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Abstract

We consider a pure endowment contract whose life contingent pay-

out is linked to the performance of a risky stock or index. Because of

the additional mortality risk, the market is incomplete; thus, a funda-

mental assumption of the Black-Scholes theory is violated. We price

this contract via the principle of equivalent utility and demonstrate

that, under the assumption of exponential utility, the indifference price

solves a nonlinear Black-Scholes equation; the nonlinear term reflects

the mortality risk and exponential risk preferences in our model. We

discuss qualitative and quantitative properties of the premium, includ-

ing analytical upper and lower bounds.

Keywords: Equity-indexed annuity, indifference price, Hamilton-Jacobi-
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1 Introduction

Sales of equity-indexed annuities (EIAs) have increased dramatically in re-
cent years; indeed sales have climbed to over $6.4 billion in 2001 since their
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introduction in 1995, [1]. Under these contracts, the insured makes an ini-
tial deposit (or several deposits) and during the deferral period the interest
accrual on the fund is linked to the performance of a stock or index, typi-
cally the Standard and Poor’s (S&P) 500 Index. One factor that contributes
to the popularity of these contracts is the fact that they generally carry a
guaranteed minimum return; the investor can enjoy the upside potential of
equity growth without the downside risk.

In [22], Young considered an equity-linked life insurance policy for which
the premium is fixed and the death benefit, not the interest accrual, is mod-
eled directly as a function of the index performance. In this paper we follow
the approach of [22] for an equity-linked pure endowment policy. More specif-
ically, we consider a pure endowment policy for which the insured pays a fixed
premium P and the benefit level at the end of the deferral period is linked
to the stock or index price at that time. Since the benefit is paid only if the
insured survives until the end of the deferral period, we can view this policy
as a life contingent financial option on the underlying stock or index. In
the absence of the mortality risk, the premium for this policy would simply
be the Black-Scholes price [4] of the financial option; however, mortality is
an additional source of risk that cannot be hedged. Thus, with the mor-
tality risk, we are in an incomplete market setting; one of the fundamental
assumptions of the Black-Scholes theory is violated.

In this paper we employ the classical actuarial principle of equivalent
utility [5] to price the endowment policy described above. Utility methods
have been used for pricing financial options in incomplete markets such as
markets with transaction costs [2], [7], [11] and markets in which one cannot
trade the underlying asset, but can trade a correlated asset [16]. Young and
Zariphopoulou [24], [25] introduced utility methods for dynamic valuation of
insurance products for which the insurance risk is independent of the financial
risk. In the endowment policy that we consider here, the payment amount
is a function of the underlying risky asset, thus, as in [22], the insurance risk
is not independent of the financial market.

Under the principle of equivalent utility, one wishes to determine the
premium at which the insurer is indifferent between writing and not writ-
ing the endowment contract. We formulate this principle mathematically
via two stochastic optimal control problems in Section 2. In Section 3, we
demonstrate that, under the assumption of exponential utility, the indiffer-
ence premium P solves a semi-linear Black-Scholes partial differential equa-
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tion (PDE); the nonlinear term reflects the additional mortality risk and
exponential risk preferences in our model.

Though the PDE for P is not explicitly solvable in closed form, we can
glean useful information about the qualitative properties of the premium,
including analytic upper and lower bounds. More specifically, in Section 4
we prove that the indifference premium P is bounded above by the Black-
Scholes price of the “endowment certain” (i.e., the financial option without
the mortality risk) and below the the Brennan and Schwartz price [6] of the
contract, which incorporates the mortality risk, but not the exponential risk
preferences. Thus our premium generalizes both the Black-Scholes price of
the contract to include the life contingency and the Brennan and Schwartz
price to reflect the insurer’s risk preferences.

In Section 5, we compute the indifference premium numerically and demon-
strate that the computed solutions obey the ordering predicted in Section 4.

In Section 6, motivated by Musiela and Zariphopoulou [16], we derive an
alternative probabilistic representation of the premium that is similar to the
arbitrage free representation of derivative prices in complete markets.

We conclude in Section 7 by discussing open questions and directions for
future work.

Appendices 1 and 2 contain some of the more routine details of our work.

2 The Model

We consider an insurer who is endowed with initial wealth Wt = w at time
t ≥ 0. The insurer can invest in a risk free bond with rate of return r > 0 or
a risky stock or index whose price at time t is St = S. We wish to compute
the premium P = P (w, S, t) under which the insurer is indifferent between
writing or not writing a single pure endowment policy to (x), a life aged x,
whose payout g(ST ) at time T is linked to the underlying stock price at that
time. The payment is life contingent; it is made only if (x) survives until
time T .

We model the stock price Ss as a geometric Brownian motion, i.e.,
{

dSs = µSs + σSsdBs

St = S ≥ 0

}

. (1)

The process Bs is a standard Brownian motion on a probability space (Ω,F , P )
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and the constants µ and σ, the mean rate of return and volatility of the stock,
respectively, are known. We assume throughout that µ > r > 0.

We assume further that the insurer can trade dynamically between the
stock and bond accounts; i.e., the insurer can choose amounts π0

s and πs,
t ≤ s ≤ T to invest in the bond and stock accounts, respectively. The
investment strategy satisfies the budget constraint Ws = π0

s + πs, and Ws

evolves according to the state dynamics
{

dWs = [rWs + (µ − r)πs]ds + σπsdBs t ≤ s ≤ T

Wt = w

}

. (2)

Note that we allow πs or π0
s to be negative; these scenarios correspond to a

short position in the stock or a loan against the bond account, respectively.
We assume that the insurer seeks to maximize the expected utility of

wealth at time T . In the absence of the endowment contract we define the
value function

V (w, t) = sup
{πs∈A}

E[u(WT )|Wt = w]. (3)

The set A is the set of admissible policies {πs} that satisfy the integrability
condition E

∫ T
t π2

sds < ∞ and are Fs progressively measurable, where Fs

is the augmentation of σ(Bu : t ≤ u ≤ s). The function u : R → R is
the insurer’s utility function, which measures the insurer’s attitudes toward
wealth and risk. For now we assume only that u is increasing, smooth, and
concave.

Now consider an endowment policy written to (x) with payout YT at time
T where

YT =

{

g(ST ) if (x) survives until time T

0 otherwise.
(4)

If the insurer writes this contract, then the insurer seeks to maximize the
expected utility of terminal wealth in the presence of the endowment risk.
We define the value function in the presence of this risk to be

U(w, S, t) = sup
{πs∈A}

E[u(WT − YT )|Wt = w, St = S]. (5)

We wish to compute the premium P = P (w, S, t) under which the insurer
is indifferent between writing the endowment and not writing the endowment,
i.e., so that

U(w + P, S, t) = V (w, t) (6)
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for any given (w, S, t) ∈ R × (0,∞) × [0, T ]. Ideally, the premium P should
be independent of the insurer’s wealth w so that all insurers with the same
risk preferences will charge the same premium regardless of their wealth. We
will see in Section 3 that this is the case under the assumption of exponential
utility.

3 The Partial Differential Equation Models

for V,U, and P

In this section we discuss terminal value problems for partial differential
equations that govern the behavior of the value functions V and U , and we
use these results to derive a PDE for the premium P = P (w, S, t). In Sections
4 and 5, we discuss qualitative properties of and quantitative results on the
solutions to this equation.

Recall the value functions V and U are defined in (3) and (5). Using the
Dynamic Programming Principle and standard arguments from stochastic
calculus, one can show that V satisfies the Hamilton-Jacobi-Bellman (HJB)
equation

{

Vt + max{π}[(µ − r)πVw + 1
2
σ2π2Vww] + rwVw = 0

V (w, T ) = u(w)

}

. (7)

From the Verification Theorem (see, for example, Chapter 14 of [3]) we know
that if (7) has a smooth solution V , then it equals the value function as
defined in (3) and one can recover the optimal investment strategy π∗

t from
the first order condition in (7). Moreover, the concavity of the utility function
u and the linearity of the state equation (2) in Ws and πs dictate that V is
concave in wealth. Thus, the maximum in (7) is attained at

π∗
t = −(µ − r)

σ2

Vw(W ∗
t , t)

Vww(W ∗
t , t)

(8)

where W ∗
t is the optimally controlled wealth. We can rewrite (7)











Vt −
(µ − r)2

2σ2

V 2
w

Vww

+ rwVw = 0

V (w, T ) = u(w)











. (9)
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We can use similar techniques to derive the HJB for U . We assume
throughout that λx(t), the force of mortality for (x) at time t (or the inten-
sity of the mortality process for (x)), is given. In the work that follows, we
employ standard actuarial notation: hpx+t is the probability that an individ-
ual survives until age x + t + h given that she has survived until age x + t.
Moreover

hpx+t = e−
∫ t+h

t
λx(s)ds and hqx+t = 1 −h px+t. (10)

Following as in Section 4.1 of [24] and Section 14.3 of [3], we first employ
the Dynamic Programming Principle: If one follows the optimal investment
strategy on [t, T ], one’s expected utility is at least as great as if one invests
arbitrarily on [t, t+h) and then optimally on [t+h, T ]. (Here we are assume
that h is sufficiently small so that t + h < T .)

In employing the Dynamic Programming Principle, we must consider
whether the investor survives from time t until time t+h. If (x+ t) survives
for another h years until time t + h, which happens with probability hpx+t,
the insurer still faces the endowment risk on the time interval [t + h, T ]. In
this case, by the definition of U in the (5), the maximum expected utility
derived by investing optimally on [t + h, T ] is U(Wt+h, St+h, t + h).

However, if (x + t) dies in the time interval [t, t + h], which happens with
probability hqx+t, the insurer is no longer at risk for the endowment payout.
In this case, by the definition of V in (3), the maximum expected utility
derived by investing optimally on [t + h, T ] is V (Wt+h, t + h).

Thus we have

U(w, S, t) ≥ hpx+tE[U(Wt+h, St+h, t + h)|Wt = w, St = S]
+hqx+tE[V (Wt+h, t + h)|Wt = w].

(11)

Applying Itô’s formula and recalling that Wt = w and St = S, yields

U(w, S, t) ≥ hpx+tU(w, S, t) +h qx+tV (w, t)

+hpx+tE
w,S,t

[

∫ t+h
t (Ut + (rWξ + (µ − r)πξ)Uw + µSξUS

+ 1
2
σ2π2

ξUww + σ2πξSξUwS + 1
2
σ2S2USS)dξ

]

+hqx+tE
w,t
[

∫ t+h
t (Vt + (rWξ + (µ − r)πξ)Vw + 1

2
σ2π2

ξVww)dξ
]

.

(12)
In the integrals above, we have suppressed the independent variable (Wξ, Sξ, ξ)
and the notation Ew,S,t means that the expectation is conditioned on the in-
formation Wt = w, St = S.
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Rearranging terms, dividing both sides by h, letting h → 0 and recalling
that as h → 0,

hpx+t → 1, hqx+t → 0 (13)

and
hqx+t

h
→ λx(t), (14)

yields

0 ≥ λx(t)(V − U) + Ut + [rw + (µ − r)πt]Uw + µSUS

+1
2
σ2π2

t Uww + σ2πtSUwS + 1
2
σ2S2USS.

(15)

Again, we have suppressed the independent variables (w, t) and (w, S, t) of
V and U , respectively. Finally, we note that along the optimal path πt = π∗

t ,
equality holds in (11), and therefore in (15). The definition of U in (5)
prescribes the value of U at t = T ; thus, we have the terminal value problem











Ut + max{π}[(µ − r)πUw + 1
2
σ2π2Uww + σ2πSUwS]

+rwUw + µSUS + 1
2
σ2S2USS + λx(t)(V − U) = 0

U(w, S, T ) = u(w − g(S))











, (16)

where V solves the HJB given in (7).
We note that this is simply a formal derivation; we did not justify the

implicit assumptions on the regularity of U and V and the interchanging of
limit and expectation. For a rigorous derivation of the HJB equation, we
refer the reader to [8].

Again, invoking the Verification Theorem and the concavity of U , the
maximum in (16) is attained at

π∗
t = −(µ − r)

σ2

Uw(W ∗
t , St, t)

Uww(W ∗
t , St, t)

− SUwS(W ∗
t , St, t)

Uww(W ∗
t , St, t)

, (17)

and we rewrite (16) as











Ut −
[(µ − r)Uw + σ2SUwS]2

2σ2Uww

+ rwUw + µSUS + 1
2
σ2S2USS + λx(t)(V − U) = 0

U(w, S, T ) = u(w − g(S))











(18)
Thus we see that the value functions U and V solve the fully nonlinear,

partially coupled system (9),(18). Under certain assumptions on the utility
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function u(w), it is possible to solve (9) and determine V and the optimal
investment strategy π∗

t in closed form. Specifically, if we assume constant
absolute risk aversion (CARA or exponential utility) or constant relative
risk aversion (CRRA or power utility), we can obtain V in closed form. Here

the absolute and relative risk aversion are measured by −u′′(w)
u′(w)

and −w
u′′(w)
u′(w)

,

respectively, [17]. In Merton’s seminal paper [14], he obtained closed form
expressions for the value function and optimal investment and consumption
strategies under CARA and CRRA utility. In a similar vein, Siegmann and
Lucas determine the optimal investment strategy and contribution level for
a pension fund, [18].

Ideally, we would like to solve the system for U and V explicitly and
recover the premium P via the indifference relationship (6), but in general,
the complexity of the system (9),(18) prohibits this. We demonstrate be-
low that under the assumption of exponential utility, we can derive a more
tractable PDE for the premium P from which we can glean useful qualitative
and quantitative information about P ’s behavior.

Assumption 3.1 In the work that follows, we assume that the insurer ex-
hibits constant absolute risk aversion (CARA), i.e., that the insurer’s utility
of wealth is given by

u(w) = − 1
α
e−αw, α > 0. (19)

In this case, by direct calculation, one can verify that the solution V to
(9) is given by

V (w, t) = − 1

α
exp(−αwer(T−t)) exp

(

−(µ − r)2

2σ2
(T − t)

)

; (20)

the details of this calculation are in Appendix 1. We observe that by (8), the
optimal investment strategy is given by

π∗
t =

(µ − r)

σ2

e−r(T−t)

α
. (21)

We note that π∗ is not stochastic and is independent of wealth. This
is generally the case in lognormal stock dynamics under exponential utility
because the absolute risk aversion is independent of wealth. Observe that,
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consistent with our intuition, as the absolute risk aversion α increases, the
amount invested in the stock decreases. Finally, we note the similarity be-
tween our optimal investment strategy above and the optimal risky portfolio
share derived in Merton’s paper [14].

Remark 3.2 In the work that follows, we demonstrate that, under exponen-
tial (CARA) utility, the value function U(w, S, t) is a “separable” function
of w and S, and it follows that the indifference premium P is independent
of the insurer’s wealth. Under power (CRRA) utility, one can determine V

in closed form; however, U is no longer separable with respect to w and S.
Thus, we can not treat the PDE (18) using the methods of this paper. We
will elaborate on this point in Appendix 2.

We wish to calculate the indifference premium P (w, S, t), which is related
to U and V by (6). As value functions often inherit the structure of the
underlying utility function u, which in this case is exponential, we conjecture
that U is of the form

U(w, S, t) = V (w, t)eη(S,t), (22)

i.e., that U is a separable function of w and S, or more specifically, that the
ratio of the maximum expected utility with the endowment contract to the
maximum expected utility without the endowment contract is independent of
the insurer’s wealth. Computing the appropriate derivatives of U , plugging
in to (18), exploiting the fact that V solves (9) and is given by (20), and
simplifying yields the PDE

ηt + rSηS +
1

2
σ2S2ηSS + λx(t)[e

−η − 1] = 0; (23)

the details of this calculation are in Appendix 2. From (22) and the terminal
conditions on V and U , we have

η(S, T ) = αg(S). (24)

Recall that the indifference premium P satisfies (6). Using our conjec-
tured solution (22), we have

V (w + P, t)eη(S,t) = V (w, t). (25)
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Also, since V (w, t) is given by (20), we have

exp(−αPer(T − t)) exp(η(S, t)) = 1 (26)

and hence

P (S, t) = P (w, S, t) =
1

α
η(S, t)e−r(T−t). (27)

We observe that the premium is independent of the insurer’s wealth level w.
This highly desirable property of universality is an artifact of the constant
absolute risk aversion inherent in exponential utility.

Thus, if we can compute a positive solution η to the terminal value prob-
lem (23), (24), we have the positive premium P via (27).

Using (23) and (27), we can show that the premium P solves the terminal
value problem

{

Pt + rSPS + 1
2
σ2S2PSS + λx(t)

αer(T−t) [exp(−αPer(T−t)) − 1] − rP = 0
P (S, T ) = g(S)

}

.

(28)
Note that this is a nonlinear Black-Scholes equation; the nonlinear term
reflects the fact that we have incorporated mortality risk and exponential
risk preferences into our model. If λ ≡ 0, i.e., if there is no mortality risk,
the premium P is the Black-Scholes price, as we predicted in Section 1. In the
sections that follow, we present results on the qualitative and quantitative
properties of P . All of the results can be obtained easily by analyzing the
problem (28), but in some cases the calculations are slightly cleaner if we work
instead with the problem (23),(24) and then compute P via (27). For clarity
of exposition and to simplify calculations, we will use this latter approach.

4 Qualitative Properties of the Premium

In this section we discuss the qualitative properties of the indifference pre-
mium P . More specifically, we discuss ordering of solutions to (28) as we vary
the parameters λx(t), α, and σ, and we obtain analytical upper and lower
bounds on P . Moreover, we observe that each of these results is consistent
with our financial intuition. In Section 5, we demonstrate that numerically
computed solutions exhibit the monotonicity and obey the bounds predicted
in this section.
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We obtain our results via comparison principles for parabolic PDEs. To
use these theorems, we first transform the equations (23) and (28) from
terminal value problems for degenerate parabolic equations to initial value
problems for uniformly parabolic equations via the standard transformation

S = ey and t = T − τ. (29)

We let

η(S, t) = η̃(y, τ) and P (S, t) = P̃ (y, τ). (30)

Computing the appropriate derivatives of η and P and plugging into (23)
and (28) yields the transformed problems

{

η̃τ = 1
2
σ2η̃yy + (r − 1

2
σ2)η̃y + λx(T − τ)[e−η̃ − 1]

η̃(y, 0) = αg(ey) = αg̃(y)

}

(31)

and

{

P̃τ = 1
2
σ2P̃yy + (r − 1

2
σ2)P̃y + λx(T−τ)

αerτ [exp(−αP̃ erτ ) − 1] − rP̃

P̃ (y, 0) = g(ey) = g̃(y)

}

(32)

where g̃ := g ◦ exp.
Denote the nonlinear terms in (31) and (32) by

h1(y, τ, η̃, η̃y) = (r − 1
2
σ2)η̃y + λx(T − τ)(e−η̃ − 1)

h2(y, τ, P̃ , P̃y) = (r − 1
2
σ2)P̃y + λx(T−τ)

αerτ (exp(−αP̃erτ ) − 1) − rP̃
(33)

and observe that when η̃ > η and P̃ > P , the nonlinearities satisfy the
one-sided Lipschitz conditions

{

h1(y, τ, η̃, η̃y) − h1(y, τ, η, ηy) ≤ c1(y, τ)(η̃ − η) + b1(y, τ)|η̃y − ηy|
h2(y, τ, P̃ , P̃y) − h2(y, τ, P , P y) ≤ c2(y, τ)(P̃ − P ) + b2(y, τ)|P̃y − P y|

}

(34)
for some bi, ci ≥ 0, i = 1, 2.

The results that follow rely on a standard comparison theorem for semi-
linear parabolic PDEs. We state it below for completeness; see, for example,
Chapter IV, Section 28 of [20].
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Theorem 4.1 Let G = R × [0, T ] and let a = a(y, τ) ∈ (0, M) for some
0 < M < ∞. Suppose v, w ∈ C(G) ∩ C2(G) and that there exists K > 0 such
that

|v(y, τ)|, |w(y, τ)| ≤ KeKy2
in G. (35)

Finally, suppose

{

vτ − avyy − h(y, τ, v, vy) ≤ wτ − awyy − h(y, τ, w, wy) in G

v ≤ w on R × {τ = 0}

}

(36)
where h obeys the one-sided Lipschitz condition in (34).

Then v ≤ w in G. Moreover, the solution to the initial value problem

{

uτ = auyy + h(y, τ, u, uy) in G

u(y, 0) = φ(y) on R× {τ = 0}

}

(37)

is unique among C(G) ∩ C2(G) functions that satisfy the growth condition
(35).

In the theorems that follow, we show that as we vary the model parame-
ters, the premium response is consistent with our expectations.

4.1 Impact on premium of changing mortality assump-

tions

Theorem 4.2 Suppose λ1
x(t) ≥ λ2

x(t) for all t ∈ [0, T ] and let P i(S, t) be
positive solutions to the problem (28) with λx = λi

x, i = 1, 2. Then P 1(S, t) ≤
P 2(S, t) for all (S, t) ∈ [0,∞) × [0, T ].

Heuristically, this means that the premium is lower under higher mor-
tality. This is consistent with our intuition as, under higher mortality, an
endowment payout is less likely.

Proof: Let λ1
x(t) > λ2

x(t) for all t ∈ [0, T ] and let η̃i be positive solutions
to the problem (31) with λx = λi

x, i = 1, 2. Define the operator

Lu := uτ −
1

2
σ2uyy − (r − 1

2
σ2)uy − λ2

x(T − τ)[e−u − 1]. (38)
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Since η̃2 solves the problem (31) with the parameter λ2
x, we have that Lη̃2 = 0.

Moreover, since η̃1 solves the problem (31) with the parameter λ1
x, we have

Lη̃1 = η̃1
τ − 1

2
σ2η̃1

yy − (r − 1
2
σ2)η̃1

y − λ2
x(T − τ)[e−η̃1 − 1]

= η̃1
τ − 1

2
σ2η̃1

yy − (r − 1
2
σ2)η̃1

y

−λ1
x(T − τ)[e−η̃1 − 1] + λ1

x(T − τ)[e−η̃1 − 1] − λ2
x(T − τ)[e−η̃1 − 1]

= 0 + (e−η̃1 − 1)[λ1
x(T − τ) − λ2

x(T − τ)]
≤ 0

(39)
since η̃1 > 0 and λ1

x ≥ λ2
x.

Thus we have Lη̃1 ≤ Lη̃2. In addition, since η̃1 and η̃2 both satisfy the
initial condition in (31), we have that η̃1(y, 0) = η̃2(y, 0) = αg̃(y), and we
can conclude from Theorem 4.1 that η̃1 ≤ η̃2 in R × [0, T ].

Now, defining ηi(S, t) = η̃i(y, τ) via the transformation in (29),(30) for
i = 1, 2, we have that ηi(S, t) solves (23), (24) with λx = λi

x and that
η1(S, t) ≤ η2(S, t) on [0,∞] × [0, T ]. Finally, by (27), it follows that the
premium satisfies P 1(S, t) ≤ P 2(S, t).

We can use an argument similar to the proof of Theorem 4.2 to establish
an upper bound on the indifference premium P . First consider the problem
(31) with λx ≡ 0, i.e., consider the problem

{

η̃τ = 1
2
σ2η̃yy + (r − 1

2
σ2)η̃y

η̃(y, 0) = αg(ey) = αg̃(y)

}

. (40)

Solving (40) via the Fourier transform, we find that the solution η̃λ0 is given
by

η̃λ0(y, τ) =
α

σ
√

2πτ

∫ ∞

−∞
exp

(

−(y − x + (r − 1
2
σ2)τ)2

2σ2τ

)

g(ex)dx. (41)

Now let η̃ solve (31) for some λx 6= 0. An argument similar to the proof of
Theorem 4.2 yields that η̃ ≤ η̃λ0 on R×[0, T ]. Employing the transformations
(29),(30), and (27), we have that P ≤ P λ0, where

P λ0(S, t) =
e−r(T−t)

σ
√

2π(T − t)

∫ ∞

−∞
exp

(

−(ln S − x + (r − 1
2
σ2)(T − t))2

2σ2(T − t)

)

g(ex)dx.

(42)
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The premium P λ0(S, t) above for the “endowment certain” can also be
obtained by setting λx ≡ 0 in (28) and solving via the Feynman-Kač formula;
see, for example, Chapter 4 of [3]. In this case, we write P λ0 in the familiar
form

P λ0(S, t) = e−r(T−t)Ẽ[g(ST )|St = S] (43)

where the expectation Ẽ is taken with respect to the risk neutral measure
and the S dynamics are given by

{

dSs = rSs + σSsdB̃s

St = S

}

, (44)

where B̃s is a standard Brownian motion with respect to the risk neutral mea-
sure. Writing the expectation above in integral form and changing variables,
one can verify that the representations (42) and (43) are equivalent.

We state this result succinctly in the following.

Corollary 4.3 If P (S, t) is a positive solution to (28) for some λx 6= 0, then
P (S, t) ≤ P λ0(S, t) where P λ0(S, t) is given in (42) or (43) above.

To close this subsection, we observe that P λ0 is the price of an “endow-
ment certain,” i.e., a contract with no life contingency. More specifically, it is
the Black-Scholes price of a derivative with (certain) payout g(ST ). Thus the
fact that P λ0 serves as an upper bound on the premium for the life contingent
contract is consistent with our financial and actuarial intuition.

4.2 Impact on the premium of changing risk aversion

assumptions

Theorem 4.4 Suppose α1 > α2 and let P i(S, t) be positive solutions to (28)
with α = αi, i = 1, 2. Then P 1(S, t) ≥ P 2(S, t) for all (S, t) ∈ [0,∞]× [0, T ].

Heuristically, this means that the premium increases as absolute risk aversion
increases. Again, this is consistent with our intuition.

Proof: We proceed as in the proof of Theorem 4.2. Let α1 > α2 and let
P̃ i be positive solutions to (32) with α = αi, i = 1, 2. Define the operator

Lu = uτ −
1

2
σ2uyy − (r− 1

2
σ2)uy + ru− λx(T − τ)

α1erτ
[exp(−α1uerτ)− 1]. (45)
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Since P̃ 1 solves (32) with α = α1, we have that LP̃ 1 = 0. Also,

LP̃ 2 = P̃ 2
τ − 1

2
σ2P̃ 2

yy − (r − 1
2
σ2)P̃ 2

y + rP̃ 2 − λx(T−τ)
α1erτ [exp(−α1P̃ 2erτ ) − 1]

= P̃ 2
τ − 1

2
σ2P̃ 2

yy − (r − 1
2
σ2)P̃ 2

y + rP̃ 2 − λx(T−τ)
α2erτ [exp(−α2P̃ 2erτ ) − 1]

+λx(T−τ)
α2erτ [exp(−α2P̃ 2erτ ) − 1] − λx(T−τ)

α1erτ [exp(−α1P̃ 2erτ ) − 1]

= 0 + λx(T−τ)
erτ [ exp(−α2P̃ 2erτ )−1

α2 − exp(−α1P̃ 2erτ )−1
α1 ]

(46)
where the last equality follows from the fact that P̃ 2 solves (32) with α = α2.

Since P̃ 2, α1,and α2 are positive, one can verify that f(α) := exp(−αP̃ 2erτ )−1
α

is increasing in α on (0,∞), thus α1 > α2 implies that

LP̃ 2 =
λx(T − τ)

erτ
[f(α2) − f(α1)] < 0. (47)

Thus we have that LP̃ 2 ≤ LP̃ 1 on R × [0, T ] and since P̃ 1 and P̃ 2 both
satisfy the initial condition in (32), P̃ 1(y, 0) = P̃ 2(y, 0) = g̃(y), and it follows
from Theorem 4.1 that P̃ 1 ≥ P̃ 2 on R × [0, T ]. Defining P i(S, t) via the
transformation in (29), (30), we have that P i(S, t) solves (28) with α = αi

and that P 1(S, t) ≥ P 2(S, t) on [0,∞) × [0, T ].

We can obtain an analytical lower bound on the premium as follows. By
arguments similar to the proof of Theorem 4.4 and Corollary 4.3, we can
show that P (S, t) ≥ P α0(S, t) where P α0 is a positive solution of (28) with
α = 0 (in the limit). Again, this is consistent with our intuition; the premium
will be lower in the absence of risk aversion.

Setting α = 0 in the limit in (28) yields the linear terminal value problem
{

Pt + rSPS + 1
2
σ2S2PSS − (λx(t) + r)P = 0

P (S, T ) = g(S),

}

. (48)

Solving this problem via the Feynman-Kač formula (or by the Fourier trans-
form on the transformed uniformly parabolic problem), we find that the
solution P α0 is given by

P α0(S, t) =T−t px+te
−r(T−t)Ẽ[g(ST )|St = S] =T−t px+tP

λ0(S, t) (49)

where where T−tpx+t = e−
∫ T

t
λx(s)ds is the probability that (x) survives from

time t until time T , conditional on (x) surviving to age x + t.
We state this observation succinctly in the following.
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Corollary 4.5 If P (S, t) is a positive solution to (28), then P (S, t) ≥ P α0(S, t),
where P α0 is given in (49).

We observe that P α0(S, t) is analogous to the Brennan and Schwartz price
for an equity-linked life insurance contract, [6]. As this price does not incor-
porate the insurer’s risk aversion, we expect that the Brennan and Schwartz
premium should be lower than P , as our model assumes exponential utility.
Thus the result of Corollary 4.5 is consistent with our financial intuition.

In summary, combining the results of Corollaries 4.3 and 4.5, we have
that

P ∈ [P α0, P λ0] = [T−tpx+tP
λ0, P λ0] (50)

where T−tpx+t ∈ (0, 1). We demonstrate in Section 5 that under reasonable
mortality assumptions, (50) yields tight bounds on the indifference premium
P .

4.3 Impact on the premium of changing volatility as-

sumptions

Theorem 4.6 Let σ1 > σ2 and let P i be positive solutions to (28) with
σ = σi. If P 1 or P 2 satisfies P i

SS ≤ 0 on [0,∞) × [0, T ], then P 2 ≥ P 1.

However, if P 1 or P 2 satisfies P i
SS ≥ 0 on [0,∞) × [0, T ], then P 1 ≥ P 2.

Proof: Define P̃ (y, τ) = P (S, t) via the transformation in (29),(30).
Since

PS(S, t) = e−yP̃y(y, τ)

PSS(S, t) = e−2y(P̃yy − P̃y),
(51)

we see that PSS(S, t) has the same sign as (P̃yy − P̃y)(y, τ). Moreover, P̃ i is
a positive solution to (32) with σ = σi.

Define the operator

Lu = uτ −
1

2
σ2

2uyy − (r − 1

2
σ2

2)uy − h2(u) (52)

where h2(u) = h2(y, τ, u, uy) is defined in (33).
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Since P̃ 2 solves (32) with σ = σ2, we have that LP̃ 2 = 0. Also,

LP̃ 1 = P̃ 1
τ − 1

2
σ2

2P̃
1
yy − (r − 1

2
σ2

2)P̃
1
y − h2(P̃

1)

= P̃ 1
τ − 1

2
σ2

1P̃
1
yy − (r − 1

2
σ2

1)P̃
1
y − h2(P̃

1)

+1
2
σ2

1P̃
1
yy + (r − 1

2
σ2

1)P̃
1
y − 1

2
σ2

2P̃
1
yy − (r − 1

2
σ2

2)P̃
1
y

= 0 + 1
2
P̃ 1

yy(σ
2
1 − σ2

2) + 1
2
P̃ 1

y (σ2
2 − σ2

1)

= 1
2
(σ2

1 − σ2
2)(P̃

1
yy − P̃ 1

y ),

(53)

where the third equality follows from the fact that P̃ 1 solves (32) with σ = σ1.
Now, if P 1

SS ≤ 0, then LP̃ 1 ≤ 0. From Theorem 4.1, P̃ 1 ≤ P̃ 2 and hence
P 1 ≤ P 2. However, if P 1

SS ≥ 0, then LP̃ 1 ≥ 0. From Theorem 4.1, P̃ 1 ≥ P̃ 2

and hence P 1 ≥ P 2.
Suppose instead that we know the concavity of P 2 a priori. We can use

the same argument as above to obtain the desired result. We simply define
the operator L as above, but with σ1 in place of σ2. We then exploit the
fact that LP̃ 1 = 0 and compute LP̃ 2. The condition on the concavity of P̃ 2

induces the appropriate sign on LP̃ 2 and the desired result follows.

Similarly, we can derive an analytical lower bound on the premium pro-
vided the payout g(ST ) satisfies an appropriate growth condition.

Theorem 4.7 Let P (S, t) be a positive solution of (28) with σ > 0 and let
g′′(S) ≥ 0. Then P (S, t) ≥ P σ0(S, t) where

P σ0(S, t) :=
1

α
e−r(T−t) ln[T−tpx+t(e

αg(Ser(T−t)) − 1) + 1] (54)

Proof: Given P (S, t) and P σ0(S, t), we compute η̃(y, τ), η̃σ0(y, τ), and
ησ0(S, t) via the transformations (29),(30),(27). Specifically,

η̃σ0(y, τ) = ln[τpx+T−τ(e
αg̃(y+rτ) − 1) + 1] (55)

and

ησ0(S, t) = ln[T−tpx+t(e
αg(Ser(T−t)) − 1) + 1]. (56)

A straightforward but tedious calculation shows that η̃σ0 solves (31) with
σ = 0, therefore, P σ0 as defined above solves (28) with σ = 0.
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Now, define Lu = uτ − 1
2
σ2uyy − (r − 1

2
σ2)uy − λx(T − t)[e−u − 1]. Since

P solves (28), we have that Lη̃ = 0. Moreover,

Lη̃σ0 = −1

2
σ2η̃σ0

yy +
1

2
σ2η̃σ0

y = −1

2
σ2(η̃σ0

yy − η̃σ0
y ) = −1

2
σ2S2ησ0

SS. (57)

By direct calculation, we see that the sign of ησ0
SS is the same as the sign of

the quantity

Q := [T−tpx+t(e
αg(Ser(T−t)) − 1) + 1]g′′(Ser(T−t)) + αg′(Ser(T−t))2(1−T−t px+t),

(58)
which is nonnegative if g′′ ≥ 0. In this case we have Lη̃σ0 ≤ 0 = Lη̃, which
implies that η̃σ0 ≤ η̃ and hence P σ0 ≤ P .

Remark 4.8 Heuristically, we’ve shown that the premium for an endowment
written on a volatile stock exceeds that for an endowment written on a less
volatile stock, provided the payout g increases “fast enough” with S.

Remark 4.9 The requirement g′′ ≥ 0 in the statement of Theorem 4.7 is
stronger than we need. In (58), to guarantee the appropriate sign on Q, and
hence on Lη̃σ0, we need only require that

g′′ ≥ − αg′2(1 −T−t px+t)

T−tpx+t(eαg − 1) + 1
, (59)

i.e., that g′′ is not “too negative.” Thus we can broaden this theorem to
include payout functions that are concave on part of their domain.

5 Numerical solutions to the Premium Equa-

tion

Because of the nonlinear term in (28), we cannot solve for the premium
P in closed form. In Section 4, we described P ’s qualitative properties.
More specifically, we derived analytical upper and lower bounds on P and
demonstrated that as we vary the parameters λ and α, the change in P is
consistent with our intuition. In this section, we compute the approximate
premium P via a numerical finite difference scheme.
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Because of the degeneracy of the equation (28), we chose to implement
an implicit scheme (explicit in the nonlinear part) on the uniformly parabolic
problem (32) defined on R× [0, T ]. Of course, for numerical implementation,
we must truncate the spatial domain and work on, say, [−M, M ] × [0, T ].
Two delicate questions arise then:

1. What boundary conditions should we impose at y = ±M?

2. How large must M be so that the error introduced by the imposition
of the artificial boundary is not significant in our domain of interest?

We address the first question by deriving the correct boundary condition
for (28) at S = 0 (and hence the correct condition for (32) at y = −∞) from
the definition of the value functions V and U given in (3) and (5) and the
indifference relation (6). Assume that the payout function g is bounded and
continuous. At S = 0, we observe that wealth evolves deterministically and
terminal wealth WT given Wt = w is WT = wer(T−t); thus, under exponential
utility, from (3) we have

V (w, t) = sup
{πs}

E[u(WT )|Wt = w] = u(wer(T−t)) = − 1

α
e−αwer(T−t)

. (60)

Moreover, U(w, 0, t) = sup{πs} E[u(wT − YT )|Wt = w, St = 0] where

YT =

{

g(ST ) if (x) survives until time T

0 otherwise.
(61)

Since the probability of a payout is T−tpx+t, we have

U(w, 0, t) = T−tpx+tu(WT − g(0)) +T−t qx+tu(WT )

= − 1
α
e−αwer(T−t)

(T−tpx+te
αg(0) +T−t qx+t)

(62)

where T−tqx+t = 1 −T−t px+t is the probability that the insured dies during
the deferral period. Finally, the indifference relation (6) yields

P (0, t) =
1

α
e−r(T−t) ln[T−tpx+t(e

αg(0) − 1) + 1] (63)

and we can compute P̃ (−∞, τ) via the transformation (29), (30).
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Alternatively, one could derive this condition by setting S = 0 in (23),
solving the resulting ODE for η(0, t), and transforming to P̃ (−∞, τ) via
(27),(29), and (30). Moreover, this argument is applicable in deriving the
boundary condition at y = ∞ provided that g is bounded.

In [12], the authors address the second question above by determining
pointwise bounds on the near field error and determining a suitable location
for the artificial boundary for a linear Black-Scholes problem. As we have
not done similar analysis for the nonlinear problem yet, we set the artifi-
cial boundary very conservatively. In the examples that follow, our spatial
domain of interest is S ∈ [0, 100]. We solved the problem (32) in the trans-
formed coordinates y ∈ [−20, 20] and y ∈ [−50, 50]. We remark that these
domains are far more conservative than Kangro and Nicolaides prescription
and the “rules of thumb” that they cite, [12]. Moreover, although the so-
lutions changed for very large S when we changed from y ∈ [−20, 20] to
y ∈ [−50, 50], the change was negligible for S ∈ [0, 100].

5.1 Numerical Experiments

In the experiments that follow, we set the investment horizon, volatility, and
risk free rate to be T = 20, σ = 0.2, and r = 0.06, respectively. Moreover,
we set the payout function

g(S) =











7.5 0 ≤ S ≤ 10
0.75S 10 ≤ S ≤ 90
67.5 90 ≤ S ≤ 100;

(64)

thus, the payout is linear in the stock price with a “stop loss” for the insurer
and downside protection for the insured.

Experiment 1: Premium evolution over time
In this example, we show the premium for a 50-year-old female for deferral
periods T − t = 5, 10, 15 and 20 years. We set the insurer’s risk aversion
coefficient α = 0.1 and, as in [10] and [15], we assume Gompertz mortality

λx(t) =
1

β
e

x+t−m
β . (65)

with parameters β = 8.75 and m = 92.63. Figure 1 shows the evolution
of the premium over time. For example, at the horizon (T − t = 0), the
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Figure 1: Experiment 1. Premium for several different deferral periods. As
we expect, the premium is lower for longer deferral periods.

premium is exactly the payout function g(S); five years prior to the horizon,
the premium is given by the dashed curve, etc. We observe that, consistent
with our intuition, the premium is lower for longer deferral periods.

Experiment 2: Impact of changing mortality assumptions
In Theorem 4.2 and Corollary 4.3, we proved that the premium is bounded
above by P λ0, the Black-Scholes price for an “endowment certain” (λ =
0), and that the premium decreases as mortality increases. Moreover, from
Corollary 4.5, we know that P α0, the Brennan and Schwartz [6] premium
for an insurer with no risk aversion (α = 0), serves as a lower bound on the
premium. We demonstrate this result in Figure 2 for deferral periods of 5,
10, 15, and 20 years. In each graph, the solid curve shows P λ0, the premium
under zero mortality. The next two curves are the premium with constant
mortality λ = 0.04 and λ = 0.09, respectively. (Of course, the assumption of
constant mortality is an oversimplification; we simply wish to demonstrate
that our numerical solutions exhibit the behavior guaranteed by Theorem
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Figure 2: Experiment 2. Consistent with our intuition, premium decreases
as mortality increases.

4.2.) The dotted curve shows the lower bound P α0, the premium with the
risk aversion parameter α equal to zero.

Experiment 3: Impact of changing risk aversion assumptions
In Theorem 4.4, we proved that premium increases as risk aversion increases.
We verify this in Figure 3, which shows the premium for α = 0, α = 0.1, and
α = 1 under constant mortality λ = 0.04 for deferral periods of 5, 10, 15,
and 20 years. Again, we include the λ = 0 premium as an upper bound.

Experiment 4: Impact of changing volatility assumptions
In Theorem 4.6 we proved that if the premium is concave, then it decreases
with volatility, but if it is convex, then it increases with volatility. We demon-
strate this phenomenon in Figure 4, which shows the premium for deferral
periods of 5, 10, 15, and 20 years for σ = 0.2 and σ = 0.4. Our mortality
assumption is the same as in Experiment 1.

Experiment 5: Premium Bounds
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Figure 3: Experiment 3. Consistent with our intuition, premium increases
as risk aversion increases.
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Figure 4: Experiment 4. When the premium is convex, it increases with
volatility. When it is concave, it decreases with volatility.
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Figure 5: Experiment 5. In this example, we obtain tight bounds on the
premium via Corollaries 4.3 and 4.5 without solving the nonlinear PDEs.

We illustrate the strength of Corollaries 4.3 and 4.5 in Figure 5. We set α =
0.1 and assume Gompertz mortality for a female aged 50 as in Experiment
1. Corollaries 4.3 and 4.5 ensure that the premium P satisfies

P α0(S, t) ≤ P (S, t) ≤ P λ0(S, t) (66)

where P α0 is given by (49) using Gompertz mortality (65) and P λ0 is given
by (42). We remark that the integrals in (49) and (42) can be evaluated in
closed form (in terms of error functions) for piecewise linear g or numerically
for more complicated g. As Figure 5 demonstrates, we obtain reasonably
tight bounds on the premium P without actually solving the nonlinear PDE
(28) for P .



26 Equity-Linked Endowments

6 A Probabilistic Representation of the Pre-

mium

In this section, we develop an alternative probabilistic representation of the
premium P . We aim for a representation similar to the arbitrage free rep-
resentation of derivative prices in complete models as the expectation of the
discounted payoff under the martingale measure. Following as in [16], we
reformulate the PDE (28) that governs P as the HJB of a stochastic control
problem.

Because the calculations are simpler, for conciseness of exposition, we will
work with the PDE (23) to derive the probabilistic representation of η and
then compute P via (27). One can easily verify that starting with the PDE
(28) for P yields the same expression.

Denote the nonlinear term in (23) by

β(η) = 1 − e−η (67)

and define the convex dual of β by

β̂(y) = max
{η}

[β(η) − yη]. (68)

Simple calculations yield that

β̂(y) = 1 − y + y ln y ≥ 0 (69)

and one can verify that

β(η) = min
{y>0}

[β̂(y) + yη]. (70)

Since −minz f(z) = maxz(−f(z)), we can rewrite (23) as

{

ηt + rSηS + 1
2
σ2S2ηSS + λx(t) max{y>0}[−β̂(y) − yη] = 0

η(S, T ) = αg(S)

}

. (71)

Consider the process S̃s whose evolution is governed by the geometric
Brownian motion

{

dS̃s = rS̃s + σS̃sdB̃s

S̃t = S ≥ 0

}

. (72)
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Define the value function

η(S, t) = sup{ys} Ẽ[αg(S̃T )e−
∫ T

t
λx(s)ysds

− ∫ T
t β̂(ys)λx(s)e

−
∫ s

t
λx(u)yududs|S̃t = S]

(73)

where the expectation Ẽ is taken with respect to the risk neutral measure.
Using the Dynamic Programming Principle and Itô’s formula as in the deriva-
tion of (16) in Section 3, one can show that (71) is the HJB associated with
the value function above. As the derivation is similar to the derivation of
(16) from (5) in Section 3, we omit it. Moreover, the Verification Theorem
ensures that a solution η of (71) coincides with this value function. Finally,
from (27), we have that

P (S, t) = e−r(T−t) sup{ys} Ẽ[g(S̃T )e−
∫ T

t
λx(s)ysds

− 1
α

∫ T
t β̂(ys)λx(s)e

−
∫ s

t
λx(u)yududs|S̃t = S].

(74)

The first term in this expression is similar to the pricing formula when α

equals zero, the Brennan-Schwarz price. The control ys acts as a multiplier
on the force of mortality λx(s). In other words, ysλx(s) is a controlled force of
mortality. Thus, we can think of this first term as a type of actuarial present
value in a proportional hazards rate model, [21]. The second term acts as a
penalty to the first in computing the supremum, so we have expressed the
premium as a type of penalized Brennan and Schwarz price with a penalty
that depends on the risk aversion of the insurer.

7 Conclusion

By using the principle of equivalent utility we showed that, under the as-
sumption of exponential utility, the indifference price P of the endowment
contract is governed by a nonlinear Black-Scholes equation. We examined
the qualitative and quantitative behavior of P and demonstrated that in
special cases (α = 0 and λ = 0), our premium reduces to the Brennan and
Schwartz and Black-Scholes prices, respectively, and that, under reasonable
mortality assumptions, these prices yield tight lower and upper bounds on P .
Moreover, we derived an expression for P as a controlled expectation with
respect to the risk neutral measure.
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Several interesting questions remain open. In this paper, the benefit level
was determined by the stock price at the horizon T . In future work, we will
consider contracts whose payouts are similar to Asian or look-back options,
for which the benefit levels are tied to the index performance over the life
of the contracts. In addition, the assumptions of constant volatility and
risk free rate are an oversimplification; given the long term nature of these
contracts, we should extend our model to incorporate stochastic volatility
and risk free rate as in [9], [13], and [23]. Moreover, one might model the
stock price evolution as a jump-diffusion process. Finally, we will examine
the application of utility methods in determining participation rates and
minimum guarantees on the type of contract considered in [19], where the
interest accrual, not the benefit level, is driven by the index performance.

Appendix 1
In this section, we present the details of the results in (20).

Recall that the value function V solves the PDE










Vt −
(µ − r)2

2σ2

V 2
w

Vww

+ rwVw = 0

V (w, T ) = u(w)











. (75)

As value functions often inherit the structure of the underlying utility, we
conjecture that V is of the form

V (w, t) = − 1

α
ef(t)w+h(t). (76)

The condition at t = T in (75) dictates that

f(T ) = −α and h(T ) = 0. (77)

Computing derivatives, we have

Vt = V (wf ′ + h′), Vw = V f, Vww = V f 2, and V 2
w

Vww
= V. (78)

Plugging into (75) and rearranging terms yields

w(f ′ + rf) + h′ − (µ − r)2

2σ2
= 0. (79)
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To ensure that f and h are independent of w, as conjectured, we require that

f ′ + rf = 0 and h′ − (µ−r)2

2σ2 = 0. (80)

Solving the differential equations above subject to the conditions in (77)
yields

f(t) = −αer(T−t) and h(t) = − (µ−r)2

2σ2 (T − t). (81)

Finally, from (76) we have that

V (w, t) = − 1

α
exp(−αwer(T−t)) exp

(

−(µ − r)2

2σ2
(T − t)

)

. (82)

Appendix 2
In this section, we present the details of the derivation of the PDE (23). For
convenience, we remind the reader that the value function U solves the PDE










Ut −
[(µ − r)Uw + σ2SUwS]2

2σ2Uww

+ rwUw + µSUS + 1
2
σ2S2USS + λx(t)(V − U) = 0

U(w, S, T ) = u(w − g(S))











(83)
Because value functions often inherit the structure of the underlying utility
function, we conjecture that our solution to (18) is of the form

U(w, S, t) = V (w, t)eη(S,t). (84)

Computing the appropriate derivatives of U yields

Ut = eη(V ηt + Vt) US = V eηηS

Uw = Vweη USS = V eη(ηSS + η2
S)

Uww = Vwweη UwS = VweηηS.

(85)

Plugging these quantities in to (83), we have
{

V eηηt + eηVt − [(µ−r)Vweη+σ2SVweηηS ]2

2σ2Vwweη + rwVweη

+µSV eηηS + 1
2
σ2S2V eη[ηSS + η2

S] + λx(t)V [1 − eη] = 0

}

(86)

Expanding the numerator in the fraction above, dividing both sides by eη,
and exploiting the fact that V solves (75), we have

V ηt + µSV ηS + 1
2
σ2S2V [ηSS + η2

S]

+λx(t)V [e−η − 1] − V 2
w

Vww
[(µ − r)SηS + 1

2
σ2S2η2

S] = 0
(87)
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Now, recall from (78) in Appendix 1 that V 2
w

Vww
= V . Dividing both sides of

the equation by V and simplifying yields

ηt + rSηS +
1

2
σ2S2ηSS + λx(t)(e

−η − 1) = 0, (88)

as desired. Note also that (84) and the conditions at t = T in (75) and (83)
dictate that

η(S, T ) = αg(s); (89)

thus, η is indeed independent of w, as conjectured.
In the case of power utility (CRRA) or more general utility functions, it

is tempting to employ the same methods, i.e., to conjecture that the solution
U to 83 is of the form U(w, S, t) = f(S, t)V (w, t). For power utility, one
can derive a semi-linear PDE for f that is independent of wealth. However,
the condition at t = T is f(S, T ) = u(w−g(S))

u(w)
; thus for power utility, f(S, T )

depends on wealth and therefore contradicts our conjecture that f is inde-
pendent of wealth. Thus, we do not obtain a more tractable PDE as we did
in the exponential utility case. For power and more general utility, one must
solve the prohibitively complex fully nonlinear, partially coupled PDE system
(75), (83) and extract the argument P for which U(w + P, S, t) = V (w, t).
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