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Abstract

We present a treecode-accelerated boundary integral (TABI) solver for electrostatics of solvated
biomolecules described by the linear Poisson-Boltzmann equation. The method employs a well-
conditioned boundary integral formulation for the electrostatic potential and its normal derivative
on the molecular surface. The surface is triangulated and the integral equations are discretized
by centroid collocation. The linear system is solved by GMRES iteration and the matrix-vector
product is carried out by a Cartesian treecode which reduces the cost from O(N2) to O(N logN),
where N is the number of faces in the triangulation. The TABI solver is applied to compute
the electrostatic solvation energy in two cases, the Kirkwood sphere and a solvated protein. We
present the error, CPU time, and memory usage, and compare results for the Poisson-Boltzmann
and Poisson equations. We show that the treecode approximation error can be made smaller than
the discretization error, and we compare two versions of the treecode, one with uniform clusters
and one with non-uniform clusters adapted to the molecular surface. For the protein test case, we
compare TABI results with those obtained using the grid-based APBS code, and we also present
parallel TABI simulations using up to eight processors. We find that the TABI solver exhibits good
serial and parallel performance combined with relatively simple implementation, efficient memory
usage, and geometric adaptability.

Keywords: Electrostatics; Solvated biomolecule; Poisson-Boltzmann equation; Boundary integral
equation; Treecode

1. Introduction

Electrostatic interactions between a biomolecule and its solvent environment play an important
role in biochemistry [1, 2]. Computing these interactions using explicit solvent models is computa-
tionally expensive, and a number of less costly implicit solvent models have been developed [3, 4].
Here we consider a model based on the linear Poisson-Boltzmann (PB) equation which treats the
solute biomolecule as a low-dielectric medium with embedded atomic charges and the solvent as a
high-dielectric medium with dissolved ions [5–8]. The solute in general may be a protein or more
complex system for example involving membranes [9] or nucleic acids [10]. Despite the reduced
cost in comparison with explicit solvent models, there is still a need to improve the efficiency of
implicit solvent PB simulations [11, 12]. In the present work we address this issue by presenting a
treecode-accelerated boundary integral PB solver. We start by describing the implicit solvent PB
model and related numerical methods.
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Figure 1: Solvated biomolecule (two-dimensional schematic); (a) physical model, solute atom locations yk, atom radii
(dashed circles), solvent molecules (shaded circles), dissolved ions (+,−); (b) mathematical model, interior domain
Ω1, exterior domain Ω2, interface Γ (solvent excluded surface, molecular surface [13, 14]).

1.1. Implicit solvent Poisson-Boltzmann model

Figure 1 shows the implicit solvent model upon which this work is based. The interior domain
Ω1 ⊂ R3 contains the solute biomolecule, and the exterior domain Ω2 = R3\Ω1 contains the solvent
and dissolved ions. The interface is denoted by Γ. The biomolecule is represented by a set of atomic
charges Qk at locations yk ∈ Ω1, k = 1, . . . , Nc. The electrostatic potential φ satisfies

−ε1∇2φ(x) =

Nc∑
k=1

qkδ(x− yk), x ∈ Ω1, (1a)

−ε2∇2φ(x) + κ̄2φ(x) = 0, x ∈ Ω2, (1b)

where ε1, ε2 are the dielectric constants in Ω1,Ω2, respectively, qk = ecQk/kBT is the partial atomic
charge, ec is the electronic charge, kB is Boltzmann’s constant, T is the temperature, δ is the delta
function, and κ is the Debye-Hückel parameter measuring the ionic concentration with κ2 = κ̄2/ε2.
Equation (1a) is the Poisson equation with the solute charge distribution on the right side, and
Equation (1b) is the linear PB equation, which reduces to the Poisson equation for κ = 0 Å−1. The
interface conditions on the molecular surface are

φ1(x) = φ2(x), ε1
∂φ1(x)

∂ν
= ε2

∂φ2(x)

∂ν
, x ∈ Γ, (2)

where the subscripts 1, 2 on φ denote limiting values as the interface is approached from within
each domain, and ν is the outward unit normal vector on Γ. Equation (2) expresses the continuity
of the potential and electric flux across the interface. The far-field boundary condition is

lim
|x|→∞

φ(x) = 0. (3)

In this work the interface Γ is the solvent excluded surface (also called the molecular surface)
obtained by rolling a solvent sphere over the van der Waals surface of the solute [13, 14]. The goal
here is to compute the potential and related quantities such as the electrostatic solvation energy
used in the study of biomolecular structure [1].
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1.2. Numerical methods for the Poisson-Boltzmann equation

Numerical methods for the problem described above fall into two classes, (1) grid-based methods
that discretize the entire domain, e.g. [1, 15–21], and (2) boundary integral methods that discretize
the molecular surface, e.g. [22–34]. We briefly discuss these approaches.

1.2.1. Grid-based methods

This class includes finite-difference and finite-element PB solvers implemented in software tools
such as DelPhi [1], UHBD [15], CHARMM [16], APBS [18], and AMBER [19]. These methods
require solving a sparse linear system and they employ fast iterative techniques for that purpose.
Grid-based PB solvers are in widespread use, but several issues listed below constrain their perfor-
mance.

1. The memory requirement for a three-dimensional grid can be prohibitively large.

2. The geometric details of the molecular surface may be obscured on a regular grid.

3. The singular atomic charges are smoothed by interpolation onto the grid.

4. The interface conditions may not be rigorously enforced on the molecular surface.

5. The far-field boundary condition is often satisfied approximately on a truncated domain.

Many techniques have been developed to address these issues including adaptive Cartesian grids [20],
rigorous treatment of the interface conditions [35–38], and methods to account for the charge sin-
gularity [39, 40].

1.2.2. Boundary integral methods

Boundary integral methods alleviate some of the difficulties arising with grid-based PB solvers,
as indicated below.

1. The memory requirement is reduced since the problem is formulated on the molecular surface.

2. The interface geometry can be captured more accurately using suitable boundary elements.

3. The singular atomic charges are treated analytically.

4. The interface conditions are rigorously enforced on the molecular surface.

5. The far-field boundary condition is exactly satisfied at spatial infinity.

Despite these advantages, boundary integral PB solvers encounter other difficulties such as the cost
of solving a dense linear system and the need to evaluate singular integrals. These issues have been
addressed using the fast multipole method [41–43], Krylov iterative techniques [44], and higher
order boundary elements [45], but there is still interest in further optimizing the performance of
boundary integral PB solvers.

1.2.3. The present work

We present a treecode-accelerated boundary integral (TABI) solver for the implicit solvent PB
model described above. The method uses a well-conditioned boundary integral formulation for
the electrostatic potential and its normal derivative on the molecular surface [22]. The surface is
triangulated and the integral equations are discretized by centroid collocation with the singular
term omitted [46]. The linear system is solved by GMRES iteration [25, 44] and the matrix-vector
product is carried out by a Cartesian treecode [47–50] which reduces the cost from O(N2) to
O(N logN), where N is the number of faces in the triangulation.

The TABI solver is applied to compute the electrostatic solvation energy in two cases, the
Kirkwood sphere (Nc = 1 atom, with the icosahedral geodesic grid triangulation) and a solvated
protein (PDB:1A63, Nc = 2069 atoms, with the MSMS triangulation [51]). We present the error,
CPU time, and memory usage, and compare results for the PB and Poisson equations. We find
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that the discretization error is O(N−1/2) for the sphere test case and O(N−1) for the protein test
case. We show that the treecode approximation error can be made smaller than the discretization
error, and we compare two versions of the treecode, one with uniform clusters and one with non-
uniform clusters adapted to the molecular surface. We compare TABI results with those obtained
using the grid-based APBS code [17, 18], and we also present parallel TABI simulations using up
to eight processors.

To better place the TABI solver in the context of other boundary integral PB solvers, the main
novelty here is that we rely on a recently developed Cartesian treecode for the screened Coulomb
potential [50]. The treecode is an alternative to the fast multipole method (FMM) [41–43] for
computing the matrix-vector product in the iterative solution of the discrete system. The treecode
and FMM share some common features, e.g. they both use a tree data structure of particle clusters,
and they employ far-field multipole expansions to approximate well-separated particle interactions.
But the two methods also differ in several ways, e.g. the evaluation strategy, well-separated criterion,
coordinate systems typically used, and adaptability of particle clusters. In particular, the FMM
converts the multipole approximations into local approximations which are evaluated at the leaves
of the tree, while the treecode can evaluate the multipole approximations at higher levels in the
tree when the well-separated criterion is satisfied. The FMM has great appeal due to its O(N)
operation count in principle, and it has been employed in many previous boundary integral PB
solvers, e.g. [23–25, 28, 31–34]. However the operation count is just one factor among several that
determine the solver’s CPU run time in practice. For example, memory access and communication
overhead can significantly impact performance on modern serial and parallel processors, and this
is where the Cartesian treecode, even with an O(N logN) operation count, may have an advantage
due to its relatively simple implementation, efficient memory usage, and geometric adaptability.

We designed the TABI solver to be as simple as possible, consistent with good performance.
Hence in addition to the Cartesian treecode, we employed a simple low order quadrature rule for
the singular integrals, centroid collocation with the singular term omitted. This is in contrast to
other PB solvers which use higher order quadrature rules and analytic expressions to evaluate the
singular term; in principle those methods have a higher convergence rate, but the code tends to
be more complicated and the CPU run time may be adversely affected. On the other hand, a low
order quadrature rule can be made adaptive to improve performance and this is what we find here;
our results for protein 1A63 converge at the rate O(N−1), higher than the expected rate O(N−1/2),
and we attribute this to the adaptive nature of the MSMS triangulation of the molecular surface.
Adaptivity also enters the TABI solver in the use of non-uniform adapted particle clusters in the
treecode. Ultimately, the solver needs to parallelize well and again this is where a simpler approach
can be advantageous.

The article is organized as follows. Section 2 summarizes the boundary integral formulation of
the Poisson-Boltzmann implicit solvent model. In Section 3 we present the details of the treecode-
accelerated boundary integral PB solver and in Section 4 we describe the two test cases. Section 5
defines the error measures used to assess the accuracy of the results. Section 6 treats the sphere test
case and Section 7 treats the protein test case. A summary and conclusions are given in Section 8.

2. Boundary integral formulation

This section summarizes the boundary integral formulation of the implicit solvent PB model
used in the present work [22]. Green’s theorem applied to Equations (1a)-(1b) yields expressions
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for the electrostatic potential in each domain,

φ(x) =

∫
Γ

[
G0(x,y)

∂φ(y)

∂ν
− ∂G0(x,y)

∂νy
φ(y)

]
dSy +

1

ε1

Nc∑
k=1

qkG0(x,yk), x ∈ Ω1, (4a)

φ(x) =

∫
Γ

[
−Gκ(x,y)

∂φ(y)

∂ν
+
∂Gκ(x,y)

∂νy
φ(y)

]
dSy, x ∈ Ω2, (4b)

where G0(x,y) and Gκ(x,y) are the Coulomb and screened Coulomb potentials,

G0(x,y) =
1

4π|x− y|
, Gκ(x,y) =

e−κ|x−y|

4π|x− y|
. (5)

In Equations (4a)-(4b), the normal derivative with respect to y is given by

∂G(x,y)

∂νy
= ν(y) · ∇yG(x,y) =

3∑
n=1

νn(y)∂ynG(x,y), (6)

where G represents either G0 or Gκ. Following the steps in [22], the interface conditions yield
equations for the surface potential φ1 and its normal derivative ∂φ1

∂ν on Γ,

1

2
(1 + ε)φ1(x) =

∫
Γ

[
K1(x,y)

∂φ1(y)

∂ν
+K2(x,y)φ1(y)

]
dSy + S1(x), x ∈ Γ, (7a)

1

2

(
1 +

1

ε

)
∂φ1(x)

∂ν
=

∫
Γ

[
K3(x,y)

∂φ1(y)

∂ν
+K4(x,y)φ1(y)

]
dSy + S2(x), x ∈ Γ, (7b)

where ε = ε2/ε1. The kernels K1,2,3,4 are defined by

K1(x,y) =G0(x,y)−Gκ(x,y), K2(x,y) = ε
∂Gκ(x,y)

∂νy
− ∂G0(x,y)

∂νy
, (8a)

K3(x,y) =
∂G0(x,y)

∂νx
− 1

ε

∂Gκ(x,y)

∂νx
, K4(x,y) =

∂2Gκ(x,y)

∂νx∂νy
− ∂2G0(x,y)

∂νx∂νy
, (8b)

where the normal derivative with respect to x is given by

∂G(x,y)

∂νx
= −ν(x) · ∇xG(x,y) = −

3∑
m=1

νm(x)∂xmG(x,y), (9)

and the second normal derivative with respect to x and y is given by

∂G(x,y)

∂νy∂νx
= −

3∑
m=1

3∑
n=1

νm(x)νn(y)∂xm∂ynG(x,y). (10)

The source terms S1,2 are defined by

S1(x) =
1

ε1

Nc∑
k=1

qkG0(x,yk), S2(x) =
1

ε1

Nc∑
k=1

qk
∂G0(x,yk)

∂νx
. (11)

Equations (7a)-(7b) comprise a set of coupled second kind integral equations for the surface poten-
tial φ1 and its normal derivative ∂φ1

∂ν on Γ. The electrostatic solvation energy is

Esol =
1

2

Nc∑
k=1

qkφreac(yk) =
1

2

Nc∑
k=1

qk

∫
Γ

[
K1(yk,y)

∂φ1(y)

∂ν
+K2(yk,y)φ1(y)

]
dSy, (12)

where φreac(x) = φ(x)− S1(x) is the reaction potential.
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3. Numerical method

In this section we present the discretization of the boundary integral equations, the treecode
algorithm for the matrix-vector product, a description of how the Poisson equation (κ = 0 Å−1) is
treated, and finally some coding details.

3.1. Discretization

We assume a triangulation of the molecular surface is known; examples will be discussed later.
The integrals are discretized by centroid collocation [46]. Let xi, Ai, i = 1, . . . , N denote the
centroids and areas of the faces in the triangulation. Then the discretized equations (7a)-(7b) have
the following form for i = 1, . . . , N ,

1

2
(1 + ε)φ1(xi) =

N∑
j=1
j 6=i

[
K1(xi,xj)

∂φ1(xj)

∂ν
+K2(xi,xj)φ1(xj)

]
Aj + S1(xi), (13a)

1

2

(
1 +

1

ε

)
∂φ1(xi)

∂ν
=

N∑
j=1
j 6=i

[
K3(xi,xj)

∂φ1(xj)

∂ν
+K4(xi,xj)φ1(xj)

]
Aj + S2(xi). (13b)

The term j = i is omitted to avoid the kernel singularity; this can be motivated by recalling the
definition of the principal value of a singular integral in which a neighborhood of the singularity is
deleted and the limit is taken as the radius of the neighborhood tends to zero. Alternative methods
for handling the singularity can be employed [22, 46], but they tend to be more complicated and
we aim instead to demonstrate the capability of the present simple approach. The electrostatic
solvation energy (12) is evaluated by

Esol =
1

2

Nc∑
k=1

qk

N∑
j=1

[
K1(yk,xj)

∂φ1(xj)

∂ν
+K2(yk,xj)φ1(xj)

]
Aj . (14)

Equations (13a)-(13b) define a linear system Ax = b, where x contains the surface potential
values φ1(xi) and normal derivative values ∂φ1

∂ν (xi), and b contains the source terms S1(xi), S2(xi).
The linear system is solved by GMRES iteration which requires a matrix-vector product in each
step [44]. Since the matrix is dense, computing the product by direct summation requires O(N2)
operations, which is prohibitively expensive when N is large, and in the next section we describe
the treecode algorithm used to accelerate the product. Note that the source terms S1(xi), S2(xi)
in Equation (11), and the electrostatic solvation energy Esol in Equation (14) amount to particle
interactions between the atomic charges yk and the centroids xi. Hence these terms require O(NcN)
operations, but in the examples considered here we have Nc << N , so the main cost in solving the
linear system arises from the matrix-vector product.

3.2. Treecode algorithm

We summarize the treecode algorithm and refer to previous work for more details [47–50]. The
required sums in Equations (13a)-(13b) have the form of N -body potentials,

Vi =

N∑
j=1
j 6=i

qjG(xi,xj), i = 1, . . . , N, (15)

where G is a kernel, xi,xj are the centroids (also called particles in the treecode context), and qj is
a charge associated with xj . For example, the term involving K1 on the right side of Equation (13a)
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has the form given in Equation (15) with qj =
∂φ1(xj)
∂ν Aj . To evaluate the potentials Vi rapidly, the

particles xi are divided into a hierarchy of clusters having a tree structure. The root cluster is a cube
containing all the particles and subsequent levels are obtained by dividing a parent cluster into eight
children [47]. The process continues until a cluster has fewer than N0 particles (a user-specified
parameter). This yields uniform clusters on each level; further below we describe a modification
yielding non-uniform clusters adapted to the particle distribution.

Once the clusters are determined, the treecode evaluates the potential in Equation (15) as a
sum of particle-cluster interactions,

Vi ≈
∑
c∈Ni

∑
xj∈c

qjG(xi,xj) +
∑
c∈Fi

p∑
||k||=0

ak(xi,xc)m
k
c , (16)

where c denotes a cluster, and Ni, Fi denote the near-field and far-field of particle xi. The first term
on the right is a direct sum for particles xj near xi, and the second term is a pth order Cartesian
Taylor approximation about the cluster center xc for clusters that are well-separated from xi. The
Taylor coefficients are given by

ak(xi,xc) =
1

k!
∂kyG(xi,xc), (17)

and the cluster moments are given by

mk
c =

∑
xj∈c

qj(xj − xc)
k. (18)

Cartesian multi-index notation is used with k = (k1, k2, k3), ki ∈N, ||k|| = k1+k2+k3,k! = k1!k2!k3!.
A particle xi and a cluster c are defined to be well-separated if the following multipole acceptance
criterion (MAC) is satisfied,

rc
R
≤ θ, (19)

where rc = maxxj∈c |xj−xc| is the cluster radius, R = |xi−xc| is the particle-cluster distance, and
θ is a user-specified parameter [47]. If the criterion is not satisfied, the code examines the children
of the cluster recursively until the leaves of the tree are reached at which point direct summation is
used. The Taylor coefficients are computed using recurrence relations [50]. In the work presented
here we chose N0 = 500 for the maximum size of a leaf. Results below will document the effect of
the approximation order p and MAC parameter θ. This concludes the description of the treecode
and next we explain some details of its application to the matrix-vector product.

3.3. Application of treecode to matrix-vector product

The matrix-vector product amounts to evaluating the sums on the right side of Equations (13a)-
(13b). The kernels K1,2,3,4 appearing there, defined in Equations (8a)-(8b), are linear combinations
of the Coulomb potential G0, the screened Coulomb potential Gκ, and their first and second normal
derivatives. Terms involving the potentials can be evaluated using the treecode as explained in the
previous section, but terms involving the normal derivatives require a slight modification. For
each potential G (either G0 or Gκ), there are 16 terms that need to be evaluated; 1 term for the
potential itself, 6 terms for the first partial derivatives ∂xmG, ∂ynG, and 9 terms for the second
partial derivatives ∂xm∂ynG, for m,n = 1, 2, 3. Each of the 16 terms can be evaluated as a modified
form of Equation (16), obtained by applying the operator ∂k0

x ∂l0y to Vi and multiplying by a charge
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pi associated with particle xi,

pi∂
k0
x ∂l0y Vi =

N∑
j=1
j 6=i

piqj∂
k0
x ∂l0y G(xi,xj) (20a)

≈
∑
c∈Ni

∑
xj∈c

piqj∂
k0
x ∂l0y G(xi,xj) (20b)

+
∑
c∈Fi

p∑
||k||=0

pi(−1)||k0|| (k + k0 + l0)!

k!
ak+k0+l0(xi,xc)m

k
c . (20c)

Table 1 records the information needed to apply the treecode to compute the matrix-vector
product, as derived from Equations (6), (8a)-(8b), (9), (10), (13a)-(13b). Column 1 is the index of
the term; column 2 is the kernel Ki in which the term appears; column 3 is the potential appearing
in kernel Ki; columns 4 and 5 are the required indices k0, l0; column 6 is the charge pi related to
particle xi; column 7 is the charge qj related to particle xj . The Cartesian basis vectors are em, en
for m,n = 1, 2, 3.

Table 1: Information needed to apply the treecode to compute the matrix-vector product; G = G0, Gκ.

term kernel Ki potential index k0 index l0 charge pi charge qj

1 K1 G (0, 0, 0) (0, 0, 0) 1
∂φ1(xj)

∂ν
Aj

2-4 K2 ∂ynG (0, 0, 0) en 1 νn(xj)φ1(xj)Aj

5-7 K3 ∂xmG em (0, 0, 0) νm(xi)
∂φ1(xj)

∂ν
Aj

8-16 K4 ∂xm∂ynG em en νm(xi) νn(xj)φ1(xj)Aj

3.4. Poisson equation

When the ionic concentration vanishes (κ = 0 Å−1), the PB equation reduces to the Poisson
equation. In this case the system of integral equations (7a)-(7b) reduces to a single equation for
the surface potential [22],

1

2
(1 + ε)φ1(x) = (ε− 1)

∫
Γ

∂G0(x,y)

∂νy
φ1(y)dSy +

1

ε1

Nc∑
k=1

qkG0(x,yk), (21)

and the electrostatic solvation energy is

Esol =
1

2
(ε− 1)

Nc∑
k=1

qk

∫
Γ

∂G0(yk,y)

∂νy
φ1(y)dSy. (22)

In this case the centroid collocation scheme and treecode are applied as described above.

3.5. Coding details

The code was written in Fortran 90/95 and is available from the authors by request. Serial
computations were performed on one processor of an 8-core workstation (each core is an Intel Xeon
CPU at 2.83GHz with 2GB memory). We used the GMRES subroutine from Netlib [53], with zero
initial guess and restart after every 10 steps. The linear system was scaled so that the diagonal
element in each row is unity. Serial computations were compiled using ifort with option -fast and
parallel computations were compiled using mpif90/gfortran with option -O3.
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4. Test cases

We present results for two test cases. Case 1 is a sphere with an atomic charge at the center for
which the exact solution of the PB equation was derived by Kirkwood [54]. In our computations
the sphere has radius 50 Å, the charge has magnitude q = 50 ec, and the dielectric constant is ε1 = 1
inside the sphere and ε2 = 40 outside the sphere.

Case 2 is protein 1A63, the RNA binding domain of E. coli rho factor, with 2069 atoms [55].
Atom locations were obtained from the Protein Data Bank [56], and partial charges came from
the CHARMM22 force field [57]. The dielectric constants are ε1 = 1 in the molecular cavity and
ε2 = 80 in the solvent.

In both cases the Debye-Hückel constant is κ = 0.1257 Å−1 for the PB equation (corresponding
to a physiological saline solution at room temperature) and κ = 0 Å−1 for the Poisson equation. In
Case 1 we use a geodesic grid triangulation of the sphere obtained by successively dividing the faces
of an icosahedron. In Case 2 we use the MSMS triangulation of the molecular surface [51, 52]. The
MSMS code takes the atom locations as input, and outputs the vertices, normal vectors, and faces
of the triangulation. A user-specified density parameter controls the number of vertices per Å2 of
surface area. The radius of the MSMS solvent probe sphere was 1.4 Å. The centroid normal vector
required by the collocation scheme was obtained by averaging the MSMS vertex normal vectors
and normalizing the result to unit length.

5. Numerical errors

There are two main types of numerical errors to consider in the context of the TABI solver;
these are the discretization error and the treecode approximation error. There is also an error due
to solving the linear system by GMRES iteration, but the GMRES tolerance τ is chosen so that
this error is negligible compared to the others.

The discretization error arises from several sources including (a) the triangulation of the molec-
ular surface, (b) applying centroid collocation to compute the surface integrals, and (c) omitting
the singular term in the quadrature scheme. The size of the discretization error depends on the
number of triangles N representing the molecular surface. In discussing the discretization error, it
is assumed that the matrix-vector product is performed by direct summation.

The treecode approximation error is an additional error that arises from applying the treecode
to compute the matrix-vector product. The size of the treecode approximation error depends on the
order of Taylor approximation p and the MAC parameter θ. We will show that these parameters
can be chosen so that the treecode approximation error is smaller than the discretization error.

We will present relative errors, expressed as percent (%). The discretization error is measured
by comparing the direct sum numerical solution (ds) and the exact solution (ex),

edssol =
|Edssol − Eexsol|
|Eexsol|

, edsφ =
||{φ}ds − {φ}ex||∞
||{φ}ex||∞

, edsφn =
||{φn}ds − {φn}ex||∞

||{φn}ex||∞
, (23)

where Esol is the electrostatic solvation energy, {φ} is the vector of surface potentials, and {φn}
is the vector of surface potential normal derivatives. Note that in Case 1 (Kirkwood sphere), the
exact solution is known analytically. In Case 2 (protein 1A63) the exact solution is not known,
but as explained below, we will extrapolate the computed values to estimate the exact electrostatic
solvation energy in Equation (23). The treecode approximation error is measured by comparing
the treecode (tc) and direct sum (ds) numerical solutions,

etcsol =
|Etcsol − Edssol|
|Edssol|

, etcφ =
||{φ}tc − {φ}ds||∞
||{φ}ds||∞

, etcφn =
||{φn}tc − {φn}ds||∞
||{φn}ds||∞

. (24)
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6. Results for Case 1 (Kirkwood sphere)

In this section we consider the Kirkwood sphere test case. We report first on the discretization
error, then the effect of the treecode parameters, and finally we compare the treecode and direct
sum in terms of error, CPU time, and memory usage.

6.1. Discretization error

Table 2 presents the discretization error for the Kirkwood sphere test case. The results are
presented as a function of the number of faces in the triangulation N , for the PB and Poisson
equations. The GMRES tolerance is τ = 10−6 and the matrix-vector product is computed by
direct summation.

Table 2: Case 1 (Kirkwood sphere). Discretization error; PB and Poisson equations; results computed by direct
summation; showing electrostatic solvation energy Edssol and its discretization error edssol, and discretization error in
surface potential edsφ , normal derivative edsφn

, as defined in Equation (23).

Poisson-Boltzmann Poisson

N1 Edssol (kcal/mol) edssol (%) edsφ (%) edsφn
(%) iters2 Edssol (kcal/mol) edssol (%) edsφ (%) iters

320 -8410.47 1.658 11.047 3.980 4 -8253.77 1.971 4.319 3
1280 -8356.64 1.007 4.102 1.690 4 -8193.58 1.227 1.937 3
5120 -8318.13 0.542 3.723 0.764 4 -8148.64 0.672 0.913 3
20480 -8296.44 0.280 2.276 0.361 4 -8122.60 0.350 0.443 3
81920 -8285.04 0.142 1.241 0.175 4 -8108.71 0.179 0.218 3
327680 -8279.21 0.071 0.646 0.086 4 -8101.55 0.090 0.108 2
1310720 -8276.27 0.036 0.331 0.043 3 -8097.91 0.045 0.054 2
∞3 -8273.31 -8094.25

1number of faces in triangulation
2number of GMRES iterations
3this row displays the exact electrostatic solvation energy Eexsol, which is known analytically

The results are summarized as follows. The computed electrostatic solvation energy Edssol con-
verges to the exact value at the rate O(N−1/2); when N increases by a factor of four, the error
decreases by a factor of approximately one-half, a standard result for this type of discretization
and test case [28]. Despite the slow convergence rate, the discretization error is small for moderate
values of N ; for example with N = 5120, the energy error edssol is well below 1%. The energy is
slightly lower for the PB equation than for the Poisson equation, but the errors are comparable in
both cases.

Next consider the surface potential. The same convergence rate O(N−1/2) as above is seen
here also for the surface potential φ and its normal derivative φn. In the case of the PB equation,
the normal derivative error edsφn is smaller than the surface potential error edsφ , as in previous

computations using the present boundary integral formulation [22]. The surface potential error edsφ
is smaller for the Poisson equation than for the PB equation.

Finally note that the number of GMRES iterations is less than four in all cases in Table 2. This
reflects the fact that the boundary integral formulation is well-conditioned, as known from prior
work [22, 24].

Later in this section we will compare direct sum and treecode results, but next we examine the
effect of the treecode parameters on the algorithm’s performance.

6.2. Effect of treecode parameters

We applied the treecode to the Kirkwood sphere test case using the representative value N =
81920 for the triangulation. Figure 2 shows the effect of varying the approximation order p and
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MAC parameter θ. The horizontal axis is the treecode approximation error in electrostatic solvation
energy etcsol (recall Equation (24)), and the vertical axis is the treecode CPU time in seconds. Each
symbol in Figure 2 is the result of solving the PB equation (solid lines) or the Poisson equation
(dashed lines) with the MAC parameter indicated in the legend (θ = 0.8, 0.5, 0.2) and a given order
(p = 1 : 10). Symbols with the same θ-value are connected by lines and the order p increases from
right to left on each line.
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Figure 2: Case 1 (Kirkwood sphere). Effect of treecode parameters; CPU time (s) versus approximation error in
electrostatic solvation energy etcsol (%); PB equation (solid lines) and Poisson equation (dashed lines); N = 81920
faces, MAC parameter θ = 0.8, 0.5, 0.2, order of Taylor approximation p = 1 : 10 (right to left on each line).

The following trends are observed. (1) The Poisson computation is approximately ten times
faster than the PB computation. This is due to the fact that the Poisson integral equation (21) does
not require solving for the surface potential normal derivative. (2) For a given MAC parameter θ,
increasing the order p generally leads to a smaller error and larger CPU time, although occasionally
it leads to a slightly larger error, a sign of non-monotone convergence in these multi-dimensional
Taylor approximations. (3) Reducing the MAC parameter θ leads to a smaller error and larger
CPU time. This can be understood by noting that reducing θ improves the rate of convergence of
the Taylor approximation, but it also forces the treecode to descend to lower levels in the tree.

Figure 2 shows that choosing a large θ-value is generally more efficient for low accuracy, and a
small θ-value is more efficient for high accuracy. In the remainder of this section we set the MAC
parameter to θ = 0.5 as a representative value. The following subsections compare the treecode
and direct sum in terms of error, CPU time, and memory usage.

6.3. Comparison of treecode and direct sum: error

Figure 3 shows the error in electrostatic solvation energy versus the number of triangles N ,
comparing the discretization error edssol (ds, dashed lines) and treecode approximation error etcsol
(solid lines), for the PB and Poisson equations, with treecode order p = 1, 3, 5, 7, 9. The dashed
lines have slope approximately −1

2 , consistent with the discretization error results in Table 2. The
treecode approximation error depends only weakly on the number of triangles N , and it can be
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made smaller than the discretization error by increasing the order p. The PB and Poisson results
are comparable. The error in the surface potential and normal derivative follow similar trends (not
shown).
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Figure 3: Case 1 (Kirkwood sphere). Error in electrostatic solvation energy versus number of triangles N ; dis-
cretization error edssol (ds, dashed lines), treecode approximation error etcsol (solid lines); (a) PB equation, (b) Poisson
equation; treecode order p = 1, 3, 5, 7, 9, MAC parameter θ = 0.5.

6.4. Comparison of treecode and direct sum: CPU time

Figure 4 shows the CPU time for direct sum (dashed lines) and the treecode (solid lines) versus
the number of triangles N , for the PB and Poisson equations, with treecode order p = 1, 3, 5, 7, 9
(bottom to top). The direct sum CPU time increases at the rate O(N2), while the treecode CPU
time increases at the rate O(N logN). For a given value of N , the treecode CPU time increases
with the order p, but depending on the required accuracy, significant speedup is achieved compared
to direct sum. As in Figure 2, solving the Poisson equation is faster than solving the PB equation.
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Figure 4: Case 1 (Kirkwood sphere). CPU time for direct sum (dashed lines) and treecode (solid lines) versus number
of triangles N ; (a) PB equation, (b) Poisson equation; treecode order p = 1, 3, 5, 7, 9 (bottom to top), MAC parameter
θ = 0.5.

6.5. Comparison of treecode and direct sum: memory usage

Figure 5 shows the memory usage for direct sum (dashed lines) and treecode (solid lines) versus
the number of triangles N , for the PB and Poisson equations, with treecode order p = 1, 3, 5, 7, 9
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(bottom to top). The treecode uses more memory than direct sum, and the memory usage increases
with the order p, but the treecode and direct sum memory usage are both O(N). The Poisson
equation requires less memory than the PB equation.
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Figure 5: Case 1 (Kirkwood sphere). Memory usage for direct sum (dashed lines) and treecode (solid lines) versus
number of triangles N ; (a) PB equation, (b) Poisson equation; treecode order p = 1, 3, 5, 7, 9 (bottom to top), MAC
parameter θ = 0.5.

7. Results for Case 2 (protein 1A63)

Next we apply the TABI solver to protein 1A63. The molecular surface is triangulated by
MSMS [51, 52], with atom locations from the Protein Data Bank [56] and partial charges from the
CHARMM22 force field [57]. MSMS has a user-specified density parameter giving the number of
vertices per Å2 in the triangulation. Figure 6 displays the MSMS triangulation for protein 1A63
with density = 1 Å−2 and density = 5 Å−2. MSMS produces a non-uniform adapted triangulation
which becomes smoother as the vertex density increases. Note that MSMS may produce some
extremely small triangles which can lead to numerical difficulties; in the present case, any triangle
with area less than 10−6Å2 is removed from the computation. The treecode uses order p = 3,
and MAC parameter θ = 0.8 for the PB equation and θ = 0.5 for the Poisson equation. The
GMRES tolerance is τ = 10−4. These are representative parameter values chosen to ensure that
the treecode approximation error and GMRES iteration error are smaller than the direct sum
discretization error.

We will compare TABI results with those obtained using the grid-based APBS code (version
1.4.0) [18, 58]. To carry out the APBS simulation, since protein 1A63 is longer in one direction,
the protein is placed in a rectangular box of dimensions 66 Å× 41 Å× 42 Å. The box is discretized
by a Cartesian grid with Ng grid points, where Ng = N1 ×N2

2 , and we denote the maximum grid
spacing by hmax. APBS has several options for treating the interface, far-field boundary conditions,
and atomic charges, and we chose standard parameter values (bcfl = mdh, chgm = spl2, nlev = 4,
sdens = 10, srad = 1.4, srfm = mol, swin = 0).

7.1. Particle clusters

Before proceeding we note that the particle clusters in a treecode are typically uniform cubes at
each level [47]. We followed that approach for the Kirkwood sphere test case above, but in the case
of protein 1A63, we will instead use adapted rectangular boxes obtained by shrinking the clusters
around the particles they contain [48–50]. Figure 7 illustrates the idea for a two-dimensional
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Figure 6: Case 2 (protein 1A63). MSMS triangulation of molecular surface [51, 52]; (a) density = 1 Å−2, N = 20264
faces, (b) density = 5 Å−2, N = 70018 faces.

analog of a molecular surface. In comparison with uniform clusters, the adapted clusters have
smaller radius and provide a better description of the molecular surface.

To demonstrate the effect of using adapted clusters, we applied the TABI solver to protein 1A63
with MSMS density = 10 Å−2 and N = 132196 faces. Table 3 displays the resulting electrostatic
solvation energy Esol computed by direct sum (ds), and by the treecode with uniform clusters (tc1)
and adapted clusters (tc2), followed by the discretization error edssol and treecode approximation error
etcsol, and the CPU run time. In computing the discretization error, the exact value is estimated by
an extrapolation process described in the next subsection.

Results in Table 3 are shown for the PB equation with MAC parameter θ = 0.8, and the
Poisson equation with θ = 0.5. In all cases, the treecode approximation error is smaller than
the discretization error, and the treecode is faster than direct sum. In using adapted clusters in
comparison with uniform clusters, the CPU run time is reduced, by 15% for the PB equation and
23% for the Poisson equation. This can be explained by noting that the adapted clusters have
smaller radius than the uniform clusters, and as a result the MAC criterion is satisfied at higher
levels in the tree. Hence we will use adapted particle clusters in the remainder of this work.

Table 3: Case 2 (protein 1A63). Effect of particle clusters; PB and Poisson equations; MSMS density = 10 Å−2,
N = 132196; showing electrostatic solvation energy Esol computed by direct sum (ds), treecode with uniform clusters
(tc1), adapted clusters (tc2); discretization error edssol, treecode approximation error etcsol, CPU time; order p = 3,
MAC parameter θ as indicated.

Esol (kcal/mol) error (%) CPU (s)

ds tc1 tc2 edssol etc1sol etc2sol ds tc1 tc2

PB, θ = 0.8 -2404.072 -2403.837 -2405.113 1.239 0.00978 0.04329 10768 434 368

Poisson, θ = 0.5 -2399.471 -2399.388 -2399.480 1.295 0.00346 0.00037 3761 220 169

In the next three subsections we discuss in more detail the error in electrostatic solvation energy,
CPU time, and memory usage. Results are presented in Table 4.
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Figure 7: Treecode particle clusters, two-dimensional analog of a molecular surface. (a) uniform, (b) adapted.

7.2. Error in electrostatic solvation energy

The TABI Poisson-Boltzmann results appear in the top of Table 4. The first two columns
give the MSMS density and number of faces in the triangulation N . The next two columns give
the electrostatic solvation energy Esol computed by direct sum (ds) and treecode (tc). We find
empirically that the direct sum values Edssol converge at the rate O(N−1); this is supported by
Figure 8a in which these values are plotted versus N−1, showing that the data points asymptote to
a straight line as N−1→ 0. Using this observation, we performed linear extrapolation to the limit
N−1→ 0, obtaining the value Eexsol = −2374.64 kcal/mol, an estimate of the exact energy, which
appears on the row labelled ∞ in Table 4. Using this value we computed the discretization error
edssol (recall Equation (23)), and the results in Table 4 support the conclusion that it converges to
zero at the rate O(N−1). This is faster than the rate O(N−1/2) obtained for the geodesic grid
triangulation of the Kirkwood sphere in Case 1. The faster convergence seen here is attributed to
the non-uniform adaptive nature of the MSMS triangulation of the protein molecular surface; there
are two ways to interpret this, (1) for a given number of faces N , the MSMS triangulation yields a
smaller error than a uniform triangulation, (2) for a given level of error, MSMS requires a smaller
number of faces N than a uniform triangulation.

Returning to the TABI-PB results in Table 4, we see that the treecode values of electrostatic
solvation energy are in good agreement with the direct sum values. In all cases, the treecode
approximation error etcsol remains smaller than the direct sum discretization error edssol. For example
with density = 10 Å−2, the direct sum discretization error is edssol = 1.239% and the treecode
approximation error is etcsol = 0.0433%.

The next portion of Table 4 displays TABI results for the Poisson equation. In this case the
estimate of the exact electrostatic solvation energy is Eexsol = −2368.79 kcal/mol, approximately
5.8 kcal/mol higher than for the PB equation. Otherwise, the error trends for the PB and Poisson
equations are similar; the only difference is that the treecode approximation error etcsol is smaller
for the Poisson equation, due to the smaller MAC parameter value used in this case.

Proceeding to the APBS results in Table 4, the first three columns display the maximum grid
spacing hmax, grid dimensions Ng, and electrostatic solvation energy Esol. We find empirically
that the computed values Esol converge at the rate O(hmax), as supported by Figure 8b. In the
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Table 4: Case 2 (protein 1A63). TABI and APBS results; PB and Poisson equations; showing electrostatic solvation
energy Esol, and error, CPU time, memory usage; TABI columns show MSMS density, Esol values computed by
direct sum (ds) and treecode (tc); discretization error edssol, treecode approximation error etcsol; treecode order p = 3,
MAC parameter θ = 0.8 (PB), θ = 0.5 (P); APBS columns show maximum grid spacing hmax, grid dimensions Ng.

TABI, Poisson-Boltzmann Esol (kcal/mol) error (%) CPU (s) iters2 memory (MB)

density (Å−2) N1 ds tc edssol etcsol ds tc ds tc ds tc

1 20264 -2913.46 -2914.22 22.691 0.0260 535 87 25 25 10 23
2 30358 -2531.67 -2532.65 6.613 0.0385 1059 130 22 22 14 36
5 70018 -2440.05 -2440.80 2.755 0.0717 3371 205 13 13 31 82
10 132196 -2404.07 -2405.11 1.239 0.0433 10768 368 11 11 57 149
20 265000 -2390.12 -2392.51 0.652 0.0997 39187 812 10 11 113 309
40 536886 -2382.28 -2385.74 0.322 0.1450 178418 1763 11 11 227 600

∞3 -2374.64

TABI, Poisson

1 20264 -2908.49 -2908.47 22.784 0.0007 171 41 28 28 7 9
2 30358 -2526.42 -2526.51 6.655 0.0036 273 51 20 20 10 14
5 70018 -2436.33 -2436.33 2.851 0.0003 1089 83 13 13 22 31
10 132196 -2399.47 -2399.48 1.295 0.0004 3761 169 12 12 40 56
20 265000 -2385.04 -2385.01 0.686 0.0013 14200 322 11 11 80 114
40 536886 -2376.81 -2376.77 0.339 0.0017 61098 724 11 11 160 223

∞ -2368.79

APBS, Poisson-Boltzmann

hmax (Å) Ng Esol (kcal/mol) error (%) CPU (s) memory (MB)

1.63 65× 332 -2455.15 4.449 6 93
0.812 97× 652 -2559.61 8.893 19 164
0.547 129× 972 -2477.78 5.411 72 340
0.263 257× 1612 -2411.03 2.572 292 1565
0.131 513× 3212 -2380.69 1.281 1983 11486

∞ -2350.58

APBS, Poisson

1.63 65× 332 -2439.01 4.066 6 82
0.812 97× 652 -2550.60 8.827 16 157
0.547 129× 972 -2469.49 5.367 65 333
0.263 257× 1612 -2404.72 2.603 247 1559
0.131 513× 3212 -2374.10 1.297 1647 11479

∞ -2343.71
1number of faces in triangulation
2number of GMRES iterations
3rows labelled ∞ display estimates of exact energy Eexsol obtained by extrapolation as in Figure 8

same spirit as above, we performed linear extrapolation to the limit hmax → 0, obtaining the value
Esol = −2350.58 kcal/mol for the PB equation, which appears on the appropriate row labelled∞ in
Table 4. This is 24 kcal/mol higher than the TABI value, a discrepancy of 1%, possibly due to the
different treatment of the molecular surface or the far-field boundary condition in the two codes.
The next column in Table 4 shows that the error converges to zero at the rate O(hmax), a check on
the self-consistency of the extrapolation. The error trends for the PB and Poisson equations are
again similar. The energy for the Poisson equation is Esol = −2343.71 kcal/mol, approximately
6.9 kcal/mol higher than for the PB equation.

7.3. CPU time

Proceeding to the CPU time results in Table 4 for the TABI solver, the direct sum CPU time
is O(N2) and the treecode CPU time is O(N logN). Hence the treecode is significantly faster
when N is large; for example, the PB computation with density = 10 Å−2 and N = 132196 took
10768 s ≈ 3 hours by direct sum and 368 s ≈ 6.1 minutes by the treecode. The number of GMRES
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Figure 8: Case 2 (protein 1A63). Estimation of exact PB electrostatic solvation energy; computed values of Esol from
Table 4 (◦, dashed lines); linear interpolant (solid lines); (a) TABI direct sum values Edssol versus reciprocal number
of faces N−1, (b) APBS values Esol versus grid spacing hmax (Å); extrapolated values (∗) appear in Table 4 on rows
labelled ∞.

iterations is modest and decreases as N becomes larger, presumably due to the better resolution
of the molecular surface and the use of a well-conditioned boundary integral formulation [22, 24].
The treecode CPU time for the Poisson equation is 40-50% of the CPU time for the PB equation;
for example in the same case with density = 10 Å−2, the CPU time for the Poisson equation is 169 s
≈ 2.8 minutes.

In the case of APBS, the CPU time increases at a rate somewhat less than O(Ng) as the grid is
refined. Except for the coarsest grid in Table 4, the CPU time for the Poisson equation is 80-90%
of the CPU time for the PB equation.

Next in Figure 9a we compare TABI and APBS by plotting the CPU time versus error in
electrostatic solvation energy for the PB and Poisson equations. The APBS error is taken directly
from Table 4, and the TABI error is computed from the data in Table 4 as |Etcsol − Eexsol|/|Eexsol|.
For the PB equation, APBS is faster for errors greater than 3% and TABI is faster for errors less
than 3%. For the Poisson equation, the cross-over is at error 6%. Hence TABI is more efficient
when higher accuracy is required. For example, the TABI simulation with density = 10 Å−2 and
the APBS simulation with hmax = 0.131 Å both have errors around 1.3%, but TABI is 5.4 times
faster for the PB equation and 9.7 times faster for the Poisson equation.

7.4. Memory usage

The final columns in Table 4 display the memory usage. The TABI memory usage is O(N)
for both direct sum and the treecode. For the PB equation the treecode uses 2-3 times as much
memory as direct sum, and for the Poisson equation the treecode uses less than 2 times as much
memory as direct sum. The APBS memory usage is O(Ng).

Figure 9b compares TABI and APBS by plotting the memory usage versus error in electrostatic
solvation energy for the PB and Poisson equations. The data is taken from Table 4. We find that
TABI uses less memory than APBS for comparable levels of accuracy. For example, with errors
around 1.3%, APBS with hmax = 0.131 Å uses 11486 MB for the PB equation and 11479 MB for the
Poisson equation, while TABI with density = 10 Å−2 uses 149 MB for the PB equation and 56 MB
for the Poisson equation.
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Figure 9: Case 2 (protein 1A63). Comparison of TABI and APBS; (a) CPU time, (b) memory usage, plotted versus
error in electrostatic solvation energy; TABI (◦), APBS (/), PB equation (solid lines), Poisson equation (dashed
lines); data from Table 4; vertical lines in (a) indicate cross-over error below which TABI is faster than APBS.

7.5. Visualization of surface potential

Figure 10 displays the surface potential for protein 1A63 computed by TABI with density = 10 Å−2

for the PB and Poisson equations. The plots were generated using VMD [59]. The regions of pos-
itive and negative potential correspond well for both equations, but the color intensity is slightly
lower for the PB equation due to the screening induced by the dissolved ions. The difference
potential φPB − φP is shown in Figure 10c, with a smaller range in the color bar to emphasize
the screening effect. These types of plots are used in the study of protein structure and binding
affinity [1].

a b c

Figure 10: Case 2 (protein 1A63). Visualization of surface potential computed by TABI with density = 10 Å−2; color
bar (online) in units of kcal/mol-ec; (a) PB equation; (b) Poisson equation, (c) difference potential φPB − φP , note
smaller range in color bar.
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7.6. Parallel simulations

Parallel treecode simulations are a topic of ongoing research e.g. see [60–63]. Here we present
parallel TABI simulations for protein 1A63 with density = 10 Å−2 and N = 132196, yielding an
error of around 1.3% in electrostatic solvation energy. In this case the memory usage is small
enough to permit application of a simple replicated data algorithm in which each processor has a
copy of all the data needed for concurrent computations [64, 65]. Larger TABI simulations requiring
a distributed memory approach are reserved for future work.

The replicated data algorithm is based on the following considerations. The TABI solver com-
putes the matrix-vector product using the treecode, and it computes the source terms (Equa-
tion (11)) and electrostatic solvation energy (Equation (14)) by direct sum. In each case the code
loops overs the particles, but each particle can be treated as an independent computation. Hence
the particle array is divided into P segments of length N/P , where P is the number of processors,
and the segments are processed concurrently. The pseudocode is shown in Table 5. Communication
is handled by MPI [66].

Table 5: Pseudocode for parallel TABI solver using replicated data algorithm.

1 on main processor
2 read protein data
3 call MSMS to generate triangulation
4 copy protein data and triangulation to all other processors
5 on each processor
6 build local copy of tree
7 compute assigned segment of source terms by direct sum
8 copy result to all other processors
9 set initial guess for GMRES iteration

10 compute assigned segment of matrix-vector product by treecode
11 copy result to all other processors
12 test for GMRES convergence
13 if no, go to step 10 for next iteration
14 if yes, go to step 15
15 compute assigned segment of electrostatic solvation energy by direct sum
16 copy result to main processor
17 on main processor
18 add segments of electrostatic solvation energy and output result

Table 6 displays the CPU time (tP ), speedup (t1/tP ), and parallel efficiency (speedup/P ), for
P = 1, 2, 4, 8 processors. Results are shown for the total computation and one matrix-vector prod-
uct. The total computation time includes MSMS triangulation, tree building, GMRES iteration,
and computing electrostatic solvation energy. Note that the total CPU time for one processor in Ta-
ble 6 (PB=799.3 s, P=324.4 s) is higher than the serial CPU time in Table 4 (PB=368 s, P=169 s);
this is attributed to the difference in compilers (ifort, gfortran) as well as overhead in running the
parallel code with one processor. For the PB equation with eight processors, the total CPU time is
reduced to 123.7 s, with speedup 6.46 and parallel efficiency 80.9%. For the Poisson equation with
eight processors, the total CPU time is 51.0 s, around 40% of the CPU time for the PB equation,
with comparable speedup and parallel efficiency. Results for one matrix-vector product are slightly
better, with speedup 6.64 and 6.70, and parallel efficiency 83.0% and 83.8% for the PB and Poisson
equations, respectively.
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Table 6: Case 2 (protein 1A63). Performance of parallel TABI solver showing CPU time, speedup, parallel efficiency;
PB and Poisson equations; total computation and one matrix-vector product; number of processors P = 1, 2, 4, 8;
MSMS density = 10 Å−2, N = 132196 faces; treecode order p = 3, MAC parameter θ = 0.8 (PB), θ = 0.5 (P); error
in electrostatic solvation energy ≈ 1.3%.

total computation one matrix-vector product

P CPU (s) speedup parallel efficiency (%) CPU (s) speedup parallel efficiency (%)

Poisson-Boltzmann

1 799.3 1.00 100.0 69.8 1.00 100.0
2 410.0 1.95 97.5 35.7 1.96 97.8
4 223.8 3.57 89.3 19.4 3.59 89.9
8 123.7 6.46 80.9 10.5 6.64 83.0

Poisson

1 324.4 1.00 100.0 25.9 1.00 100.0
2 166.7 1.95 97.3 13.2 1.96 98.2
4 92.6 3.50 87.6 7.2 3.57 89.3
8 51.0 6.36 79.5 3.9 6.70 83.8

8. Conclusions

We presented a treecode-accelerated boundary integral (TABI) solver for electrostatics of sol-
vated biomolecules described by the linear Poisson-Boltzmann implicit solvent model. The method
employs a well-conditioned boundary integral formulation for the electrostatic potential and its
normal derivative on the molecular surface [22]. The surface is triangulated and the integral equa-
tions are discretized by centroid collocation with the singular term omitted [46]. The linear system
is solved by GMRES iteration [44] and the matrix-vector product is carried out by a Cartesian
treecode which reduces the cost from O(N2) to O(N logN), where N is the number of faces in the
triangulation [47, 50].

The TABI solver was applied to compute the electrostatic solvation energy in two cases, the
Kirkwood sphere [54] and protein 1A63 with 2069 atoms [55]. The sphere was triangulated using an
icosahedral geodesic grid and the protein surface was triangulated by MSMS [51]. We found that
the discretization error is O(N−1/2) for the sphere and O(N−1) for the protein, where the faster
convergence in the latter case is attributed to the adaptive nature of the MSMS triangulation. We
showed that the treecode approximation error can be made smaller than the discretization error by
a suitable choice of treecode parameters. TABI simulations for the PB and Poisson equations have
similar trends in error, CPU time, and memory usage, but the code is faster and uses less memory
for the Poisson equation.

We compared two versions of the treecode, one with uniform clusters and one with non-uniform
clusters adapted to the molecular surface. The version with adapted clusters has better perfor-
mance; the treecode approximation error remains smaller than the discretization error, and the
CPU run time is reduced. The adapted cluster technique is a novel feature of the TABI solver and
it may be especially effective for large biomolecules with complex geometry.

We also applied the grid-based APBS code [18] to protein 1A63. In the case of the PB equa-
tion, we found that APBS is faster than TABI for errors greater than 3% and TABI is faster for
errors less than 3%. In the case of the Poisson equation, a similar cross-over occurs at error 6%.
For comparable accuracy, TABI uses less memory than APBS. These results give a performance
snapshot and further improvement can be expected in both grid-based and boundary integral PB
solvers.

Finally, we presented parallel TABI simulations using a replicated data algorithm for protein
1A63 with density = 10 Å−2 and N = 132196, yielding 1.3% error in electrostatic solvation energy.
With eight processors, TABI achieved parallel efficiency around 80%, requiring 123.7 s for the PB
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equation and 51.0 s for the Poisson equation.
In summary, the TABI solver described here exhibits good serial and parallel performance com-

bined with relatively simple implementation, efficient memory usage, and geometric adaptability.
Hence it offers an attractive option for computing electrostatics of solvated biomolecules. Directions
for future study include higher order quadrature schemes [22, 24, 32, 45, 67], alternative represen-
tations of the molecular surface [68–72], and PB simulations with quantum mechanical models of
the solute [73–76].
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