart integral in wh
the exact singular kernel is replaced by the Rosenhead—Moore kernel. A particle inser
scheme is applied to maintain resolution as the sheet rolls up. The particle velocities
evaluated by a treecode algorithm which replaces the particle—particle interactions by <
able particle—cluster interactions using a divide-and-conquer strategy [27, 28, 36]. Si
the Rosenhead—Moore kernel is nonharmonic, the particle—cluster interactions are apy
imated by Taylor expansion in Cartesian coordinates rather than a classical multipole
pansion involving spherical harmonics. The necessary Taylor coefficients are efficier
computed by a recurrence relation [41, 43]. Several adaptive techniques are employe
gain efficiency. The tree consists of nonuniform rectangular cells adapted to the part
distribution. For each particle—cluster interaction, the order of approximation is chos
adaptively, and a run-time choice is made between Taylor approximation and direct st
mation based on empirical estimates of the required CPU time. Tests were performe
document the algorithm’s accuracy and efficiency, and simulations using up to 350
particles were performed on a workstation, which would have been impractical by dir
summation.

The method was applied to simulate the roll-up of a circular-disk vortex sheet intc
vortex ring. Two examples were presented, the growth of azimuthal waves on a vortex |
and the merger of two vortex rings moving side by side. The particle method is well suit
for tracking the deformation of the material sheet surface. This type of regularized vor
sheet model has previously been validated in several cases by comparison with vis
simulations [25] and experiments [53]. An important goal in future work will be to exten
such comparisons to three-dimensional vortex ring dynamics.

Finally we note that the treecode algorithm developed here for the Rosenhead—Mc
kernel can be applied to a variety of other kernels; the main prerequisite is that the Ta:
coefficients of the kernel should satisfy a simple recurrence relation. This approach
recently been applied to problems involving screened electrostatics and general power
interactions in molecular dynamics [73-75].
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