A vortex-dipole sheet model for a wake
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A vortex model for a free shear layer with a wake component is proposed. The layer is
represented by a curve which supports both a vortex sheet and a vortex-dipole sheet. The
vortex sheet yields a monotonic velocity profile that connects the outer flows on either side of
the shear layer. The vortex-dipole sheet captures the effect of oppositely signed vorticity that is
present in the wake due to boundary layers upstream from the separation point. The equations
governing a vortex-dipole sheet are given and a temporal instability calculation for a free
sinusoidal wake shows the development of a vortex street.

The purpose of this Letter is to propose a vortex model
for a wake that uses vortex dipoles as well as point vortices to
represent the vorticity field. To avoid additional complica-
tions, this discussion will be restricted to two-dimensional
flow, periodic in the streamwise direction.

Consider a free shear layer with a wake component,
such as that which might form behind a solid body in a
streaming flow. Suppose that the shear layer is parallel and
that locally it consists of two components as shown in Fig. 1.
The first (‘“‘shear”) component is antisymmetric about the
layer’s centerline y = 0. It has a monotonic velocity profile
which converges to a uniform stream as y— + . The sec-
ond (*“wake”’) component is symmetric about the centerline
and it corresponds to the velocity deficit in the free shear
layer. The wake component results from the boundary layers
along the body, upstream from the separation point. Both
the shear and the wake components contribute vorticity to
the flow field. While the shear component contains vorticity
of one sign, the wake component guarantees that oppositely
signed vorticity exists in the shear layer for some distance
downstream from the separation point.! The wake compo-
nent has an important effect upon the stability characteris-
tics of the shear layer.”

Computational vortex methods approximate a given
vorticity field by a collection of smoothed point vortices,
each having vorticity of one sign.** Convergence for a gen-
eral class of flows has been proven, provided that the point
vortex singularity is appropriately smoothed.’ In view of the
preceding remarks, it is natural to also consider using vortex
dipoles, each possessing vorticity of both signs, in order to
approximate the wake component of a free shear layer.®

One approach taken by previous investigators has been
to represent the vorticity in the wake by either a pair of vor-
tex sheets”® or layers of constant vorticity.'® Consider in-
stead a model in which the free shear layer is represented by a
single curve that supports both a vortex sheet and a vortex-
dipole sheet. The vortex sheet represents the antisymmetric
shear component of the velocity and the vortex-dipole sheet
represents the symmetric wake component. An individual
vortex dipole results from taking the directional derivative of
a point vortex; in particular, it has a position, a magnitude,
and a direction.!! Just as the vortex sheet may be viewed as a
collection of point vortices lying on a curve, the vortex-di-
pole sheet is defined by distributing vortex dipoles along a
curve. In the proposed model for a free shear layer with a
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wake component, each vortex dipole is the normal derivative
of a point vortex on the curve. Thus the self-induced velocity
of the vortex dipole is tangential to the curve.

The vortex sheet has a self-induced velocity given by the
Birkhoff-Rott equation. This equation can be generalized to
include the velocity component induced by a vortex-dipole
sheet. The singular integrals that appear in the resulting evo-
lution equation are dealt with by introducing a smoothing
parameter.'? In the remainder of this Letter, we present the
equations governing the evolution of a vortex-dipole sheet
and then show calculations for a simple test case, the free
sinusoidal wake.

The curve that represents the wake centerline has coor-
dinate functions x(a,t) and y(a,t). The variable g is a La-
grangian parameter along the curve. Let G(x,p) be the
Green’s function for the Laplace equation in two dimen-
sions. The circulation density along the curve is defined by a
function o(a) and the vortex-dipole distribution is given by
a vector-valued function D(a,t). The streamfunction at the
field point (x,p) is expressed as

Y(xpt) = J Goda — f VGD da.

In this equation, G' and its gradient VG are evaluated at
(x — x(a,t),y — y(a,t)) and the integration is performed
with respect to the Lagrangian variable. The first integral
accounts for the vortex sheet and the second integral for the
vortex-dipole sheet. Velocity components are defined as usu-
al for incompressible flow: u = ¢,, v = — ¢, . The necessary
partial derivatives of ¢ are obtained by analytically differen-
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FIG. 1. Schematic diagram of a local velocity profile. (a) Free shear layer;
(b) shear component; and (c) wake component.
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FIG. 2. Time evolution with a zero vortex-dipole distribution (D = 0). The
pair of counter-rotating vortices in each wavelength remains on the line
y=0

tiating G and VG under the integral sign. Evaluating the
integrals on the curve yields the equations of motion x, = u,
y, = v. Velocity derivatives Vu are also defined by repeated
differentiation of G(x,y) under the integral sign and then
evaluating the resulting expressions on the curve.'? The vor-
tex-dipole distribution evolves according to D, = — Vu’-D,
the equation satisfied by the vorticity gradient in two-dimen-
sional incompressible inviscid flow.

In the calculations, a smoothing parameter & is intro-
duced and the singular Green’s function is replaced by the
following periodic regular approximation'*:

G(x,y;8) = ( — 1/4mr)log(cosh 2y — cos 2mx + &%).

The value § = 0.5 was used to obtain the results shown be-
low. The curve parameter q is discretized and the integrals
are approximated by the trapezoidal rule. Each discrete vor-
tex element now corresponds to a smoothed point-vortex/
vortex-dipole combination. This leads to a system of ordi-
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FIG. 3. Time evolution with a nonzero vortex-dipole distribution
(D = 0.025). The vortices form a vortex street.

nary differential equations for the point positions and the
dipole distribution. The system was integrated forward in
time and a point insertion technique was used to maintain
resolution.'?

Initial conditions were chosen to simulate a free sinusoi-
dal wake. The curve is initially flat {x(a,0) = @, y{(q,0) = 0]
but has circulation density o(a) = sin 27a. The vortex di-
poles are aligned vertically [D(a,0) = D-(0,1)] and have
constant magnitude D. Calculations using the values D =0
and D = 0.025 are shown in Figs. 2 and 3, respectively. Four
periods of the curve are plotted at various times in these
figures.

Both curves deform similarly for short times under the
influence of the circulation distribution. The curve possesses
two inflection points in each wavelength that later evolve
into centers of counter-rotating vortices. When the vortex-
dipole distribution is zero (Fig. 2), the vortices remain on
the line p = 0, as observed for stratified flow in the Boussin-
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esq limit.'® Note that the vortices entrain fluid equally from
both sides of the layer.

When the vortex-dipole distribution is nonzero (Fig. 3),
the symmetry is upset and alternate vortices are staggered on
either side of the line y = 0. The resulting pattern resembles
the flow visualization of a laminar vortex street behind an
oscillating body.'®'” Note that here the counterclockwise
rotating vortices (which all lie above y = 0) entrain more
fluid from the upper stream than from the lower stream. The
situation is reversed for the clockwise-rotating vortices. It
was also observed that a pure vortex sheet (i.e., D = 0) can
form a vortex street when its initial shape is sinusoidally
perturbed. In this case, however, the staggered vortices en-
train fluid symmetrically; such results will be presented else-
where. The particular initial conditions used here were cho-
sen in order to demonstrate and emphasize the effect of the
vortex-dipole distribution.

Further investigation of the vortex-dipole sheet model is
under way and several questions need to be addressed in the
future. For example, does the limit 5§ -0 for a vortex-dipole
sheet yield a weak solution of the Euler equations?'® Given a
general vorticity field, what are the relative merits of com-
puting with vortex dipoles or with point vortices of opposite
sign? Can the model be extended to account for cancellation
of oppositely signed vorticity? Application of the vortex-di-
pole sheet model to spatial instability and unsteady separa-
tion is also a future goal.
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Correspondence principle for turbulence: Application to the Chicago
experiments on high Rayleigh number Bénard convection
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The correspondence principle postulated for the description of hydrodynamic turbulence
[Phys. Rev. Lett. 57, 1722 (1986) ] combined with the theory of thermal boundary layer [B.
Castaing et al. (private communication) ] is applied to high Rayleigh number convection in a
Bénard cell. Quantitative interpretation of recent experimental data [B. Castaing et al. (private
communication) ] is presented. The predicted intermittency exponent following from
comparison of the theory with experiment is 0.175 < ¢ < 0.275. A crucial experimental test of
the renormalization group theory of turbulence is proposed.

Recent experiments on high Rayleigh number thermal
convection conducted at the University of Chicago revealed
some new and rather unexpected results contradicting con-
ventional (classical) ideas about turbulence in the Bénard
cell.! The extraordinary quality of the experiments makes
thermal turbulence in the Bénard cell an excellent, perhaps
unique, system on which our theoretical understanding of
the fine details of turbulence can be tested. The most impor-
tant results of the Chicago experiments concern dependen-
cies of different mean properties of the flow (helium gas with
Prandtl number Pr = 0.7) on the Rayleigh number defined
as Ra = agAL */kyv,, where g is the acceleration of gravity,
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a is the volume expansion coefficient, A is the temperature
difference between the top and bottom plates of the cell, L is
the height of the cell, and «, and v, are the molecular thermal
diffusivity and viscosity coefficients, respectively. The ex-
perimental results in the high Rayleigh number (Ra>107")
regime are (i) Nusselt number Nu = HL /k,A, where H is
the constant heat flux, varies with Ra as

Nu«xRa?, B=0.282 + 0.006; (1)
(ii) mean temperature fluctuation measured at the center of
the cell:
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