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Abstract

This paper presents a numerical comparison of two regularizations of the Euler equations, namely, the vortex blob
regularization and regularization by physical viscosity. The initial condition is a flat vortex sheet whose vorticity has
been smoothed by convolution. The sheet rolls up into a vortex pair. We compute the frequency of oscillations in the
core vorticity and scale it using results for a semi-infinite vortex sheet. The computations indicate that as the smoothing
parameter § and the viscosity v decrease, the scaled frequency in the vortex blob solutions differs from the one in the

Navier—Stokes solutions.
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1. Introduction

The vortex sheet is a singular model for a shear layer
in which the layer is assumed to have zero thickness.
Even with analytic initial conditions, vortex sheets develop
singularities in finite time (for a review, see [1-3]). The
approach to computing the sheet’s motion past the critical
time is to regularize the flow and define the vortex sheet
as the solution in the limit of zero regularization. Differ-
ent regularizations are possible. The vortex blob method
convolves the singular kernel in the Biot—Savart law with
a smooth function. Here we use a regularization which
introduces a smoothing parameter § into the denominator
of the integrand [4—7]. This is numerically convenient, but
the true physical regularization is by viscosity. In 2D, it is
known that for both the vortex blob and the viscous reg-
ularization, the limit of zero regularization yields a weak
solution to the Euler equations, provided the initial vorticity
is of one sign [8—10]. However, it is not known whether this
limit is unique or whether it depends on the regularization.

In [11], we computed the roll-up of an initially flat vor-
tex sheet into a vortex pair and observed irregular features
in the vortex core (see Fig. 1a). These features are caused
by the onset of chaos in a resonance band, which in turn is
caused by oscillations in the core vorticity. The oscillations
are not due to external forcing but are self-induced and
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are attributed to a self-induced strain field. These results
were unexpected since they were not predicted by simi-
larity theory for semi-infinite vortex sheets [12] and were
also not seen in previous vortex blob computations [6]. The
question therefore arises whether the irregular features are
an artifact of the particular regularization, or whether they
occur as well with regularization by viscosity, for small
enough viscosity. In the latter case one would expect the
irregular features to be present in real fluid flows.

This question led to the present comparison study be-
tween vortex blob and Navier—Stokes computations. For
the Navier—Stokes computations, the initial vortex sheet is
regularized by the parameter 8. Following [13], we study
solutions to the vortex blob equations and to the Navier—
Stokes equations with constant viscosity v, in the limit in
which both § and v vanish. The results in [13] give ev-
idence that in this limit, large scale features such as the
outer spiral turns at a fixed time ¢ > 0 converge to the
same limit for the two regularizations. Similar agreement
was observed between computation and experiment [14].
We observe the same trends in the present computations,
but we have not seen any indication yet that the viscous
solution develops the irregular features present in the vor-
tex blob solution (Fig. 1b). To gain some insight, here we
investigate the oscillations in the core vorticity. It turns out
that the oscillation frequency is unbounded as the smooth-
ing parameter vanishes. In order to better compare the
frequency in this limit it is useful to rescale it using results
for a semi-infinite vortex sheet, described next.
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Fig. 1. Position of half the rolled-up vortex sheet at t = 120. (a) Vortex blob computation, § = 0.2 [11], (b) viscous computation, § = 0.2,

v=10".

2. Semi-infinite vortex sheet

The evolution of a regularized semi-infinite vortex sheet
is described by the solution (x(I',7), y(I',¢)) to the equations
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dt 27 ) (x=X)12+(y—y)?*+82
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The true evolution satisfies Eq. (1) with § = 0. In that
case, there is no length scale present and the solution is
self-similar. In the vortex blob method § is set to a positive
value. The solution to Eq. (1) is then no longer self-similar,

since 8 introduces a length scale. However, for any constant
T, Eq. (1) remains invariant under the scaling
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This implies that the solution computed with a given value
of § at a given time ¢ is exactly the same, up to scaling, as
the solution computed with 3 at time 7. Equivalently, two
solutions are identical up to scaling if

=

P

T\
=3 ®

as can be seen by eliminating 7' from the last two equa-
tions in Eq. (2). Computations show that the roll-up of
a regularized semi-infinite vortex sheet given by Eq. (1)
has oscillations in the core vorticity and irregular features.
Since the oscillation frequency f scales as the inverse of
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time, it follows from Eq. (3) that
£83% = F8°2, “4)

A given value of 3 leads to an oscillation frequency f Any
other value of 6 will lead to an oscillation frequency f that
is related to § and f by Eq. (4).

3. Numerical comparison

We consider the vortex sheet induced by an impulsively
started flat plate [11]. For the Navier—Stokes equations,
the initial vorticity is regularized by the parameter 6§ and
then evolved using viscosity v. For each &, we therefore
obtain a vortex blob solution and a sequence of viscous
solutions with various values of v. We investigate the limit
in which both v and § vanish. The Navier—Stokes equations
are solved using a 4th order finite difference scheme whose
details will be given elsewhere.

The results in [11] show that after an initial transient,
the vortex sheet has rolled up into a vortex pair. The
vorticity contours in the core are elliptical in shape and
the ellipticity oscillates almost periodically in time. Fig. 2
records the oscillation frequency for the vorticity contour
W = Wmax/2, Where wp,x 1s the maximum vorticity, for
decreasing values of 8. In view of Eq. (4), we plot the
scaled oscillation frequency f8%2. The figure shows that
f8%? is approximately constant. Note that based on the
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Fig. 2. Scaled oscillation frequency f83/% vs. § for the vortex
blob.

discussion in Section 2, f8%? is identically constant for a
semi-infinite vortex sheet; the fact that the values in Fig. 2
vary slightly with § is attributed to the fact that we are
dealing here with a finite vortex sheet.

Fig. 2 also shows that as § decreases, the viscous values
of £8%2 differ by approximately a factor of two from the
vortex blob values, even as v — 0. We also found (not
shown here) that the blob solution is qualitatively different
in that all contour levels oscillate at the same frequency,
whereas in the viscous case the frequency increases towards
the center of the core. In the workshop we will document
these and other observations. We note that the current
results about the scaled oscillation frequency do not address
the question of whether the irregular features in the vortex
blob solution also occur in the Navier—Stokes solution at a
fixed time ¢ > 0. This issue is currently under investigation.

4. Conclusions

This paper compares solutions of the vortex blob and
the Navier—Stokes equations, in the limit as both §,v — 0.
We show that while large scale features of the vortex
sheet appear to converge [13], there are quantities such as
the scaled oscillation frequency that differ in the limit of
interest.
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