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A HYBRID ASYMPTOTIC-FINITE ELEMENT METHOD
FOR STIFF TWO-POINT BOUNDARY VALUE PROBLEMS*

R. C. Y. CHINe AND R. KRASNY’

Abstract. An accurate and efficient numerical method has been developed for a nonlinear stiff second
order two-point boundary value problem. The scheme combines asymptotic methods with the usual solution
techniques for two-point boundary value problems. A new modification of Newton’s method or quasilinear-
ization is used to reduce the nonlinear problem to a sequence of linear problems. The resultant linear
problem is solved by patching local solutions at the knots or equivalently by projecting onto an affine
subset constructed from asymptotic expansions. In this way, boundary layers are naturally incorporated
into the approximation. An adaptive mesh is employed to achieve an error of O(1/N2)+O(/e). Here,
N is the number of intervals and e << is the singular perturbation parameter. Numerical computations
are presented.
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1. Introduction. We treat the following stiff boundary value problem:

ey" =f(x, y), a <x <b,

f(x, y)>0, O<e << 1,

with boundary conditions:

(1.2)

f(x, y) C[(a, b) x R],

(1.3)

aoy(a)-aly’(a)=a,

boy(b + bly’(b fl.
Under the assumptions that aoa >0, bobl >0 and la01/lb01 >0 Keller [26] and

Bernfield and Lakshmikantham [8] have shown that the boundary value problem
(BVP) has a unique solution. Using singular perturbation theory, O’Malley [31], [32]
has proved that boundary layers occur at either or both boundaries depending on
whether the solution of the reduced problem:

f(x,z(x))=O

satisfies the boundary conditions (1.2) and (1.3). In particular, Fife [18] and Bris [12]
show that for a Dirichlet problem there are boundary layers at both boundaries.

This class of stiff or singular perturbation boundary value problems appears in
many physical applications, for example, the confinement of a plasma column by
radiation pressure (Troesch [42]), the theory of gas porous electrodes (Gidaspow et
al. [22], Markin et al. [28]), the performance of catalytic pellets (Aris [3]) and in
geophysical fluid dynamics (Carrier [14]).

Our method combines quasilinearization (Newton’s method) in function space,
asymptotic expansions and patching of local solutions. Quasilinearization is applied
to reduce the nonlinear problem to a sequence of linear problems (Ascher, Christiansen
and Russell [4], deBoor and Swartz [10], Russell and Shampine [40]). This is achieved
in our scheme by interpolating f(x, y) by a piecewise linear function of y for fixed x.
This step differs from the usual quasilinearization in that the resulting BVP has
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discontinuous coefficients. We use asymptotic methods to construct the local solutions
in each subinterval. This should be compared with other asymptotic methods which
also seek to capture the essential behavior of the differential equation (Flaherty and
Mathon [19], Flaherty and O’Malley [201, deGroen and Hemker [23], deGroen [24],
Hemker [25], Yarmish [45]). The local solutions are patched together by requiring
that the computed solution and its derivative be continuous at the knots (Rose [38],
Shampine [42]). This assures the computed solution is globally twice differentiable in
an asymptotic sense.

This patching process for solving the linearized BVP is equivalent to a modified
Galerkin method. This involves projection onto an affine subset constructed from the
y-elliptic splines of Schultz [41]. The computed solution, however, is based on
y-splines which are asymptotic approximations of these. The y-splines become more
accurate as e 0 with no corresponding increase in calculational expense. This property
is inherent in methods based on asymptotic expansions and is absent in finite difference
and finite element methods based on polynomials (Abrahamsson [1], Berger et al.,
[6], Kellogg and Tsan [27], Osher [34]).

Another novel feature of our method is the mesh selection strategy. The interpola-
tion error is proportional to fyy(Ay)2 which leads to a criterion for how the y-mesh
should be chosen. This contrasts with the usual methods which specify the x-mesh.
We consider both a uniform y-mesh and a y-mesh resulting from equally distributing
the interpolation error (deBoor [9]). In either case, an iteration is introduced to
construct the numerical solution and the grid structure. The resulting error depends
only on the number of intervals O(1/N2) rather than their size. This facet of the
method appears to be new.

Our study has been influenced by Pruess’ method of solving linear boundary
value problems by approximating the coefficients [36]. The essence of Pruess’ method
lies in the ability of the approximation to capture the essential behavior of the solution.
This is because the coefficients of the DE can be well approximated locally by
polynomials while the solution cannot. In this light, our method may be viewed as
solving nonlinear boundary value problems by approximating terms of the differential
equation.

A detailed numerical analysis of the error and convergence properties will be
presented in a forthcoming paper. However, some of the preliminary error analysis
is presented to motivate the adaptive mesh selection. In 2, we describe the numerical
algorithm. In 3, we discuss the error introduced by quasilinearization. In 4, we
present the adaptive mesh technique and the solution of the algebraic system. In 5,
we describe the construction of the y-elliptic splines using asymptotics. In 6, computa-
tions are presented. Finally, conclusions and generalizations are presented in 7.

2. Derivation of the numerical method. We begin by replacing f(x, y) by It(x, y),
its piecewise linear interpolant with respect to a y-mesh (Yi, =0, 1,’’" ,N) for
fixed x"

It(x, y)=f(x, yi-1) + (y yi-1)[yi-1, yi]f, yi-1 < y < yi,

g0,(x yi-1, yi) + gl,(x yi-1, yi)y, 1, , N,

where

[Yi-1, Yi]f= (f(x, yi)--f(x, Yi-1))/(Yi- Yi-1).

We will solve the linear BVP ey"-Ir(x, y) together with boundary conditions
(1.2)-(1.3) by a "patching" or multiple shooting process. With respect to an x-mesh,
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a x0 <xl <’’’ <xN b, define the following elliptic differential operators, Eiy
-ey"+ gl,y, for xi-1 <x <Xg. On each interval we consider the linear BVP:

(2.1) Egy -go,
with boundary conditions given by

aoy(a)-aly’(a)=a, y(x:)=yx, 1,

(2.2) y(xg_l) yg-x, y(xg)= yi for =2,.. ,N-l,

boy(b)+bly’(b)=, y (xN-) yr_ for =N.

It will sometimes be convenient to write these equations collectively as

(2.3) Ey -ey"+ gly -go.

Let ug(x), vi(x) be the basis for the null space for Eg normalized so that

Ui(Xi--1) Vi(Xi) 0 and Ui(Xi) Vi(Xi--1)

Let yo, be the particular solution of the nonhomogeneous BVP

EiYt:, --go
(2.4)

Ypi(Xi-1): yp,(Xi):O, Xi-1 <X <Xi.

Then the solution of (2.1) is given by:

(2.5) y(x Yi-1, Yi) yiui(x) ff Yi-llAi(X) q- Ypi(X),

There are 2N degrees of freedom from {yi} i=0, 1,...,N and {x}k k
1, 2, ., N- 1. By requiring that the solution (2.5) satisfies the boundary conditions
(2.2) and is continuously ditterentiable at the knots xi, 1,..., N-1, we obtain a
nonlinear algebraic system relating the xi and yi. With the remaining N-1 degrees
of freedom we may prescribe N-1 additional relations to uniquely determine the
2N quantities. This prescription should achieve the goal of improving efficiency and
accuracy and will be discussed later.

The condition that y s C[a, b] is equivalent to equality of the derivatives from
adjacent intervals at the knots"

y’(xi Yi-1, Yi)--y’(x-f yi, Yi+I).

Differentiating (2.5) we obtain"

’(xi)Yi-lq-gl’(Xi)--13 (Xi)]yi--U’ (Xi)Yi+l/)i i+1 i+1

(2.6)
YPi+l’ (Xi)--y, (Xi), 1, 2,... N- 1.

At the boundary nodes x0 a and xN- b we require that the boundary conditions
(1.2)-(1.3) be satisfied. This gives:

(a),[a0 alV’l(a)]yo au’(a)y=a+ay,l
(2.7)

VN-1 (b)yN-1 +[bo + blUN(b)] bly pN(b).

Equations (2.6)-(2.7) can be written in the form:

(2.8) A(x, y)y=h(x, y),

where y (yo, yl, ",

Here h is an N + 1 component vector and A is a symmetric diagonally dominant
tridiagonal matrix of dimension N+ 1. A has positive diagonal and negative off-
diagonal elements and accordingly is a Stieltjes matrix. These properties follow from
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fy > 0 and from the construction of the basis functions b/i and vi. Symmetry of A may
be demonstrated by noting that the Wronskian of u, v is constant in each interval
xi-1 < x < xi. Moreover, y C2[a, b since It(x, y) C[a, b ]. It should also be noted
that the linearized problem (2.2)-(2.3) is solved exactly by the above patching pro-
cedure.

The particular solution yp, may be expressed by the usual variation of parameters
formula since the Green’s function for the Dirichlet problem for (2.1) exists. Thus
we have:

l)i Ui
Uigoi dj +- vigo, dj(2.9) YP’ c x,_l c

where c e Wronskian (ui, vi).
We now describe how (2.8) can be obtained by a Galerkin procedure. Let S(E, {xi})

be the space of y-elliptic splines generated by the basis wi:

x (xo, x),
w0(x)

0 otherwise,

u,(x),
w,(x) v(x),

0

X (Xi-1,
x (xi, xi+),
otherwise,

i=1,2,...,N-I,

wu(x)
0

x (xu_, x,),
otherwise.

Schultz [41] considered the problem of interpolating in spaces generated by such
splines called y-elliptic splines, where y is the smallest eigenvalue of the operator E.
Note that our splines depend on both the x and y meshes.

Consider the problem of finding an element y contained in the affine subset
[yp]$(E, {x/}), which satisfies (2.1) along with the boundary conditions (2.2). Let

(eu’v’ + gluv) dx, (u, v) uv dx.

A discretized weak form of this problem is: Find y e [yp]$(E, {xi}) such that

(2.10) a(y, w)= (go, w)+(-aoy(a)+a)w(a)/a-(boy(b)+)w(b)/b

for all w $(E, {xi}).
In case a or b 0, we have Dirichlet boundary conditions and another appropri-

ate weak form (Aubin [5]) holds. In any case equations (2.10) form a nonlinear system
which is identical to (2.6)-(2.7). In verifying this, the following formulas are useful:

(x- + y(w (x-)- w (x + (x; ),a(y, Wi) Yi+lWi i+1 ))--Yi-lWi

(x-) fori=l N-1(X-)--yp(gO, Wi) Y Pi+l

with similar formulas for Wo, wN.
Thus the matrix elements in (2.8) are recognized as simply a(wi, wj), and it follows

that the matrix is symmetric, positive definite and tridiagonal.
The usual Galerkin method projects y onto a subspace of C[a, b]. We call our

procedure a modified Galerkin method because it projects y onto an affine subset,
i.e., a translated linear subspace. In other words, we can view our modified Galerkin
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method as applying the usual Galerkin method to y-yp. It is striking that since
a (yp, wi)= 0, both Galerkin and modified Galerkin give the same set of discretized
equations. The difference is that projecting onto the affine subset solves the linearized
problem (2.3) exactly.

The equivalence of the "patching" procedure and the modified Galerkin method
is another example of the interdependence of projection methods for two-point BVP
as discussed by Reddien [36].

3. Discussion of the error due to quasilinearization. In this section we briefly
discuss the error in order to motivate the mesh selection procedure. A detailed
numerical analysis of the method will be presented in a forthcoming paper. For present
purposes, a few of the preliminary results will be discussed.

For definiteness, let y denote the exact solution and let it satisfy ey" =f(x, y)
together with boundary conditions (1.2)-(1.3). Our method makes two main approxi-
mations to the original nonlinear BVP in order to arrive at the computed solution.
We list these approximations along with their defining properties:

1. Let z be the y-elliptic spline solution and satisfy

(3.1) ez" It(x, z; zi) together with boundary conditions,

where It(x, z zi) go(x z) + gl(x, zi)z is the linear interpolation of f with
knots z.

2. Let z be the actual computed solution, which is an asymptotic approximation
to z as will be explained in 5.

As seen in 2, an equivalent formulation of (3.1) is

A (x, z)z h (x, z), x {xi}T, z {zi}T,
(3.2)

Z(X)-" Zi-IWi-I(X)"I"ZiWi(X)"[-Zpi(X on [xi-l, Xi],

where w is the normalized ,-elliptic spline basis function at xg and zp, is defined as in
(2.4).

We will show that [y z[ < c/N2. This is the error from the linear interpolation. It
follows from asymptotic error bounds (Olver [29], [30]) that z z(1 + ’), where
ICI O(4) as e O.

Using these two bounds we conclude that the pointwise error in the method can
be bounded by a sum of two terms:

ly -z[< [y -z[/ [zllCl;

thus we have sup ]y z] < O(1/N2) + O(/). Two important special cases deserve to
be singled out"

(1) For an autonomous equation ey"=f(y), our method solves the linearized
problem exactly. Thus, z z, and the second term in the error bound is not present.
We expect our method to be competitive in this case even for e not small.

(2) For a linear BVP the first term in the error bound is not present. In this case
our method simply reduces to the Liouville-Green or WKB asymptotic solution (Olver
[29]).
We will discuss the first term now and reserve a discussion of the second term until the
asymptotics have been introduced.

Define y -z. Subtracting the two equations for y and z we get

" f(x, y)-t(x, z z,).
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The right-hand side can be written

f(x, y)-I:(x, z; zi)=f(x, y)-f(x, z)+f(x, z)-It(x, z; zi)

fy (x, y*)(y -z)+f(x, z)-Ir(x, z; zi)

for some y* between y and z. Thus 4 satisfies the singular perturbation problem with
homogeneous boundary conditions,

ecD"-fy(x, y*)6 f(x, z)-Ir(x, z; zi).

The driving term on the right-hand side is simply the error due to the linear
interpolation and can be bounded by a standard result of approximation theory. For a
Dirichlet problem, we can use the maximum principle (Dorr, Parter and Shampine
[16], Protter and Weinberger [35]) to obtain the following a posteriori error bound.

LEMMA 1. Let

Then

D [a, b range of exact solution,

M=maxlLy(x,z(x))l on [a, b],

2rn =minfy onD,

n(x)= 1-{sinh [m(x- [m(b-x/ a).] + sinh
x/ x)]}/sinh [m(b-a)]

LEMMA 2.

Ib (x)[ < (M/8m)Az2K (x).

/fLy(x, z(x)) >0 on [a, b] then >0.

IfLx(x,z(x))<Oon [a,b]then <0.

The comparison function K(x) is the solution of e"-mz =-m2 with
homogeneous Dirichlet boundary condition. It is strictly less than 1 and has boundary
layers at x a, b. Thus we expect a smaller error closer to the boundary. With further
assumptions on the boundary condition parameters a similar bound holds for the Robin
problem. Here, the function (x) must be modified to account for Robin boundary
conditions (Friedman [21], Stakgold [43]).

The form of the error bound suggests the following mesh selection strategy. For
a given number of mesh intervals N, uniformly spaced zi points will produce an error
bound of the form c/N2. Another possibility is to choose the zi points to equally
distribute the interpolation error in the sense of deBoor [9], which also gives a c/N2

bound. In either case the constant c depnds on fy, fyy but is independent of e.
In constructing the equidistributed interpolation error mesh, it is necessary to

apply an extension of de Boor’s theorem [9] to the present case of interpolating f(x, y)
with respect to y for each x. This is a trivial extension since the piecewise linear
approximation holds for any x. Thus the relation:

(3.3) If,,(x,u)l/=d-- ]fyy(X,)ll/Zd, i=1,2,...,N-1

generates a family of curves with an equidistributed interpolation error. The curves are
separated, and for any x, we have

zo < z (x) < z (x) < < <
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The choice of whether to use a uniformly spaced z-mesh or an equidistributed
z-mesh must depend on f(x, y). If f is quadratic in y, the two criteria agree. In
de Boor [11] it is shown that in using the equidistributed knots, the optimal bound
O(1/N2) is attained in some cases where the uniform knots are less than optimal.
However, the uniform knots are easier to compute so we prefer them. This removes
the remaining N- 1 degrees of freedom discussed in 2.

In either case the mesh is determined by the solution and must be computed
dynamically. An iterative scheme is introduced in the next section to construct the
numerical solution and grid structure.

4. Adaptive mesh technique and solution of the algebraic system. We will now
discuss the solution of the nonlinear system of equations A (x, z)z h (x, z) subject to
N- 1 additional relations. In the error analysis of the previous section, we have seen
that it is desirable to have uniformly spaced zi points or to have equidistributed
interpolation error. We will present an algorithm which solves this system along with
the independent N- 1 constraints that the zi be equally spaced. We will also discuss
how to constrain the zi so that the interpolation error is equidistributed.

The first step is a fixed point iteration with a fixed x-mesh, say x k. The solution
z of the "inner" iteration

A (x k, zk’’)z k’m+l h (x k, z k’"

(where m is an iteration counter) is an "acceptable" numerical solution of the boundary
value problem. However, z k does not necessarily have the desirable error properties,
namely, ly-zl-O(N-2). To achieve a uniformly spaced zi, we update at the end of
each "inner" iteration the value x k /1. This entails the solution of a nonlinear equation"

k +1z

where

(4.1) z/ =/(max z k (x) min z k (x))/N.

This procedure is called an "outer" iteration and amounts to an adaptive mesh
technique. The {x k/l} is the new mesh. "Inner" and "outer" iterations are continued
until convergence, i.e.,

IX/k+l X/kl < eTol

and (4.1) holds within tTol, where 0<eTol<< 1. Similarly, for a solution with equidis-
tributed interpolation error we replace (4.1) by (3.3).

It remains to discuss how we obtain the initial guesses for x, z based onN intervals.
We do this by solving a sequence of problems based on an increasing numberof
intervals" N 1, 2, 4, 8, ., 2k, ...The initial guess for N 2k+l intervals comes
from the solution forN intervals, ty saving the previous solutions, we can perform
Richardson extrapolation conveniently. Note that if [ is convex then the linear
interpolations Ir approach [ monotonically as N increases. By Lemma 2, we then
have that the corresponding solutions z approach y monotonically.

5. Construction of the elliptic splines. In the nonlinear system A (x, z)z h (x, z),
the matrix and right-hand side depend upon the derivatives of the spline basis functions
wi. In order to carry through the iteration scheme previously described, it is necessary
to have a convenient and efficient way of computing these functions. The theory of
asymptotics for linear ODE gives analytic representations (w’,) which, for e --> 0 are
asymptotic to the exact w . The representations are in terms of exponential functions
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of the gx, and can be efficiently computed. Due to the asymptotic property, they
become more accurate as e becomes smaller.

The following result is called the Liouville-Green or WKB approximation (Olver
[29]). Let

{ 1 I /(x)dx}b : (x) g 1-,1/4 (x) exp +/-- g 1,

Then there exist error functions e /, e such that b/(l+e/), b-(l+e-) are exact
solutions of Eiy 0. On xi-1 < x < xg the error functions satisfy:

lei (x)l=<exp V+/-(F) -1, F(x)= 1/4 X2 dx

where V: is the variation of F(x) between xi-1 and xi. Using these explicit b: we
construct as before the approximations u,, v, and eventually get w,, which are
asymptotic approximations to the y-elliptic splines wi. These functions can be
differentiated analytically and the results used to compute A (x, z).

We introduce S (E, {xi}), the space of y- elliptic splines, generated by the set {w,;
0, 1, , N}. In general, S (E, {x}) approximates S(E, {x}). In the important special

case of an autonomous equation (ey" =/(y)), gl is independent of x and the integration
in (5.1) can be carried out exactly. Then the WKB approximation reduces to the
familiar exponential basis (Berger et al., [7], deGroen and Hemker [23], deGroen
[24], Hemker [25]) for a constant coefficient equation and is an exact solution of
Eiy ---0. For this case we therefore have S(E, {x})=-S(E, {xg}). If the integral in (5.1)
cannot be evaluated exactly, a quadrature can be used. Since for many interesting
problems gl fy (x, y) is a nice function of x this quadrature can be done cheaply.

5.1. Construction ot y,. The asymptotic representation of the particular solution
yp, can be calculated by substituting the WKB representations of the local solutions
into (2.9) and by performing integration by parts. This procedure yields a consistent
expansion to all orders, but the amount of algebra to do these calculations can become
prohibitive (Eckhaus [17]). However, the leading term is easily obtained:

where

YPi -Gpi (x + Gpi (Xi-1)Vei (X -Jr" Gpi (Xi )ble (X -Jr- 0 (,8),

Gp, (x) g0,/g,.
Alternatively we may use the results of Flaherty and O’Malley [20], Olver [29],

O’Malley [33] in which the particular solution is decomposed into a solution zi of the
reduced problem and boundary layer corrections L, ni:

yp, (x) Li(x + zi(x "Je" Ri(X ).

The solution z is expanded as an asymptotic series in ,8 and the coefficients are
obtained recursively"

z= E "zo(x),
.=o

Z,o(X) -G, (x),

Z
tt

i-ln goi + gliZi.
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The boundary layer corrections Li, Ri are given by

ti(x --Zi(Xi-1)Ve (X ), Ri(x) -zi(xi)u,(x).

Note that Zio(X) is the outer solution of (2.1). For the computations we have used only
the leading term for yp. This allows us to efficiently compute the right-hand side h (x, y)
of the algebraic system.

6. Numerical solutions. In this section, we present numerical solutions to a
number of boundary value problems in the chemical and physical sciences.

Our first example is due to Carrier [14]. It arises in singular perturbation theory
and geophysics:

(6.1) ey,,=[l_2b(l_x2)y_y2] withy’(0)=0, y(1)=0.

Note that when b 0, if fy (1, 0)= 0 and, thus, x 1 and y 0 is a turning point
of the problem. Since the WKB approximation breaks down near a turning point our
method is, in principle, ineffective. However, because the chords which interpolate f
have nonzero slope, we can successfully compute the solution provided the number
of mesh points is not large. For b 0, (6.1) is autonomous and no such difficulties are
encountered. Plotted in Fig. 6.1 is the graph of the solution for e 10-6 and b 0
with N 4. For this problem, the equidistributed interpolation error mesh is identical
to a uniform y-mesh since f(x, y) is a quadratic function of y. In Table 6.1, the value
x (y =-.5) is given as a function of N, the number of intervals, using N 64 solution

-0.6

-0.8

1.0
.992 .994 .996 .998 1.0

FIG. 6.1. Solution of Carrier’s problem with e 10-6, b 0 and N 4.

TABLE 6.1
Carrier’s problem with e 10-6

N XN(Y 0.5) [XN --X64[ X 105 eN 105 N
Extrapolated

value

2
4
8
16
32
64

.99941385 2.29 9.16

.99943121 .554 8.86

.99943538 .137 8.77

.99943642 .033 8.43

.99943668 .007 7.17

.99943675 .0

.999437

.99943677

.99943677



238 R.C.Y. CHIN AND R. KRASNY

as a representation of the exact solution. The error in the location of x(y =-.5) is
tabulated in the second column. Column 3 shows that the error in locating y =-.5
is, indeed, O(1/N2). Finally, Richardson’s extrapolation is applied to the results and
is tabulated in column 5. For b 1, we plot the solution in Fig. 6.2 for e 10-6 and
N 8. Note that our method computes successfully the transition between the outer
solution and the boundary layer with only a few grid points (see Fig. 6.3). This attests
to the importance of using a local basis that captures the essential behavior of the
solution.

The second example is the Troesch problem modeling the confinement of a plasma
column by radiation pressure [44]:

y"=q sinhqy, o>0, y(0)=0, y(1)= 1.

FIG. 6.2. Solution of Carrier’s problem with e 10-6, b 1 and N 8.

o.o-

-0.2

-0.4

-0.6

-0.8

-1.o

-1.4

FIG. 6.3. An enlarged graph o) Fig. 6.2. for .90 --< x -< 1.00.
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This is a particularly difficult problem because of the strongly nonlinear right-hand
side. The problem of computing y’(0) and y’(1) has been used as a benchmark for
stiff boundary value problem algorithms (Roberts and Shipman [39], Troesch [44]).
The derivatives y’(0) and y’(1) have the following asymptotic expansion (Anglesio
and Troesch [2], Chin [15]):

(6.2) y’(O) y(O) { 1 +

where

and

(6.3)

y(O)2 [ cosh (q/2) ]} -3.),
4 o 1 +sinh2 ()j + O(qge

y 6 (0) 8e- tanh (o/4)

y’(1) 2 sinh (/2)[1- Iy’(O)/2 sinh (,/2)}2]/2.

We plot in Fig. 6.4 the relative error in the derivative y’(0) between the numerical
and the asymptotic solution (6.2) multiplied by N2 as a function of N for q 1, 5,
10, 20. The N2 normalization is suggested by the error analysis of 3. The computa-
tions are done with an uniformly spaced y-mesh. Also plotted in Fig. 6.4 is a calculation
for o 5 using a equidistributed interpolation error mesh. Figure 6.5 is a similar plot
for the derivative y’(1). It is seen from Figs. 6.4-6.5 that y’(1) is calculated more
accurately than y’(0) as o increases. This is because the mesh points collect in the
boundary layer with increasing o. Moreover, the equidistributed interpolation error

i00.

.I0

ioo IOOO

FIG. 6.4. Solution of Troesch problem" Relative error of y’(0), [z’(0)-y’(0)]N2/y’(0) as a function of
the number of intervals, N. Equidistribution of interpolation error is used (--).
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lm.01

IOOO

FIG. 6.5. Solution of Troesch problem" Relative error of y’(1), [z’(1)-y’(1)]N2/y’(1) as a function of
the number of intervals, N. Equidistribution of interpolation error is used (--).

mesh tends to locate more points in the boundary layer than the uniformly spaced
y-mesh. As a consequence, the equidistributed interpolation error mesh yields a more
accurate value of y’(1) while the uniformly spaced y-mesh gives a better approximation
to y’(0). Overall if both derivatives y’(0) and y’(1) are desired, the uniformly spaced
y-mesh tends to perform better.

Our final example appears in the theory of diffusion and reaction in permeable
catalysts (Aris [3]):

dx= q exp 3’ 1- f(c),
(6.4)

with boundary conditions

(6.5)

and

c’(0) T’(0) 0, c(1) 1- S- c’(1),

1
T’T(1) 1-uu (1).

Equations (6.4) may be combined with boundary conditions (6.5) to yield

(6.6) T(x)= l+/3uu+t3 1--u c(1)-c(x).

Substituting (6.6) into (6.4), we obtain an equation for c. However, the boundary
value c(1) appears in the differential equation and, thus, complicates the solution
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procedure. We solve (6.4a), (6.6) and boundary conditions (6.5) using the parameters
given by Carey and Finlayson [13]:

0.2, Sh/Nu=50, Sh=250, 0=14.44, 7=20 and f(c)=c.

The most important feature of the solution is the accurate computation of
dT/dx(1) (Carey and Finlayson [13]). In view of the results on the Troesch problem
and of the added expense in applying the equidistributed interpolation error mesh, a
uniformly spaced y-mesh is selected for this set of computations.

The solution for N =4 is plotted in Fig. 6.6. The value dT/dx(1) is tabulated in
Table 6.2 as a function of N. It is clearly seen from Table 6.2 that four place accuracy
in dT/dx (1) is obtained with just two intervals.
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FIG. 6.6. Solution of a diffusion-reaction equation with N 4.

TABIE 6.2
Solution of a diffusion-reaction equation

N dT/dx(1)

-4.2586013
2 -4.2607540
4 -4.2612872
8 -4.2613201

16 -4.2614534
32 -4.2614617
64 -4.2614637

7. Conclusions and generalizations. It can be seen from the numerical examples
just how important is the use of a basis that captures the essential behavior of the
solution. The basis functions must reflect the rapid growth or decay of the solution.
This property is inherent in asymptotic methods and in solving boundary value
problems by approximating the coefficients.
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Since the class of problems we have considered is rather restricted, we close with
some suggestions about extensions of the method to a wider class. For problems with
f depending on y and y’, a multivariate interpolation with respect to y and y’ on a
triangular domain may be used to reduce the nonlinear problem to a collection of
disjointed linear two-point boundary value problems. The same end can be achieved
by combining a straightforward application of quasilinearization and approximating
the coefficients of the linear differential equation. The subinterval problems are then
solved by asymptotic methods. The local solutions are "patched" together to form
the global solution. Here, the WKB method is invalid near turning points. This calls
for a uniform asymptotic method in the neighborhood of a turning point.

For a system of differential equations, quasilinearization followed by approximat-
ing the coefficients of the linear DE is more suitable. The resulting linear boundary
value problem in each subinterval, however, is by no means trivial to solve.
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