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Abstract

A Lagrangian particle method (called LPM) based on the flow map is presented for tracer
transport on the sphere. The particles carry tracer values and are located at the centers
and vertices of triangular Lagrangian panels. Remeshing is applied to control particle disor-
der and two schemes are compared, one using direct tracer interpolation and another using
inverse flow map interpolation with sampling of the initial tracer density. Test cases in-
clude a moving-vortices flow and reversing-deformational flow with both zero and nonzero
divergence, as well as smooth and discontinuous tracers. We examine the accuracy of the
computed tracer density and tracer integral, and preservation of nonlinear correlation in a
pair of tracers. We compare results obtained using LPM and the Lin-Rood finite-volume
scheme. An adaptive particle/panel refinement scheme is demonstrated.

Keywords: tracer transport, Lagrangian particle method, flow map, remeshing, adaptive
refinement

1. Introduction

Tracer transport plays an important role in many multiphysics applications. In atmo-
spheric dynamics, for example, the tracer may represent a chemical species or distribution
of solid particles and liquid droplets [36]. A key goal in future climate simulations is to
track the large number of tracer species that appear in advanced atmospheric models [33].
In order for these efforts to succeed it is clear that the numerical method used in computing
tracer transport must be sufficiently accurate and efficient [52].

With these considerations in mind we consider the tracer transport problem on the sphere.
An initial tracer mixing ratio, or concentration, q0(x) and fluid velocity u(x, t) are given,
where x ∈ S denotes points on the sphere S and t is time. The tracer is advected in the given
velocity field and the goal is to compute the tracer mixing ratio q(x, t) for t > 0. In practice
the velocity field is computed either by a general circulation model or acquired by data
assimilation, but here it is known analytically. This idealized problem is often used to test
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the capability of numerical methods for tracer transport [37, 38] and we present a Lagrangian
particle method (called LPM) for this purpose. Our approach is motivated by previous work
on vortex methods for incompressible flow [13, 16]. First we review the standard Eulerian
formulation of the tracer transport problem and then the Lagrangian formulation on which
LPM is based.

1.1. Eulerian formulation

In the Eulerian formulation the tracer density satisfies the transport equation,

∂(ρq)

∂t
+∇ ·

(
(ρq)u

)
= 0, (1)

where ρ(x, t) is the fluid mass density, which satisfies the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0. (2)

Both the mass density ρ(x, t) and the tracer mixing ratio q(x, t) are subject to initial con-
ditions

ρ(x, 0) = ρ0(x), q(x, 0) = q0(x). (3)

In this work ρ0(x) = 1 and q0(x) is defined by a set of common test cases for transport on
the sphere [37, 44].

Equations (1) and (2) are written in flux form; we may combine them to derive their
advective forms,

Dq

Dt
=
∂q

∂t
+ u · ∇q = 0, (4)

and
Dρ

Dt
=
∂ρ

∂t
+ u · ∇ρ = −(∇ · u)ρ, (5)

where D/Dt = ∂/∂t + u · ∇ is the material derivative. We note that the advective form of
the continuity equation (5) is the same as the advective form of the tracer transport equation
(4) in non-divergent flow satisfying ∇ · u = 0. In the test cases presented below we show
results for both this special case and for the more general case of flow with non-zero velocity
divergence.

For later reference we note that the tracer satisfies the following two properties. The first
property is that the tracer integral over the sphere is conserved in time,

Q(t) = Q(0), t ≥ 0, (6)

where the tracer integral is defined by

Q(t) =

∫
S

ρ(x, t)q(x, t) dS(x). (7)

The second property is the preservation of correlations in the sense that if q1(x, t) and q2(x, t)
are two tracers whose initial values are correlated,

q20(x) = F (q10(x)), (8)
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where F is a given function, then the tracers remain correlated at later times,

q2(x, t) = F (q1(x, t)), t > 0. (9)

These two properties (conservation of tracer integral, preservation of correlations) are often
used as benchmarks in evaluating tracer transport schemes and we also use them for this
purpose.

A common approach to computing tracer transport is to discretize the advection equation
in form (1) on an Eulerian grid (see for example [6, 35]). Many techniques have been
employed including finite-difference [55], finite-volume [41, 51], discontinuous Galerkin [45],
and spectral element [57] methods. Another approach discretizes the advection equation
using radial basis functions on a set of quasi-uniformly distributed nodes [21, 22, 23]. In some
cases filters and limiters are applied to control numerical errors arising from the discretization
of the spatial gradient operator. However this can lead to excessive smoothing of sharp
fronts [27, 28, 37], and it is still challenging to design Eulerian schemes that satisfy the
competing requirements of accuracy and efficiency [32]. This has motivated the investigation
of alternative Lagrangian schemes.

1.2. Lagrangian formulation

The Lagrangian formulation is based on the flow map, α → x(α, t), defined by the
equation

∂

∂t
x(α, t) = u(x(α, t), t), (10)

with initial condition
x(α, 0) = α, (11)

where α ∈ S is a Lagrangian parameter on the sphere [13, 16]. The flow map x(α, t) gives
the location x at time t of a fluid particle labeled by its initial location α. In the formulation
(10), the time derivative ∂/∂t acts along particle trajectories and is equivalent to the material
derivative operator. As a consequence, the partial differential equations (4) and (5) become
ordinary differential equations (ODEs) along particle trajectories. It follows that the tracer
is conserved along these trajectories,

q(x(α, t), t) = q0(α), (12)

and this can be viewed as an integrated form of the advection equation. Similarly, the fluid
density ρ satisfies the ODE,

∂ρ

∂t
(x(α, t), t) = −(∇ · u(x(α, t), t))ρ(x(α, t), t), (13)

along the particle paths defined by (10).
After changing variables by the flow map, the tracer integral (7) can be expressed as

Q(t) =

∫
S

ρ(x(α, t), t)q(x(α, t))J(α, t)dS(α), (14)

where J(α, t) = det(∂x/∂α) is the Jacobian determinant of the flow map. In this approach
one solves for the flow map using (10), the tracer mixing ratio is determined by (12), and the
fluid density is determined by (13). Hence in this formulation there is no need to discretize
the spatial gradient operator u · ∇ which is an advantage of Lagrangian schemes. However,
Lagrangian schemes face other challenges as we shall see.
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1.3. Lagrangian schemes

A variety of Lagrangian schemes have been developed for geophysical flow simulations [40].
One class of semi-Lagrangian methods computes particle trajectories that arrive at grid
points at each time step [7, 34, 56, 63]. Related approaches include particle-mesh meth-
ods [15] and the Arbitrary Lagrangian-Eulerian (ALE) method [25], as well as more recent
hybrid schemes [26, 62]. There are also contour dynamics methods that track the boundary
of vortex patches [18, 59] and schemes that track more general Lagrangian parcels [17, 24].
Here we propose a method for tracer transport on the sphere based on the particle-panel
method [12, 20] in which the flow map is represented by moving particles and triangular
Lagrangian panels.

Lagrangian schemes in general remain stable for longer time steps and are less prone to
numerical diffusion than Eulerian grid-based schemes. However one difficulty for Lagrangian
schemes is that even if the particles or parcels start from a regular grid, they typically
become disordered as the flow evolves and this leads to a loss of accuracy [49]. In the
context of ALE simulations, rezoning and remapping techniques are employed to overcome
the problem of Lagrangian mesh distortion [10, 19]. Here we follow an alternative approach
common in vortex methods research by remeshing the particles at regular time intervals (see
for example [2, 4, 7, 30, 43, 48, 60]). In a remeshing step, a new set of well-ordered particles
is introduced and the tracer values are interpolated from the old particles to the new ones;
we refer to this as direct remeshing. A recent alternative scheme interpolates the inverse
flow map and then samples the initial tracer density [11, 12]; we refer to this as indirect
remeshing. In this work we will compare these two techniques for particle remeshing.

Another challenge for tracer transport schemes is the need to resolve small-scale features
in the tracer density. For Eulerian schemes this is often addressed by adaptive mesh refine-
ment (AMR), so that resolution is maintained without incurring the cost of a uniform fine
mesh [9, 31]. In the context of radial basis function methods, locally refined node distribu-
tions have been investigated [22]. Adaptive refinement techniques have also been developed
for Lagrangian particle methods [5, 8], and here we demonstrate an adaptive refinement
scheme for LPM along the lines of previous work in vortex methods [12, 20], which is used
to maintain accuracy and reduce the cost of long time integrations.

We will apply LPM to test cases for which the exact solution is known including a moving-
vortices flow and a reversing-deformational flow with smooth and discontinuous tracers [29,
37, 44, 61]. We examine the accuracy of the computed tracer density and tracer integral,
and preservation of nonlinear correlation in a pair of tracers. We also compare results using
LPM and the Lin-Rood finite-volume scheme [41].

The article is organized as follows. Section 2 presents the LPM scheme for tracer transport
on the sphere. Numerical results are presented in section 3 for the moving-vortices flow and
in section 4 for the reversing-deformational flow. Adaptive particle/panel refinement is
discussed in section 5. Section 6 provides a summary and conclusions.

2. LPM scheme for tracer transport on the sphere

In this section we explain the discrete representation of the flow map, followed by particle
advection, remeshing, the error norms, and finally additional information about the scheme.
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2.1. Discrete representation of the flow map

In LPM the flow map is represented by moving particles {xj(t)} and their Lagrangian
parameters {αj}, satisfying

xj(0) = αj, xj(t) = x(αj, t), j = 1, . . . ,M. (15)

In the current implementation of LPM, the particles are located at the centers and vertices
of disjoint triangular Lagrangian panels {Pk(t)} that cover the sphere and are advected by
the flow map,

S = ∪Nk=1Pk(t), Pk(t) = x(Pk(0), t), k = 1, . . . , N. (16)

Figure 1(a) depicts a triangular panel and its associated particles. The initial panels {Pk(0)}
are defined by an icosahedral triangulation of the sphere which is constructed as described
by [3]. A set of twenty triangles is given by an icosahedron and the vertices are connected
to form the first level of panels. A refinement step divides each panel into four subpanels, as
shown in figure 1(b), with the new particles projected onto the sphere. The process continues
for a specified number of levels, yielding a set of almost uniform spherical triangles, as shown
in figure 2(a) after three levels of refinement withN = 1280 triangles. These triangles give the
initial panels {Pk(0)}, and the panel centers and vertices define the Lagrangian parameters
{αj} for the initial particle positions {xj(0)} in (15).

(a) (b) (c)

Figure 1: Schematic of panels, (a) each triangular panel has particles (•) at the center and vertices, (b) panel
refinement for icosahedral triangulation of the sphere, (c) panel refinement for linear interpolation of tracer
density.

While LPM could be implemented using particles only, panels provide several capabilities
including a simple midpoint rule quadrature scheme. New particle locations are defined
efficiently and locally within each parent panel using the recursive refinement shown in
figure 1(b). The refinement procedure imposes a quad-tree organization of the panels data
structure which enables fast searching of both uniform and adaptively refined meshes. Panels
are also used for plotting purposes.

Table 1 gives the relation between the number of panels N , particles M , and the average
grid spacing (angular extent of a panel edge) which satisfies ∆λ = O(N−1/2). Note that in
LPM the particles are advected and the panels are defined implicitly by their corresponding
center and vertex particles.

2.2. Particle advection

The particles are advected by the fluid velocity, leading to a set of ODEs,

d

dt
xj(t) = u

(
xj, t

)
, j = 1, . . . ,M, (17)
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Friday, June 19, 15

(a) (b) (c)

Figure 2: Icosahedral triangulation of the sphere with N = 1280 panels, the panels are visualized by
connecting their vertex particles, the particles are located at the panel centers and vertices (not shown),
(a) initial time, (b) early time, (c) late time. The particle/panel distribution becomes disordered as time
proceeds.

Table 1: Icosahedral triangulation of the sphere, N : number of triangles (panels), M : number of particles
(panel centers and vertices), ∆λ: average grid spacing (angular extent of a panel edge).

N 20 80 320 1280 5120 20480 81920 327680
M 32 122 482 1922 7682 30722 122882 491522
∆λ 63.43◦ 33.87◦ 17.22◦ 8.64◦ 4.33◦ 2.16◦ 1.08◦ 0.54◦

with initial condition given in (15). The particle locations and velocities are expressed in
Cartesian coordinates to avoid the singularities occuring in spherical coordinates. Follow-
ing (12), each particle xj(t) carries a tracer value obtained by sampling the initial tracer at
the Lagrangian parameter,

qj = q0(αj), j = 1, . . . ,M, (18)

and a density value, ρj(t) = ρ(x(αj, t), t), that obeys the ODE,

d

dt
ρj(t) = −

(
∇ · u(xj, t)

)
ρj(t), (19)

with ρj(0) = 1.
The Jacobian determinant of the flow map J(α, t) can be used to derive an ODE for

panel areas, Ak(t) = area[Pk(t)], k = 1, . . . , N, t ≥ 0,

d

dt
Ak(t) =

(
∇ · u(xk, t)

)
Ak(t), (20)

where the initial value Ak(0) is computed by a spherical triangle area formula. The ODEs
(17), (19), and (20) are integrated by the fourth-order Runge-Kutta method (RK4). We note
that the computational work of integrating these three ODEs is not affected by the number
of tracers in the simulation; each tracer is implicitly carried by the particles.

Following (14), the tracer integral is approximated using a spherical midpoint rule,

QN(t) =
N∑
k=1

ρk(t)qkAk(t), (21)
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where qk is the tracer value carried by the center particle xk(t) of panel Pk(t). Note that
the approximate tracer integral QN in (21) is constant since D(ρkAk)/Dt = 0, though later
on we will see that the value of QN jumps in time when remeshing is employed.

2.3. Remeshing

As mentioned earlier, Lagrangian schemes encounter a difficulty when the particles be-
come disordered [49]. Figure 2 shows an example in which the particles are well-ordered
at t = 0, but they become slightly disordered at early times and then highly disordered at
later times. In general when this happens the particles can no longer adequately resolve
the tracer density. This can occur even when the particle positions are computed to high
accuracy. Using more particles will diminish the problem, but this is expensive and instead
the issue is typically addressed by remeshing [2, 4, 7, 30, 43, 48, 60]. In this approach a time
is chosen when the particles are still only slightly disordered and they are replaced by a new
set of well-ordered particles and panels with re-computed areas. An interpolation scheme
transfers the density and tracer from the old particles to the new ones, and the computation
resumes using the new particles and tracer values. In LPM the new well-ordered particles
are the same as the initial particles (centers and vertices of an icosahedral triangulation) and
remeshing is performed after a specified number of time steps. In the following discussion
we describe two remeshing schemes that differ in how the new tracer values are obtained.

1. Direct remeshing. The standard approach interpolates the tracer directly from the old
particles to the new ones. In this case the output of the interpolation step can be written as

{qnewj } = I({xnew
j }; {xold

j }, {qoldj }), (22)

where I is the interpolation operator. We refer to this as remeshing with direct tracer in-
terpolation, or direct remeshing. A variety of interpolation techniques have been employed
using moment conserving kernels [30], redistribution schemes [60], non-oscillatory meth-
ods [43], and radial basis functions [2, 7]. In the present work the interpolation is carried
out using the STRIPACK and SSRFPACK libraries for scattered data interpolation on the
sphere [53, 54]. First a Delaunay triangulation of the old particles is constructed and ap-
proximate gradient values are computed by local quadratic least squares fitting. Then the
new particles are located in the Delaunay triangulation and cubic Hermite interpolation is
applied to compute the required output values. The cubic Hermite interpolant is formally
fourth-order accurate in the grid spacing ∆λ, but since approximate gradients are used,
somewhat slower convergence is seen in practice. Nonetheless this improves upon the LPM
results reported in the 2011 NCAR workshop on transport schemes where linear interpolation
on subtriangles was used as depicted in figure 1(c) [38].

The cost of the Delaunay triangulation algorithm scales as O(M logM) [53]; however,
we find that the cost of remeshing is dominated by the search required to locate an output
point xnew

j within the Delaunay triangulation of existing particles {xold
j }. The cost of this

search is also O(M logM) in general and depends upon each search’s initial starting point.
We observe O(M) search time in practice by using our mesh data structure to inform the
starting point of each search.

In the following sections, LPM simulations that use direct remeshing will be annotated
as LPM-d. Our description has used the tracer q; the mass density ρ is treated similarly.
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2. Indirect remeshing. An alternative approach uses the inverse flow map, x→ α(x, t),
from physical space to Lagrangian parameter space [11, 12] to take advantage of the fact
that the tracer is a material invariant, Dq/Dt = 0. There are two steps. The first step
interpolates the inverse flow map to find the Lagrangian parameters of the new particles,

{αnew
j } = I({xnew

j }; {xold
j }, {αold

j }). (23)

The second step obtains the new tracer values by sampling the initial tracer mixing ratio at
the new Lagrangian parameters,

qnewj = q0(α
new
j ), j = 1, . . . ,M, (24)

which is consistent with (18). We refer to this as remeshing by inverse flow map interpolation
with sampling of the initial tracer density, or indirect remeshing. The interpolation in (23)
is also carried out using STRIPACK/SSRFPACK.

LPM simulations that use indirect remeshing are annotated below as LPM-i. With
indirect remeshing the quantity being interpolated is the inverse flow map. The flow map
and its inverse begin as the identity and vary smoothly in time as a function of the flow
velocity u(x, t). As a result, high-order accuracy is possible even for the case of discontinuous
tracers. Furthermore, the smoothness of this interpolation problem may be controlled by
the choice of the Lagrangian parameter, which may be redefined at some t > 0 for long time
simulations.

Up to the limits of interpolation error, indirect remeshing preserves the Lagrangian infor-
mation carried by the flow map. This is a new capability introduced by LPM-i. Additionally,
indirect remeshing cannot introduce any new extrema, since its tracer values are assigned
by sampling (rather than interpolating) a preexisting tracer distribution.

Some additional comments about remeshing are in order here.

1. The tracer values qj are constant in time in between remeshing intervals, but they
change due to interpolation when remeshing is performed. Hence from now on we
write qj(t) to indicate this time dependence.

2. The initial particles and newly remeshed particles lie on the sphere, but since the
ODEs (17) are integrated in Cartesian coordinates, the particles are not constrained
to lie on the sphere in between remeshing intervals. However if the ODEs are solved
with sufficient accuracy, as for the results presented below, then the particles remain
close to the sphere.

3. Direct remeshing requires a separate interpolation for each tracer. Indirect remeshing
interpolates the three components of the Lagrangian parameter and reuses this data
for each tracer. Hence, whenever the number of tracers is ≥ 3, which is common in
modern climate models, indirect remeshing is likely more efficient. In this work the
test cases use no more than 2 tracers and we do not notice a significant difference in
the time required by each strategy.

4. We observe an overall approximate O(M) scaling in wall-clock time as the number
of particles M increases for the time-stepping subroutine as well as both direct and
indirect remeshing procedures, yielding an overall O(M) scaling for each LPM scheme.
Section 4.1 includes a timing experiment that documents this result.



9

2.4. Error norms

To assess the accuracy of the computed tracer we use the following error norms [61],

l∞ =
max{|qj(t)− q(xj(t), t)| ; j = 1, . . . ,M}

max{|q(xj(t)| ; j = 1, . . . ,M}
, (25a)

l2 =


N∑
k=1

(qk(t)− q(xk(t), t))2Ak

N∑
k=1

q(xk(t), t)2Ak


1/2

. (25b)

Recall that index j runs over the particles and index k runs over the panels. Also note
in (25a) that qj(t) is the tracer value carried by particle j, while q(xj(t), t) is obtained by
sampling the exact tracer q(x, t) at the particle location xj(t). There are two sources of
error to consider. First, the tracer values qj(t) have interpolation error due to the remeshing
scheme and this is controlled by the grid spacing ∆λ. Second, the particle locations xj(t)
have time-stepping error due to integrating the ODEs (17) and this is controlled by the time
step ∆t. Here we choose ∆t sufficiently small so that the time-stepping error in xj(t) is
negligible compared to the interpolation error in qj(t). Hence we will focus on how the error
depends on the grid spacing ∆λ. These comments also apply to qk(t) and xk(t) in (25b).

To assess tracer conservation we report the tracer integral error defined by

lQ =
|QN(t)−QN(0)|
|QN(0)|

, (26)

where QN(t) is the approximate tracer integral in (21). As with the tracer values qj(t), the
tracer integral QN(t) is constant in time in between remeshing intervals, but it changes due
to interpolation when remeshing is performed.

2.5. Additional information

The computations were done in modern Fortran on a standard workstation, except for
the timing experiment presented in section 4.1, which ran on one node of a high performance
computing cluster. The output from LPM is a set of particle positions and corresponding
density and tracer values which are presented in two ways. (1) To plot the tracer on the
sphere, each panel is split into three subpanels by connecting the center to the vertices, as in
figure 1(c), and a ParaView plotting routine is employed on each subpanel [1]. (2) To plot
the tracer on a planar latitude-longitude grid, we use STRIPACK/SSRFPACK to interpolate
the tracer from the particles to the grid [53, 54], and then use an NCL filled-contour plotting
routine on the grid [47].

We compare LPM results to those obtained using the Lin-Rood finite-volume scheme [41,
42] which is representative of the Eulerian schemes reported in [38]. The Lin-Rood scheme
uses two one-dimensional steps which are carefully combined to reduce the dimension-
splitting error. Here it was implemented in spherical coordinates on a uniform latitude-
longitude grid with grid spacing ∆λ, using the flux-form semi-Lagrangian extension [41].
Fluxes were computed by the piecewise parabolic method (PPM) which uses a parabolic
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subgrid distribution and fourth-order edge reconstruction with a limiter to enforce mono-
tonicity [14].

We consider two test cases, a moving-vortices flow [44] and reversing-deformational
flows [37] with two variants, one divergence-free and one with non-zero velocity divergence.
The velocity fields are defined using (λ, θ) as longitude and latitude, and (u, v) are the cor-
responding velocities. The sphere radius is a = 6371 km, the computations extend to time
T = 12 days, and Ω = 2π/T is the angular velocity. The LPM results used grid spacing
0.54◦ ≤ ∆λ ≤ 33.87◦ and time step ∆t = T/400 = 43.2 minutes with remeshing every
20 time steps. For this value of ∆t the LPM computations are sufficiently converged in
time. Decreasing ∆t further does not significantly change our results; due to the high or-
der time discretization relative to the spatial discretization, spatial discretization error is
dominant and time stepping error is negligible. The Lin-Rood results used grid spacing
∆λ = 0.5◦, 1◦, 2◦ with time step ∆t = T/4000, T/2000, T/1000, respectively.

3. Test case 1: Moving-vortices flow

In this example two antipodal counter-rotating vortices move along the equator with
angular velocity Ω [44]. The velocity field is

u(λ, θ, t) = ω(r(λ, θ, t)) sin(λ− Ωt) sin θ + aΩ cos θ, (27a)

v(λ, θ, t) = ω(r(λ, θ, t)) cos(λ− Ωt), (27b)

where
r(λ, θ, t) = 3(1− cos2 θ sin2(λ− Ωt))1/2 (27c)

is the radial distance from the center of a vortex, and the profile function is

ω(r) =

3
√

3 aΩ

2

sech2(r) tanh(r)

r
if r 6= 0,

0 if r = 0.
(27d)

The tracer density is

q(λ, θ, t) = 1− tanh

[
0.2r(λ, θ, t) sin

(
λ′(λ, θ, t)− ω(r)

a
t

)]
, (28a)

where

λ′(λ, θ, t) = arctan

[
− cos(λ− Ωt)

tan θ

]
. (28b)

Figures 3(a,b,c) show the exact solution. Figure 3(a) shows the vorticity which has a
concentrated core that travels around the equator and returns to its initial location at time
t = T . Figure 3(b) shows the initial tracer density which decreases smoothly from q ≈ 1.5
in the west to q ≈ 0.5 in the east. Following previous work, the tracer color bar depicts
the contour q = 1 as a sharp interface [44]. For t > 0 the interface rolls up into a spiral as
shown by in figure 3(c). Note that the example of particle disorder in figure 2 was obtained
by advecting particles in this flow.

Figures 3(d,e,f) show LPM results with direct remeshing and grid spacing ∆λ = 8.64◦,
4.33◦, 2.16◦. Figures 3(g,h,i) show the pointwise error distribution at t = T for the same ∆λ
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(d) (e) (f)

(g) (h) (i)

Figure 3: Moving-vortices flow, (a,b,c) exact solution, (a) vorticity, t = 0, (b) tracer, t = 0, (c) tracer,
t = T ; (d,e,f) LPM tracer solution and (g,h,i) error using direct remeshing at t = T with grid spacings (d,g)
∆λ = 8.64◦; (e,h) ∆λ = 4.33◦; (f,i) ∆λ = 2.16◦.
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values. The numerical results converge to the exact solution in figure 3(c) as ∆λ is reduced,
and in this case there was no significant difference between direct and indirect remeshing.
Next we examine the error quantitatively.

Figure 4(a) presents the tracer error (l∞, l2) at time t = T for LPM with direct and
indirect remeshing and for the Lin-Rood scheme. In all cases the l2 error (dashed lines) is
smaller than the l∞ error (solid lines). For comparable values of the grid spacing ∆λ, LPM is
more accurate than the Lin-Rood scheme. For LPM the two remeshing schemes give almost
identical errors and the rate of convergence is close to O(∆λ4).
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Figure 4: Moving-vortices flow; (a) tracer error at time t = T , l∞ (solid lines), l2 (dashed lines), Lin-Rood
(O), LPM with direct remeshing (�), LPM with indirect remeshing (×), (b) tracer integral error lQ for
0 ≤ t ≤ T , LPM with direct remeshing, grid spacing ∆λ decreases from top to bottom.

Next we discuss the conservation of the tracer integral (7), (21). As a finite-volume
method, the Lin-Rood scheme conserves the tracer integral to machine precision. On the
other hand LPM with remeshing does not enforce tracer conservation, so it is important to
understand how the scheme behaves in practice. Figure 4(b) shows the tracer integral error
lQ for 0 ≤ t ≤ T using LPM with direct remeshing (indirect remeshing gave comparable
results). The tracer integral error is almost flat in time; the jumps occur at the remeshing
intervals and the greater variation for ∆λ = 2.16◦ is attributed to rounding error in evaluating
lQ. For grid spacing ∆λ = 8.64◦ the tracer integral error is less than 10−10, and it decreases
at least one order of magnitude when ∆λ is cut in half.

4. Test case 2: Reversing-deformational flow

The non-divergent velocity field for the reversing-deformational flow is defined by

u(λ, θ, t) =
10a

T
sin2(λ− Ωt) sin(2θ) cos(Ωt/2) + aΩ cos(θ), (29a)

v(λ, θ, t) =
10a

T
sin(2(λ− Ωt)) cos(θ) cos(Ωt/2). (29b)

which deforms for 0 ≤ t ≤ T/2 and then reverses for T/2 ≤ t ≤ T [46]. The tracer returns to
its initial state at the final time, q(x, T ) = q(x, 0), and this property is used to compute the
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error in the numerical method. We tested three tracer densities, (1) a pair of Gaussian hills,
(2) two cosine bell pairs with nonlinear correlation, and (3) a pair of slotted cylinders. Each
tracer is defined relative to two center points on the equator, chosen to be (λ1, θ1) = (5π/6, 0)
and (λ2, θ2) = (7π/6, 0). The great-circle distance between a point on the sphere (λ, θ) and
the center points (λi, θi) for i = 1, 2 is given by

ri(λ, θ) = a arccos(sin θi sin θ + cos θi cos θ cos(λ− λi)). (30)

4.1. Gaussian-hills tracer

The first example is test case 1 from [37, 38]. The initial tracer density is the sum of two
Gaussians,

q0(x, y, z) = 0.95 exp
[
−5
(
(x− x1)2 + (y − y1)2 + z2

)]
+ 0.95 exp

[
−5
(
(x− x2)2 + (y − y2)2 + z2

)]
, (31)

where x1,2 = a cosλ1,2, y1,2 = a sinλ1,2, and (x, y, z) are Cartesian coordinates on the sphere.
In this case the tracer is smooth, but small-scale features develop for t > 0.

Figure 5 presents LPM results at time t = 0, T/2, T with grid spacing ∆λ = 8.64◦ using
(a) direct remeshing and (b) indirect remeshing. For plotting purposes the computed tracer
was interpolated from the particles to a latitude-longitude grid. At t = T/2 the tracer is
deformed into a pair of thin filaments, and at t = T the initial condition is restored. With
direct remeshing the numerical solution at t = T/2, T has undershoots and the peak values
are affected by diffusive smoothing. With indirect remeshing these artifacts are absent and
the solution is more accurate. Next we document this quantitatively.

(a)

(b)

Figure 5: Non-divergent reversing-deformational flow (29), Gaussian-hills tracer (31), LPM results at t =
0, T/2, T with grid spacing ∆λ = 8.64◦, (a) direct remeshing, (b) indirect remeshing.

Figure 6(a) presents the tracer error (l∞, l2) at time t = T for LPM with direct and
indirect remeshing and for the Lin-Rood scheme. The l2 error (dashed lines) is slightly
smaller than the l∞ error (solid lines). For comparable values of the grid spacing ∆λ, LPM
is more accurate than the Lin-Rood scheme and indirect remeshing is more accurate than
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direct remeshing. The LPM results converge at a rate close to O(∆λ4). Figure 6(b) shows
the tracer integral error lQ for 0 ≤ t ≤ T using LPM with indirect remeshing. The tracer
integral error is larger than in the previous test case, but it is almost flat in time and it
decreases as the grid spacing ∆λ is reduced.
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Figure 6: Non-divergent reversing-deformational flow (29), Gaussian-hills tracer (31); (a) tracer error at
t = T , l∞ (solid lines), l2 (dashed lines), Lin-Rood (O), LPM with direct remeshing (�), LPM with indirect
remeshing (×), (b) tracer integral error lQ for 0 ≤ t ≤ T , LPM with indirect remeshing, grid spacing ∆λ
decreases from top to bottom.

Next we report LPM timing results for the Gaussian hills test case running on one node
on the Sandia National Laboratories Sky Bridge high performance computing cluster (2.6
GHz Intel Sandy Bridge, 64GB RAM per node) using the Intel Fortran compiler version
15.0 with standard compiler optimizations. We use OpenMPI version 1.8 to parallelize the
time-stepping subroutine and we report results for a computation that used four cores. The
runtime reported here includes time-stepping, remeshing, and file input/output. Figure 7(a)
shows the runtime vs. the number of particles M for direct remeshing (LPM-d) and indirect
remeshing (LPM-i). The runtime scales linearly, like O(M) with the number of particles M ,
and the two remeshing schemes require essentially the same runtime. It can be noted that
the runtime is modest; even for the largest number of particles treated here, M = 327680,
the runtimes for both LPM-d and LPM-i were approximately 10 minutes. Computations
on these benchmark test cases are relatively inexpensive because the velocity field is given
analytically, as opposed to being computed by a fluid solver. Figure 7(b) shows the runtime
vs. tracer error, where each data point corresponds to a value of M . It can be seen that
for a given amount of runtime, indirect remeshing yields smaller tracer error than direct
remeshing.

4.2. Correlated cosine-bell tracers

It is desireable for transport schemes to preserve tracer correlations [39, 58] and the
Lin-Rood scheme is designed to preserve linear correlations [41]. Here we consider test
case 5 from [37, 38] involving two nonlinearly correlated tracers, q1 and q2, whose initial
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Figure 7: Non-divergent reversing-deformational flow (29), Gaussian-hills tracer (31), LPM runtime (s) for
0 ≤ t ≤ T , direct remeshing (LPM-d, �), indirect remeshing (LPM-i, ×), (a) runtime vs. M (number of
particles), (b) runtime vs. error l∞ (solid lines), l2 (dashed lines).

distributions are given by q10 and q20,

q10(λ, θ) =


0.1 + 0.45 (1 + cos(2π r1(λ, θ)/a)) if r1(λ, θ) <

a
2
,

0.1 + 0.45 (1 + cos(2π r2(λ, θ)/a)) if r2(λ, θ) <
a
2
,

0.1 otherwise,

(32a)

q20(λ, θ) = −0.8q210(λ, θ) + 0.9, (32b)

so that q10 has two cosine bells above a constant backgound and q20 is a quadratic function of
q10. Figure 8 plots tracer q2 against tracer q1 at time t = T/2 for the Lin-Rood scheme and
LPM with direct remeshing and indirect remeshing. The computed results are plotted as
red circles and the exact quadratic relation is a blue line. The Lin-Rood and LPM-d results
have errors in which the maximum values of q1 and the minimum values of q2 are truncated,
a sign of numerical diffusion [38]. Both Lin-Rood and LPM-d become more accurate as the
grid spacing ∆λ is reduced, but LPM-d is more accurate. The LPM-i results are accurate
to machine precision for all ∆λ; this is because indirect remeshing samples the initial tracer
densities for which the correlation (32b) holds by definition.

4.3. Slotted-cylinders tracer

The next example is test case 4 in [37, 38]. The initial tracer density is a pair of slotted-
cylinders,

q0(λ, θ) =


1 if ri(λ, θ) <

a
2

and |λ− λi| ≥ 1
12

for i = 1, 2,

1 if r1(λ, θ) <
a
2

and |λ− λ1| < 1
12

and θ − θ1 < − 5
24
,

1 if r2(λ, θ) <
a
2

and |λ− λ2| < 1
12

and θ − θ2 > 5
24
,

0.1 otherwise.

(33)

In this case the tracer is discontinuous. Results are presented in figure 9. The top row
(a) shows Lin-Rood results with grid spacing ∆λ = 1.5◦ and time step ∆t = T/800, in which
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Figure 8: Non-divergent reversing-deformational flow (29), correlated cosine-bell tracers (32), tracer q2 is
plotted against tracer q1 at t = T/2, exact quadratic relation (blue, −), computed results (red, o), Lin-Rood
(LR), LPM with direct remeshing (LPM-d) and indirect remeshing (LPM-i), grid spacing ∆λ as indicated.
Dashed lines provide a visual aid for tracer bounds.
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the computed solution at t = T/2, T has undershoots and diffusive errors. The middle and
bottom rows show LPM results with ∆λ = 2.16◦ and ∆t = T/400. The middle row (b) used
direct remeshing and the results are an improvement over (a), but errors are still evident.
The bottom row (c) used indirect remeshing and the results are further improved; while close
examination reveals that the cylinder edges are jagged due to the finite resolution provided
by ∆λ = 2.16◦, there are no visible undershoots or diffusive errors.

Figure 9: Non-divergent reversing-deformational flow (29), slotted-cylinders tracer (33), results at t =
0, T/2, T , (a) Lin-Rood with ∆λ = 1.5◦,∆t = T/800, (b) LPM with direct remeshing, (c) LPM with
indirect remeshing, LPM used ∆λ = 2.16◦,∆t = T/400.

4.4. Velocity with non-zero divergence

To demonstrate the solution of a divergent velocity field, we use test case 6 from [37]
with the Gaussian hills tracer (31). The flow velocity and divergence are given by

u(λ, θ, t) = −5a

T
sin2

(
(λ− Ωt)/2

)
sin(2θ) cos2(θ) cos(Ωt/2) + aΩ cos(θ), (34a)

v(λ, θ, t) =
5a

2T
sin(λ− Ωt) cos3(θ) cos(Ωt/2), (34b)

∇ · u(λ, θ, t) = −15

T
cos2(θ) sin(θ) sin(λ− Ωt) cos(Ωt/2). (34c)

In this case the density ρ is no longer constant along particle trajectories and particle density
values at a remeshing step t > 0 will not equal the sampled value from ρ0(x). We therefore
use direct remeshing for ρ. Here, LPM-d implies that we also use direct remeshing for q.
LPM-i denotes the use of indirect remeshing for q combined with direct remeshing of ρ.
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Figure 10(a) presents the tracer error (l∞, l2) at time t = T for for the Lin-Rood scheme
and both LPM schemes. The results are similar to the figure 6 results from section 4.1.
Again, LPM is more accurate than Lin-Rood for comparable grid spacings, and indirect
remeshing is more accurate than direct remeshing. The l∞ and l2 errors for both LPM
schemes converge at a rate close to fourth order. Figure 10(b) shows the tracer integral error
lQ for 0 ≤ t ≤ T using LPM-i. As in Figure 6(b), the tracer integral error grows initially to
a saturation point, then does not show obvious growth in time.
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Figure 10: Reversing-deformational flow with non-zero divergence (34), Gaussian-hills tracer (31); (a) tracer
error at t = T , l∞ (solid lines), l2 (dashed lines), Lin-Rood (O), LPM with direct remeshing (�), LPM with
indirect remeshing (×), (b) tracer integral error lQ for 0 ≤ t ≤ T , LPM with indirect remeshing, grid spacing
∆λ decreases from top to bottom.

5. Adaptive refinement

In previous sections we employed LPM with uniform refinement, starting from the 20 pan-
els of an icosahedron and applying a specified number of refinement steps to each panel. Here
we demonstrate an adaptive scheme that starts from a coarse uniform mesh and recursively
refines each panel until a certain criterion is satisfied [20]. This idea is applied to the moving-
vortices flow with a refinement criterion that bounds the circulation in each panel,

|ζ(xk)|Ak

Γmax

< ε, k = 1, . . . , N, (35)

where ζ(xk) is the relative vorticity at the center particle of panel k, Ak is the panel area, Γmax

is the maximum circulation over all panels in the initial coarse mesh, and ε is a user-specified
tolerance. This criterion is recommended by [6] for atmospheric modeling and shown to work
well with LPM in [12]. The vorticity ζ(x) is computed analytically by differentiating the
relative velocity, (uR, vR) = (u− aΩ cos θ, v), where (u, v) are defined in (27).

Figure 11 presents LPM results with indirect remeshing and adaptive refinement. In
this computation, adaptive refinement is applied in each remeshing step starting from an
icosahedral triangulation with N = 1280 panels. The tolerance is ε = 0.025, leading to four
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levels of refinement in the vortex core, with grid spacing from ∆λ = 8.64◦ to ∆λ = 0.54◦.
The number of panels varies slightly at each remeshing step, but satisfies 5140 ≤ N ≤ 5174
throughout the computation. The computed tracer rolls up into a smooth spiral and at
time t = T the computed results are visually indistinguishable from the exact solution
in figure 3(c). The distribution of error is shown in figures 11(g,h,i) at t = T/4, T/2, T ,
respectively. Note that the scale of figure 11(i) whose maximum is 5.0E-03 is identical to the
N = 20480 (∆λ = 2.16◦) computation shown in figure 3(i). In the uniform computations
of figure 3 the largest errors lie in the vortex core while the error in figure 11(i) is largest
near the refinement boundaries and is much reduced in the vortex core. This shows that the
refinement successfully reduced the largest error present in the uniform computations, and
that the remeshing strategy is not adversely affected by changing spatial resolutions. Next
we compare these two computations directly.

Figure 12(a) plots the tracer errors l∞, l2 for 0 ≤ t ≤ T , comparing the present adaptive
computation using N ≤ 5174 panels with the uniform computation using N = 20480 panels
shown in figure 3(f,i). The two computations have similar tracer errors even though the
adaptive computation uses approximately 1/4 the number of panels. Figure 12(b) shows
that the tracer integral error in the uniform computation is less than 10−13, while in the
adaptive computation it is less than 10−10. As before, after the initial remeshing neither
computation shows growth in the tracer integral error as time increases. These two plots
show that LPM compares favorably to other adaptive methods, e.g., [44, figure 7] and [22,
table 2].

6. Summary and conclusions

A Lagrangian particle method (LPM) based on the flow map was presented for tracer
transport on the sphere. The particles carry tracer values and are located at the centers and
vertices of triangular Lagrangian panels. The particles are advected in the given velocity
field by fourth-order Runge-Kutta time-stepping. Remeshing is applied to avoid errors due to
particle disorder and two schemes were considered; direct remeshing interpolates the tracer
directly, while indirect remeshing interpolates the inverse flow map and then samples the
initial tracer density. Remeshing is carried out using the STRIPACK/SSRFPACK libraries
which are based on cubic Hermite interpolation [53, 54]. The test cases included a moving-
vortices flow [44] and reversing-deformational flow with and without divergence using smooth
and discontinuous tracers [37, 38]. We examined the tracer error, tracer integral error, and
preservation of nonlinear correlation in a pair of tracers. We compared results obtained using
LPM and the Lin-Rood finite-volume scheme [41, 42]. An adaptive particle/panel refinement
scheme was demonstrated. The main results are summarized as follows.

• The time stepping portion of this advection scheme, integrating equations (17), (19),
and (20) in time, is independent of the number of tracers. Direct remeshing interpolates
each tracer independently whereas indirect remeshing interpolates the inverse flow map
and resuses this data for all tracers.

• For the tracer mixing ratio, LPM with remeshing converges at a rate close to O(∆λ4),
where ∆λ is the average grid spacing [figures 4(a), 6(a), 10(a)]. The tracer integral
converges more slowly due to the use of a midpoint rule approximation (21), but the
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Figure 11: Moving-vortices flow, LPM with indirect remeshing and adaptive refinement, 0.54◦ ≤ ∆λ ≤ 8.64◦;
(a,b,c) tracer and (d,e,f) panels at (a,d) t = 0, N = 5132, (b,e) t = T/4, N = 5174, (c,f) t = T,N = 5144;
(g) error at t = T/4, (h) error at t = T/2, (i) error at t = T .
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error reaches saturation and does not significantly increase further in time [figures 4(b),
6(b), 10(b), 12(b)].

• The two LPM remeshing schemes gave similar results for the moving-vortices flow
(figure 4), but indirect remeshing was more accurate than direct remeshing for the
reversing-deformational flow (figures 5, 6, 8, 9, 10). The key property of indirect
remeshing is that it samples tracer values instead of interpolating them; hence, impor-
tant features such as the tracer maximum and minimum, and tracer correlations, are
preserved more accurately (figures 8, 9).

• The LPM computations used the same time step ∆t for a wide range of grid spacings
∆λ. This was possible because Lagrangian schemes such as LPM are not subject
to a CFL time step constraint of the form ∆t = O(∆λ). Due to the accuracy of
the Runge-Kutta time-stepping scheme used, the temporal discretization error in the
particle trajectories was negligible compared to the interpolation error in the tracer
due to remeshing.

• For comparable values of the grid spacing ∆λ, the computed tracer was more accurate
for LPM than for the Lin-Rood scheme (figures 4, 6, 8, 9, 10). However while the
tracer integral for LPM converges as the grid spacing is reduced [figures 4(b), 6(b),
10(b)], the Lin-Rood scheme preserves the tracer integral to machine precision.

• An example was presented showing that LPM with adaptive refinement has the po-
tential to efficiently resolve small-scale features in the tracer density (figures 11, 12).
Additionally, this example shows that indirect remeshing is not degraded by variable
resolution.

Several topics are reserved for future investigation. These include upgrading the accuracy
and conservation properties of the interpolation scheme used in remeshing, adapting LPM-i
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to simulations with chemistry models and many tracers, and implementing a restart capa-
bility for long-time simulations. In addition, the LPM scheme for tracer transport described
here can be combined with our particle method for the barotropic vorticity equation on a
rotating sphere [12]. In that case the particles also carry vorticity values and the velocity
is computed by the Biot-Savart integral. This will enable the study of tracer transport in
flows with general vorticity distributions [50]. A further challenging goal is to extend these
Lagrangian particle techniques to solve the shallow water equations.
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[56] A. Staniforth, J. Côté, Semi-Lagrangian integration schemes for atmospheric models - a review, Mon.

Weather Rev. 119 (1991) 2206-2223.
[57] M.A. Taylor, A. Fournier, A compatible and conservative spectral element method on unstructured

grids, J. Comput. Phys. 229 (17) (2010) 5879-5895.
[58] J. Thuburn, M. McIntyre, Numerical advection schemes, cross-isentropic random walks, and correlations

between chemical species, J. Geophys. Res. 120 (1997) 6775-6797.
[59] D.W. Waugh, R.A. Plumb, Contour advection with surgery: A technique for investigating finescale

structure in tracer transport, J. Atmos. Sci. 51 (1994) 530-540.
[60] D. Wee, A.F. Ghoniem, Modified interpolation kernels for treating diffusion and remeshing in vortex

methods, J. Comput. Phys. 213 (2006) 239-263.
[61] D.L. Williamson, J.B. Drake, J.J. Hack, R. Jakob, P.N. Swarztrauber, A standard test set for numerical

approximations to the shallow water equations in spherical geometry, J. Comput. Phys. 102 (1992) 211-
224.

[62] J. Xiao, L. Wang, J. P. Boyd, RBF-vortex methods for the barotropic vorticity equation on a sphere,
J. Comput. Phys. 285 (2015) 208-225.

[63] M. Zerroukat, N. Wood, A. Staniforth, SLICE: A Semi-Lagrangian Inherently Conserving and Efficient
scheme for transport problems, Q. J. Roy. Meteor. Soc. 128 (2002) 2801-2820.


