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Abstract

An equity-indexed annuity (EIA) is a hybrid between a variable and a fixed an-
nuity that allows the investor to participate in the stock market and earn at least
a minimum interest rate. The investor sacrifices some of the upside potential for
the downside protection of the minimum guarantee. Because EIAs allow investors to
participate in equity growth without the downside risk, their popularity has grown
rapidly.

An optimistic EIA owner might consider surrendering an EIA contract, paying
a surrender charge, and investing the proceeds directly in the index to earn the full
(versus reduced) index growth, while using a risk-free account for downside protec-
tion. Because of the popularity of these products, it is important for individuals and
insurers to understand the optimal policyholder behavior.

We consider an EIA investor who seeks the surrender strategy and post-surrender
asset allocation strategy that maximize the expected discounted utility of bequest.
We formulate a variational inequality and a Hamilton-Jacobi-Bellman equation that
govern the optimal surrender strategy and post-surrender asset allocation strategy,
respectively. We examine the optimal strategies and how they are affected by the
product features, model parameters, and mortality assumptions. We observe that in
many cases, the “no-surrender” region is an interval (wl, wu); i.e., that there are two
free boundaries. In these cases, the investor surrenders the EIA contract if the fund
value becomes too high or too low. In other cases, there is only one free boundary;
the lower (or upper) surrender threshold vanishes. In these cases, the investor holds
the EIA, regardless of how low (or high) the fund value goes. For a special case,
we prove a succinct and intuitive condition on the model parameters that dictates
whether one or two free boundaries exist.
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2 Optimal Surrender Strategies for EIA Investors

1 Introduction

An equity-indexed annuity (EIA) is a hybrid between a fixed and variable annuity that
allows the investor to participate in equity growth with limited downside risk. The investor
pays a premium (or series of premiums) and the interest credited is linked to a benchmark
index, typically the S&P 500. The investor earns some fraction, called the participation
rate, of the index growth and is guaranteed a minimum return on the premium. For
example, a typical product offers the greater of 90% of the index growth or 3% per year
on 90% of the premium invested. Effectively, the investor sacrifices some of the upside
potential for the downside protection. Because of their “best of both worlds” design, EIAs
are extremely popular. Sales have grown dramatically since their introduction in 1995.
Indeed, EIA sales for 2005 were nearly $27.3 billion, a 420% increase over their 2000 level
of $5.25 billion (The Advantage Compendium).

Because of their popularity, EIAs have received considerable attention in the actuarial
literature; see, for example, Tiong (2000), Gerber and Pafumi (2000), Imai and Boyle
(2001), Lee (2002), Gerber and Shiu (2003), Fung and Li (2003), and Lin and Tan (2003).
These authors examine the pricing of various features of EIAs. We, on the other hand,
are not pricing EIAs but rather are determining the optimal time for an individual to
surrender a given EIA. Cheung and Yang (2005) study the optimal EIA surrender strategy
in a discrete-time model with regime-switching.

A potential EIA investor might wonder whether she could outperform the EIA by
investing directly in the index, thus earning the full, versus reduced growth, and a risk-free
account for downside protection. Or, in a period of high returns, an EIA contract-holder
might consider surrendering the contract, paying a surrender fee, and investing the proceeds
on her own. Because of the popularity of these products, it is important for insurers and
investors to understand the optimal policyholder behavior.

In this paper, we study the optimal surrender strategy for an EIA contract-holder. More
specifically, we consider an investor who seeks to maximize her expected utility of bequest
(or wealth at death) and study the optimal time to surrender the EIA contract, assuming
that she allocates her assets optimally, in the sense of Merton (1992), after surrendering the
contract. Moore and Young (2005) considered a similar problem for a perpetual EIA with
time-homogeneous benefits under the assumption of constant hazard rate (i.e., exponential
future lifetime). In that paper, we limited our study of the optimal strategies to the case
in which lower and upper surrender thresholds exist.

In this paper, we extend that work by including time-dependent contract features, such
as the minimum annual growth described above or the common time-dependent surren-
der fees included in EIAs. Moreover, while the constant hazard rate case yields valuable
insight on the qualitative properties of the optimal strategies, this assumption is not a
realistic model for human survival because of the memoryless property of the exponential
distribution. We incorporate a more realistic, time-dependent hazard rate in our model
and examine the impact of the mortality assumption on the optimal strategies. Our work
complements the recent work of Cheung and Yang (2005) because, in order to focus on the
effect of regime-swtiching, they ignore the effect of mortality and product features, such as
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the embedded guarantees. We focus on these assumptions and features.
Most significantly, we eliminate the a priori assumption of lower and upper surrender

thresholds. We find that this structure exists in some cases; i.e., if the fund value is
too low or too high, the investor should surrender the EIA and invest on her own. In
other cases, there is no lower or upper threshold; the investor should keep the contract,
regardless of the index performance. We examine the optimal strategy for a variety of
product features and mortality assumptions. In the special case of of constant hazard rate
and time-homogeneous benefits, we give a succinct condition for the existence of a lower
threshold. For more general mortality and contract features, we compute the thresholds(s)
numerically and observe similar phenomena.

2 The Model

Consider (x), an investor aged x, whose utility of wealth w is described by the increasing,
concave, smooth utility function u. Let Tx denote the future lifetime random variable for
(x) and let λx denote the hazard rate function for Tx (or the force of mortality for (x)).

Suppose the investor pays premium w̃0 at time 0 to invest in an EIA and earns partic-
ipation rate p of the index growth on the net deposit

w0 := (1 − f0)w̃0,

less an annual maintenance fee at rate fa per year. The initial and maintenance fees f0

and fa are called spread, asset, or margin fees and are similar to mutual fund fees.
We assume that the growth in the EIA investor’s fund is linked to the performance of a

stock or index whose price at time t evolves according to the geometric Brownian motion

dSt = µStdt + σStdBt. (1)

The process B is a standard Brownian motion on a probability space (Ω,F ,P), and the
constants µ and σ are given positive constants. Note that we assume that the risky asset
pays no dividends, or equivalently, that its price is constructed with all dividends reinvested.
Thus, the evolution of the EIA fund value is governed by

{

dWt = (pµ − fa)Wtdt + pσWtdBt

W0 = w0.
(2)

At the surrender time τs,the investor receives

B(Wτs
, τs) := max{s(1 + g)τsw0, (1 − fs(τs))Wτs

}. (3)

Here g is the guaranteed minimum annual growth rate on a portion s of the initial (net)
principal invested. A typical EIA product might offer a minimum of 3% per year on 90% of
the principal invested; in this case, g = 0.03 and s = 0.90. The time-dependent surrender
fee is given by fs; EIA products tend to have surrender fees that decrease to zero over a 7
to 17 year period.
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If the random time of death τd precedes the surrender time τs, the contract pays the
death benefit

D(Wτd
, τd) := max{d(1 + g̃)τdw0, Wτd

}. (4)

If g = g̃, then the death benefit is simply the maximum of the fund value or the guaranteed
minimum, with the surrender charge waived. On the other hand, if g̃ = 0 and d = 1, then
the contract pays the maximum of the fund value or the initial (net) premium invested.
Alternatively, if g̃ = 0, we could choose d so that dw0 is the amount of whole-life insurance
that the initial net premium w0 provides.

If the investor surrenders the EIA contract prior to death, i.e., if τs < τd, we assume that
she invests in and trades dynamically between a risky and a risk-free account. We assume
that the risky index is governed by the geometric Brownian motion (1); thus, she invests in
the same index to which the EIA is linked. Moreover, we assume that the risk-free account
grows at constant rate r ∈ (0, µ).

Let πt denote the dollar amount invested in the risky asset at time t. Then the evolution
of the investor’s wealth after surrendering the EIA is given by

dWt = (rWt + (µ − r)πt)dt + σπtdBt. (5)

The initial value of wealth is given by the EIA payout in (3). Thus, the investor’s wealth
is evolution is discontinuous; it is governed by (2) prior to the surrender time τs and by
(5) after time τs. The investor seeks the surrender time τs and the post-surrender asset
allocations strategy πt to maximize the utility of wealth at the random time of death τd.
Jeanblanc, Lakner, and Kadam (2004) considered a similar optimal stopping problem with
a discontinuous wealth evolution.

2.1 Definition of the Value Functions

In this section, we define the value functions for the pre- and post-surrender stochastic
optimal control problems; we consider the post-surrender problem first. Given that the
individual surrenders the EIA at time τs = t < τd with wealth Wt = w, she is faced with
a Merton problem of investment over a random horizon (Merton, 1992). Denote the value
function of the Merton investment problem by V . Specifically, V is given by

V (w, t) = sup
{πs}∈A

E
[

e−ρ(τd−t)u (Wτd
) |Wt = w

]

. (6)

The set A is the set of admissible policies {πs} that are Fs-progressively measurable, in
which Fs is the augmentation of σ(Wu : t ≤ u ≤ s), and that satisfy the integrability
condition E

∫ τd

t π2
sds < ∞. We assume that the utility function u : R → R is increasing,

concave, and smooth. The parameter ρ is the individual’s subjective discount rate; a large
value of ρ corresponds to a more impatient individual.

Assumption 2.1 Throughout this paper, we assume that preferences display constant rel-
ative risk aversion (CRRA); that is, −wu′′(w)/u′(w) is a constant (Pratt, 1964). It follows
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that, up to an affine transformation, u is given by a power function u(w) = w1−γ/(1 − γ),
in which γ > 0, γ 6= 1, is the constant relative risk aversion. In most of our discussion,
unless otherwise stated, we assume that γ > 1; we comment on this choice below.

Several studies justify our choice of the relative risk aversion γ > 1. See, for example,
the well-cited article by Friend and Blume (1975), as well as the more recent Mitchell et
al. (1999), Feldstein and Ranguelova (2001), Cochrane (2001), and Campbell and Viceira
(2002).

Using the Dynamic Programming Principle and Itô’s lemma, one can show that the
value function V solves the Hamilton-Jacobi-Bellman equation

Vt + rwVw + max
π

[(µ − r)πVw +
1

2
σ2π2Vww] + λx(t)u(w) = V (ρ + λx(t)). (7)

We refer the reader to Section 2.1 of Moore and Young (2005) for a discussion of the
smoothness of solutions to (7). Standard verification theorems ensure that if (7) has a
smooth solution V , then it equals the value function as defined in (6) and one can recover
the the optimal investment strategy π∗

t from the first order condition in (7). Moreover, the
concavity of u and the linearity of the dynamics (5) dictate that V is concave in w. Thus,
the maximum in (7) is well-defined and attained at

π∗(w) = −
µ − r

σ2

Vw

Vww

. (8)

Thus, we can rewrite (7) as

Vt + rwVw −
1

2

(µ − r)2

σ2

V 2
w

Vww

+ λx(t)u(w) = V (ρ + λx(t)). (9)

Prior to surrendering the EIA, at any time t < τd, the investor must decide whether to
surrender the EIA or continue holding it. If the investor surrenders the EIA, she receives
the payout B(Wτs

, τs) given in (3). Afterward, she invests optimally, as described above,
and derives utility V . If the investor dies prior to surrender, she receives the death benefit
D(Wτd

, τd) given in (4) and derives utility u. Thus, the value function prior to surrender is
given by

U(w, t) = sup
τs

E[e−ρ(τs−t)V (B(Wτs
, τs), τs)1τs<τd

+ e−ρ(τd−t)u(D(Wτd
, τd))1τd≤τs

|Wt = w],

(10)
where 1A is the indicator function for the event A.

Again, using the Dynamic Programming Principle and Itô’s lemma, one can show that
U solves the variational inequality

Ut + (pµ − fa)wUw +
1

2
p2σ2w2Uww + λx(t)u(D(w, t)) ≤ U(ρ + λx(t)), (11)

U(w, t) ≥ V (B(w, t), t), (12)
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with equality holding in at least one of the two inequalities. We omit the details of the
derivation, but refer the reader to Krylov (1980) or Oksendal (2000) for the background
and to Young and Zariphopoulou (2002), Moore and Young (2003), and Young (2003) for
similar derivations.

The intuition behind (11) and (12) is similar to the intuition for American options. If
U(w, t) > V (B(w, t), t), the expected utility from keeping the EIA exceeds the expected
utility from surrendering; thus, the investor should not surrender the contract. The “sur-
render boundary” (or free boundary) is defined by the values of (w, t) where the inequality
in (12) switches to equality. In the no-surrender region, equality holds in (11) and inequality
holds in (12).

Our goal in the work that follows is to find the optimal surrender time τs and the optimal
post-surrender asset allocation strategy πt. To find τs, we seek the surrender boundary;
i.e., we seek the values of (w, t) where the inequality in (12) switches to equality. This
prescribes the optimal surrender strategy; when the EIA fund value hits the free boundary,
the investor should surrender the EIA contract and invest on her own according to the
asset allocation strategy πt.

Thus, we must solve the variational inequality (11), (12) and the HJB equation (9). In
Sections 3 through 5, we consider these problems for three different cases:

• constant hazard rate and time-homogeneous benefits (Section 3)

• constant hazard rate and time-dependent benefits (Section 4)

• general hazard rate and time-dependent benefits (Section 5).

In the special case of Section 3, we establish conditions on the model parameters that
govern the existence or non-existence of a lower surrender threshold. We prove this theorem
in the Appendix in Section 8.

Throughout the examples, we assume that the EIA product is perpetual in the sense
that the investor can continue to hold the contract (with the guarantees) indefinitely. There
is precedent for considering perpetual products; see, for example, Gerber and Shiu (2003)
and the references therein, as well as the comprehensive text on equity-indexed insurance
by Hardy (2003). While this allows us to examine the qualitative properties of the free
boundaries over long time, it is not a realistic assumption; most products have a fixed
maturity date. Our model can be adapted easily to this case. We consider examples of fixed
maturity products in Section 6. We find that the surrender strategy for the fixed maturity
product is essentially a truncated version of the strategy for the perpetual product; the
most significant differences in the strategies are intuitive and occur near the maturity time.

3 Constant Hazard Rate, Time-Homogeneous Bene-

fits

In this section, we assume that the hazard rate is constant; i.e., that λx(t) = λ for all t.
Thus, we assume that the future lifetime Tx of (x) has exponential distribution with pa-
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rameter λ. Obviously, because of the memoryless property of the exponential distribution,
this is not a valid model for human survival; however, this case yields valuable insight on
the characterization of the surrender boundary.

Moreover, we assume that the contract features are independent of time; thus, in (3),
we set g = 0 and, without loss of generality, we set fs(τs) = 0. (Note that we could easily
set fs(τs) to be any constant in [0, 1].) Similarly, in (4), we set g̃ = 0.

This case was considered in Moore and Young (2005); however, in that paper, we
restricted our analysis to the case in which the no-surrender region is an interval (wl, wu);
i.e., the case in which there are lower and upper surrender thresholds wl and wu. In this
section, we discuss cases for which there is no lower surrender threshold wl. Moreover, we
propose a succinct condition on the model parameters that determines whether one or two
surrender thresholds exist. Friedman and Shen (2002) give a similar characterization for
the optimal exercise boundary of an early retirement option.

Note that, under our assumptions above, the contract payout at the time of surrender
is

B(Wτs
, τs) = B(Wτs

) = max{sw0, Wτs
} (13)

and the death benefit is

D(Wτd
, τd) = D(Wτd

) = max{dw0, Wτd
} (14)

Moreover, the value functions V and U are independent of time and the partial differ-
ential equations (PDEs) in (9) and (11) become ordinary differential equations (ODEs).
Thus, V solves the ODE

rwV ′ −
1

2

(µ − r)2

σ2

V ′2

V ′′
+ λu(w) = V (ρ + λ) (15)

and, in the no-surrender region, U solves the free boundary problem for the ODE
{

(pµ − fa)wU ′ + 1
2
p2σ2w2U ′′ + λu(D(w)) = U(ρ + λ)
U(w) ≥ V (B(w)).

}

(16)

It is straightforward to verify that the solution to (15) is given by

V (w) = A
w1−γ

1 − γ
, (17)

where

A =
λ

ρ + λ − (r + m/γ)(1 − γ)
(18)

and

m =
1

2

(
µ − r

σ

)2

.

Thus, by (8), the optimal asset allocation π∗
t is given by

π∗
t =

1

γ

µ − r

σ2
W ∗

t .
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Note that this strategy is linear in the optimally controlled wealth W ∗
t , as we expect for

CRRA preferences. Note also that as the relative risk aversion γ or index volatility σ
increase, the allocation to the risky asset decreases. As the excess return µ − r increases,
the allocation to the risky asset increases. This is consistent with our financial intuition.

The solution to the ODE in (16) is given by

U(w) =







C1w
a1 + C2w

a2 + λ
ρ+λ

(dw0)1−γ

1−γ
, w ∈ (0, dw0)

C̃1w
a1 + C̃2w

a2 + Ãw1−γ

1−γ
, w ≥ dw0,

(19)

where a1 and a2 are the positive and negative roots, respectively, of

1

2
p2σ2a2 +

(

pµ − fa −
1

2
p2σ2

)

a − (ρ + λ) = 0

and Ã is given by

Ã =
λ

ρ + λ − (pµ − fa)(1 − γ) + p2σ2γ(1 − γ)/2
.

In Moore and Young (2005), we postulated the existence of lower and upper surrender
thresholds wl and wu. In that paper, we computed the six unknowns wl, wu, Ci, C̃i, (i = 1, 2)
by assuming:

• that U is continuous and smooth at w = dw0

• value-matching and smooth-pasting conditions at wl and wu; i.e., that the value
function U meets the constraint function V ◦ B smoothly at wl and wu.

These conditions gave six equations for the six unknowns. In that paper, we gave an
algorithm for solving the system. The key step in the algorithm was finding a root x = wu

w0

of a function η that may assume real or complex values; see equations (2.31) and (2.32) in
Moore and Young (2005).

In this section, we consider cases for which the method of Moore and Young (2005)
fails; i.e., cases for which η has no real root (and hence the system of six equations in six
unknowns has no solution).

In these cases, the function U given in (19) above solves the free boundary problem
(16). However, C2 = 0 and there is no lower surrender threshold wl. In these cases, the
investor should continue to hold the EIA, regardless of how low the fund value drops.

Note that if C2 = 0, we have from (19) that

U(0) =
λ

ρ + λ
u(D(0)) =

λ

ρ + λ

(dw0)
1−γ

1 − γ
.

This result is consistent with our expectation; if one sets w = 0 and “solves” the ODE in
(16) for U(0), this is the result. However, considering the definition of the value function
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U in (10) yields a more convincing argument. If the fund value is zero, it stays at zero.
Under constant hazard rate λ, we have that

E[e−ρτdu(D(0))] = u(D(0))E[e−ρτd] =
λ

ρ + λ
u(D(0)),

as predicted.
Below, we propose a condition that determines whether a lower surrender threshold

exists and we illustrate our result with numerical examples.

Definition 3.1 Let Q = As1−γ − λ
ρ+λ

d
1−γ

.

Remark 3.2 Assumption 8.2 specifies technical conditions on the model parameters. These
assumptions are innocuous in the sense that they held for every “realistic” choice of pa-
rameters that we tested. We suggest that the reader ignore these technical conditions on
the first reading.

Theorem 3.3 Assume that the relative risk aversion γ > 1.

• If conditions (A1) and (A2) of Assumption 8.2 are satisfied and if Q > 0, the free
boundary problem (16) has only one free boundary wu; the no-surrender region is the
interval (0, wu).

• If conditions (A1)-(A4) of Assumption 8.2 are satisfied and if Q < 0, the free bound-
ary problem (16) has two free boundaries 0 < wl < wu; the no-surrender region is the
interval (wl, wu).

• If condition (A5) of Assumption 8.2 is satisfied and if Q = 0, the lower surrender
threshold is wl = 0.

Remark 3.4 If we assume that the relative risk aversion γ ∈ (0, 1), then the result above
is reversed. When Q > 0, there are two free boundaries and when Q < 0 there is only one
free boundary.

The idea behind the proof of the theorem is quite simple, but the proof is somewhat
lengthy and heavy on notation; thus, we relegate it to the Appendix. The interpretation
of the result is intuitively appealing. Assume that γ > 1. Note that Q > 0 when the death
benefit proportion d is large relative to the minimum surrender guarantee proportion s.
Thus, because the death benefit is valuable, it is not surprising that the investor should
not surrender the contract at low fund values. Moreover, by examining the sign of ∂Q/∂m,
we see that Q > 0 when m is small; i.e., when the excess return µ− r is small or the index
volatility is large. Again, it is intuitive that an investor with a low fund value would not
surrender the EIA contract and forego the protection of the minimum guarantee when the
ratio of return to risk is too low. We comment on the interpretation of the result when
γ ∈ (0, 1) in Experiment 3.3 below.

We remark that Q is independent of the participation rate p; thus, the existence of
a lower surrender threshold does not depend on the participation rate. Moreover, Q is
independent of the initial and annual fees f0 and fa. (Note, however, that these parameters
must be chosen to satisfy the conditions of Assumption 8.2.)



10 Optimal Surrender Strategies for EIA Investors

3.1 Numerical Examples

We illustrate the result of Theorem 3.3 above with three numerical examples. We choose
the following as our base scenario; it is similar to the base scenario studied in Moore and
Young (2005).

• The relative risk aversion γ = 2;

• The rate of return on the riskless asset r = 0.04;

• The rate of return on the risky index µ = 0.08;

• The volatility on the risky asset σ = 0.2;

• The participation rate p = 0.9;

• The proportion of the initial deposit returned upon death d = 1.4;

• The proportion of the initial deposit returned upon surrender s = 0.9;

• The force of mortality λ = 0.04, so that the expected future lifetime of (x + t) is 25
years for all t > 0;

• The personal discount rate ρ = 0.04;

• The initial premium invested is w̃0 = 1.0;

• The initial fee f0 = 0.05, so the initial net principal invested is w0 = 0.95;

• The annual maintenance fee is fa = 0.

In each of the experiments that follow, we verify that V (w̃0) < U(w0); i.e., that investing
in the EIA increases the utility of the investor. Moreover, we verify that w0 ∈ (wl, wu); i.e.,
that the investor is initially in the no-surrender region.

Experiment 3.1 Q < 0 versus Q > 0 (Figure 1)
In this experiment, we contrast the results for the base scenario with the same scenario, but
with λ = 0.055. Our results are shown in Figure 1. The top graph shows the results for the
base scenario. The dashed curve shows the constraint function V ◦ B and the solid curve
shows the value function U . Since Q = −0.0153 < 0, we find upper and lower surrender
thresholds wl = 0.1387 and wu = 1.7721. The no-surrender region is the interval (wl, wu); if
the fund value hits wl or wu, the investor should surrender the EIA contract and invest on
her own according the strategy π∗

t . Note that the value function and constraint functions
are negative; this is because the utility u is negative when γ > 1; see Assumption 2.1. Note
also that the value function meets the constraint function smoothly at wl and wu smoothly,
as expected.

The bottom graph shows the results when we increase the hazard rate to λ = 0.055.
In this case, Q = 0.0079 > 0; thus, there is only one surrender boundary wu = 1.7859.
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Figure 1: When Q > 0, there is no lower surrender threshold.

In this case, the investor should hold the EIA contract regardless of how low the fund
value drops, but surrender the contract when the fund value hits wu. The loss of the lower
surrender threshold is not surprising in this case. When the investor has higher hazard
rate, and hence shorter expected future lifetime, the minimum guaranteed death benefit is
more valuable at lower fund values than when the hazard rate is lower.

Experiment 3.2 Q < 0 versus Q = 0 (Figure 2)
In this experiment, we consider the base scenario, but change the return on the riskless
asset to r = 0.07 and r = 0.026. In the first case, we have that Q = −0.0621 < 0 and
the surrender thresholds are given by wl = 0.4389 and wu = 1.3576; see Figure 2. In the
second case, we have that Q = 0 and the surrender thresholds are given by wl = 0 and
wu = 2.1728. In both cases, the investor should hold the EIA contract while w ∈ (wl, wu).
It is intuitive that when Q = 0, the lower surrender threshold occurs at wl = 0; Q = 0
separates the case Q > 0, for which no positive lower surrender threshold wl exists, from
the case Q < 0, for which positive wl does exist.

Experiment 3.3 Relative risk aversion γ < 1 (Figure 3)
In Remark 3.4 above, we pointed out that if we choose γ < 1, our result in Theorem 3.3
is reversed; when Q > 0 there are two free boundaries and when Q < 0 there is only one.
We illustrate this with the following two examples. In the first, we choose the parameters
in the base scenario, but we set γ = 0.8. In this case, Q = 0.0498 > 0. The top graph
in Figure 3 shows that the surrender boundaries are wl = 0.5506 and wu = 1.6248. In
the second example, we choose the same parameter values, but set λ = 0.15. In this case,
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Figure 2: When Q = 0, the lower surrender threshold occurs exactly at wl = 0.

Q = −0.0146 < 0. The bottom graph in Figure 3 shows that there is no lower surrender
threshold and that the upper surrender threshold is wu = 1.7797.

The reversal of the result of Theorem 3.3 is not surprising. Indeed, note that when
γ < 1, negative values of Q occur when, for example, d is large relative to s. (Positive
values of Q occurred in this case when γ > 1.) Since the death benefit is more valuable, the
investor has incentive to continue to hold the EIA, even at low fund values. Similarly, when
γ ∈ (0, 1), the sign of ∂Q/∂m confirms that negative values of Q occur for small values of
m; i.e., for small excess return µ− r or large index volatility σ. It is not surprising that an
investor with low fund value would be unwilling to forego the minimum guarantee in such
an environment.

4 Constant Hazard Rate, Time-dependent Benefits

In this section, we incorporate time-dependent benefits into the model and examine the
impact of changing various product features on the surrender boundaries. In this case,
the minimum guaranteed amount at surrender B(Wτs

, τs) and the minimum death benefit
D(Wτd

, τd) depend on time and are given by equations (3) and (4). Note that since the force
of mortality is constant, the post-surrender value function V is still independent of time
and is given by (17). However, the pre-surrender value function U and the free boundaries
depend on time. We must solve the variational inequality (11) and (12); more specifically,
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Figure 3: When γ ∈ (0, 1), there is no lower surrender threshold when Q < 0.

in the no-surrender region, U solves the free boundary problem for the PDE

{

Ut + (pµ − fa)wUw + 1
2
p2σ2w2Uww + λu(D(w, t)) = U(ρ + λ)

U(w, t) ≥ V (B(w, t)).

}

(20)

(Recall that in Section 3, U solved an ODE; in this case we must solve a PDE.)

Because this problem is similar to the free boundary problems that arise in Ameri-
can option pricing, we employ a similar numerical algorithm, namely, the Projected SOR
Method. The Projected SOR Method is an iterative method for solving the PDE in (20)
subject to the inequality constraint. We solve the constrained PDE on a domain that con-
tains the free boundary and then recover the free boundary after computing the solution.
The boundary points wl(t) and wu(t) are the points at which the inequality constraint in
(20) switches to equality. We refer the reader to Wilmott, Dewynne, and Howison (2000)
for more details.

We tested this method by using it to compute the value function and free boundaries
for the ODE case of Section 3. The solutions computed via the projected SOR method
matched the solution given by (19), so we are confident in the validity of our numerical
scheme.
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4.1 Numerical Experiments

In the experiments that follow, we consider a base scenario and then examine the change
in the surrender boundaries as we vary the product features. We choose the following as
our base scenario; it is similar to the base scenario of Section 3.1.

• We choose the parameters γ, r, µ, σ, p, λ, ρ, and w̃0 as in the base scenario of Section
3.1.

• The initial fee f0 = 0, so the initial net principal invested is w0 = 1;

• The annual maintenance fee is fa = 1.5%;

• The minimum guaranteed growth rate (for death or surrender) is 3%; i.e., g = g̃ =
0.03;

• The minimum guaranteed proportion of the initial deposit, accumulated at the min-
imum growth rate, returned upon death or surrender is 90%; i.e., s = d = 0.9;

• The surrender charge decreases linearly from 10% to 0% over a 10-year period.

Thus, from the last three items above and equations (3) and (4), we have that the surrender
and death benefits are given by

B(Wτs
, τs) = max{0.9(1.03)τsw0, (1 − fs(τs))Wτs

}
D(Wτd

, τd) = max{0.9(1.03)τdw0, Wτd
},

where

fs(τs) =

{

0.01(10 − τs) 0 ≤ τs ≤ 10
0 τs > 10.

Experiment 4.1 Results for the base scenario (Figures 4 and 5)
Figure 4 shows the value function U (solid) and the constraint function V ◦ B (dashed)
for t = 0, 5, 10, and 15. The surrender boundaries wl and wu are the points at which
U = V ◦B. For w ∈ (wl, wu), the expected discounted utility from holding the EIA exceeds
the expected discounted utility from surrendering the contract; thus, the investor should
hold the EIA when the fund value is in (wl, wu).

Figure 5 shows the evolution of the surrender boundaries for t = 0, 1, . . . , 30. For ex-
ample, we see that the left-hand surrender boundary (indicated by points) increases from
wl ≈ 0.657 at t = 0 to wl ≈ 1.553 at t = 30. Note that the lower surrender threshold
increases (i.e., the investor surrenders more readily at low fund value) as the minimum
guaranteed amount (indicated by squares) increases. Note also that the upper surrender
boundary (indicated by asterisks) decreases during the 10-year surrender charge period;
thus, the investor surrenders less readily when the surrender charge is higher (at t = 0,
for example) and more readily when the surrender charge is lower (at t = 9, for exam-
ple). Beyond the surrender charge period, the upper surrender threshold increases with the
minimum guaranteed amount.
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Figure 4: The value function U and the constraint function V ◦ B for the base scenario.
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Figure 6: The investor surrenders more readily when the guaranteed minimum growth rate
is lower.

Experiment 4.2 Impact of changing the guaranteed minimum growth rates (Figure 6)
In this experiment, we examine the impact of changing the guaranteed minimum growth
rates g and g̃. Figure 6 contrasts the surrender boundaries for the following three scenarios.

• Scenario 0: g = g̃ = 0% (dotted line)

• Scenario 1: Base scenario: g = g̃ = 3% (solid line)

• Scenario 2: g = g̃ = 6% (dashed line)

The vertical axis indicates the number of the scenario while the horizontal axis shows the
no-surrender region (wl, wu). It is not surprising to see that the investor surrenders less
readily (i.e., the no-surrender region is wider) when the minimum guaranteed growth rate is
higher. In fact, when the minimum growth rate is 6%, there is no lower surrender threshold
wl for t ∈ [0, 20]; the investor will not forego the protection of the minimum guarantee,
regardless of how low the fund value drops. On the other hand, when g = g̃ = 0, the
no-surrender region is much narrower; the investor surrenders more readily at low and high
fund values.

Experiment 4.3 Impact of changing the maximum surrender charge (Figure 7)
In this experiment, we consider three different surrender fee structures.
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• Scenario 0: no surrender charge (dotted line)

• Scenario 1: the surrender charge decreases linearly from 5% to 0% over 10 years (solid
line)

• Scenario 2: Base Scenario: the surrender charge decreases linearly from 10% to 0%
over 10 years (dashed line)

In Figure 7, first note that at t = 12, 16, and 20, beyond the 10-year surrender charge
period, the surrender boundaries are the same for all three scenarios. This is intuitive as
the surrender charge no longer applies for these values of t. During the surrender charge
period (t = 0, 4, and 8), we see that the no-surrender region is wider (i.e., the investor
surrenders less readily) when the surrender charge is is higher. Note also that the left
surrender boundaries are not affected by the change in surrender charge. This is because
the left surrender boundary wl is smaller than the minimum guaranteed amount. When
the investor surrenders at w = wl, she receives the minimum guaranteed amount, but the
surrender charge does not apply to this amount; see equation (3). However, the right-hand
surrender boundary wu is affected by the change in surrender charge during the surrender
charge period. This is because wu exceeds the minimum guaranteed amount; thus, when
the investor surrenders at w = wu, she receives the fund value w, reduced by the surrender
charge. These results are consistent with our intuition.

Experiment 4.4 Impact of changing the surrender charge period (Figure 8)
In this experiment, we examine the impact of changing the surrender charge period. In
each scenario, the initial surrender charge is 10% and it decreases linearly to 0% over 5,
10, or 15 years. Thus, our three scenarios are:

• Scenario 0: 5-year surrender charge period (dotted line)

• Scenario 1: Base scenario: 10-year surrender charge period (solid line)

• Scenario 2: 15-year surrender charge period (dashed line)

In Figure 8, we see that the left-hand surrender boundaries are unaffected by the change in
the surrender charge period at all times and that the right hand boundaries are unaffected
beyond the surrender charge period; we explained these phenomena in the previous exper-
iment. At times t = 8 and t = 12, we see another unsurprising phenomenon: the investor
surrenders more readily if she is closer to the end of (or past) the surrender charge period,
when the surrender charge is lower (or zero).

However, at time t = 0, we see a surprising phenomenon. Though the surrender
charge at time zero is 10% in all three scenarios, the right-hand surrender boundary differs
markedly. In fact, it vanishes completely in scenario 0; when the surrender charge period
is only 5 years, at time t = 0, there is no upper surrender threshold wu. Thus, in this case,
the investor should continue to hold the EIA, regardless of how high the fund value grows.
Because the surrender charge decreases more rapidly, the investor can avoid the higher
surrender charge by waiting for a few years. We note that a finite right-hand surrender
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Figure 7: During the 10-year surrender charge period, the investor surrenders more readily
when the surrender charge is lower.
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Figure 8: At time t = 0, the surrender charge is 10% for all three scenarios; however,
the right-hand free boundaries differ markedly. In particular, there is no right-hand free
boundary for Scenario 0 at time t = 0.

boundary appears by time t = 4. (In fact, it happens some time in (3,4).) We note that
this is the first experiment in which the right-hand surrender boundary vanishes.

Experiment 4.5 Impact of changing the participation rate (Figure not shown)
In this experiment, we examine the impact of changing the participation rate p. We consider
the following three scenarios:

• Scenario 0: p = 80% (dotted line)

• Scenario 1: Base scenario: p = 90% (solid line)

• Scenario 2: p = 100% (dashed line)

We find that the no-surrender region is wider when the participation rate is higher; there
is greater incentive to hold the contract when p is higher. Moreover, we see that the no-
surrender region narrows (i.e., the investor surrenders more readily) as the surrender charge
decreases. Finally, the no surrender region moves to the right as the guaranteed minimum
amount increases. This is consistent with our earlier results.

Experiment 4.6 Impact of changing the annual fee (Figure 9)
In this experiment, we examine the impact of changing the annual fee fa. We consider the
following two scenarios.
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Figure 9: When the annual fee is lower, there is no upper surrender threshold at time t = 0;
the finite right-hand free boundary appears by time t = 4, when the surrender charge is
lower.

• Scenario 0: Base scenario: fa = 1.5% (solid line)

• Scenario 1: fa = 1.0% (dashed line)

Figure 9 shows that the investor should hold the contract longer when the annual fee is lower
and that the difference in the surrender boundaries is more pronounced during the 10-year
surrender charge period. Moreover, at time t = 0, there is no upper surrender threshold
wu when fa = 1.0%; the investor should continue to hold the EIA, regardless of how high
the fund value goes. At the lower annual fee, the EIA is a “good deal;” thus, the investor
should continue to hold the contract until the surrender charge decreases somewhat. Note
that a finite right-hand surrender boundary appears by time t = 4. (In fact, it happens
some time in (2,3).) This is our second experiment in which the right-hand free boundary
vanishes. (See Experiment 4.4.)

Experiment 4.7 Impact of changing the death benefit (Figure 10)
In this experiment, we examine the impact of changing the structure of the death benefit.
We consider the following two scenarios.

• Scenario 0: Base scenario: D(Wτd
, τd) = max{0.9(1.03)τdw0, Wτd

} (solid line)

• Scenario 1: D(Wτd
, τd) = max{1.4w0, Wτd

} (dashed line)
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Figure 10: The death benefit for Scenario 1 is more valuable for t < 14.95 and less valuable
for t > 14.95; the investor surrenders the product with the less valuable death benefit more
readily.

Thus, we contrast the base scenario, in which the death benefit is simply the guaranteed
minimum amount at surrender with a waiver of surrender charges, with a death benefit
whose minimum guaranteed amount is a fixed proportion of the initial net deposit w0. Note
that the two minimum death benefits are equal if τd ≈ 14.95.

In Figure 10, we see that at times 0, 4, 8, and 12 the no-surrender region is wider
(i.e., the investor surrenders less readily) in Scenario 1. This is because the guaranteed
minimum death benefit for Scenario 1 is higher when t < 14.95. For t = 16 and t = 20, the
investor surrenders less readily in Scenario 0; this is because the time-dependent guaranteed
minimum death benefit is more valuable for larger t. Note also that in Scenario 1, there is no
left-hand surrender boundary for t = 0, 4, and 8; i.e., the investor should not surrender the
contract, regardless of how low the fund value drops. A non-zero left-hand free boundary
appears by time t = 10. This is because the surrender charge is costly and the higher
minimum guaranteed death benefit is more valuable at low fund values. These results are
consistent with our intuition.
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5 General Hazard Rate

So far, we have considered only constant hazard rate λx(t) = λ for all t. Under this as-
sumption, the value function V , which governs the post-surrender asset allocation strategy,
solves the ODE (15) and is given in closed form by (17). In this section, we study the
investor’s optimal strategies under more realistic forms of the hazard rate. In this case, we
must solve the PDE (9) for V and then use V ◦B as the constraint function in solving the
variational inequality (11), (12).

Again, it is straightforward to verify that the solution to (9) is given by

V (w, t) = ξ(t)u(w), (21)

where ξ solves the ODE

ξ′ =

[

ρ + λx(t) − (r +
m

γ
)(1 − γ)

]

ξ − λx(t). (22)

Note that if λx(t) = λ is constant, ξ(t) = A solves the ODE (22), where A is given by (18).
Thus, we recover the closed form solution of Section 3 in the case of constant hazard rate.

We remark that ξ can also be computed directly from the definition of the value function
V in (6). First note that since V is given by (21) and π∗ is given by (8), we have that

π∗
t =

µ − r

γσ2
W ∗

t ,

where W ∗
t is the optimally controlled wealth. Thus, by (5), we have that

dW ∗
s = [rW ∗

s + (µ − r)π∗
s ]ds + σπ∗

sdBs

=

[

r +
(µ − r)2

γσ2

]

W ∗
s ds +

µ − r

γσ
W ∗

s dBs.

Suppose an investor has wealth w at time t. Solving the stochastic differential equation
above we have that for s > t

W ∗
s = w exp

{(

r + (µ−r)2

γσ2 − 1
2

(µ−r)2

γ2σ2

)

(s − t) + µ−r
γσ

Bs−t

}

= w exp







(

r +
(µ − r)2

γσ2

2γ − 1

2γ

)

︸ ︷︷ ︸

α1

(s − t) +
µ − r

γσ
︸ ︷︷ ︸

α2

Bs−t







= w exp{α1(s − t) + α2Bs−t}.

(23)

Now, from the definition (6) of V , we have that

V (w, t) = E[e−ρ(τd−t)u(W ∗
τd

)|Wt = w]

= E

[

e−ρ(τd−t) [w exp {α1(τd − t) + α2Bτd−t}]
1−γ

1 − γ

]
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=
w1−γ

1 − γ
︸ ︷︷ ︸

u(w)

E
[

e−ρ(τd−t)eα1(1−γ)(τd−t)eα2(1−γ)Bτd−t

]

︸ ︷︷ ︸

ξ(t)

= u(w)ξ(t);

i.e., that
ξ(t) = E

[

e−ρ(τd−t)eα1(1−γ)(τd−t)eα2(1−γ)Bτd−t

]

, (24)

where α1 and α2 are defined in the calculation (23).
Now, τd = τ is the future lifetime random variable of (x) given that she has survived

until time t; denote the probability density function of τ by fτ . The conditional distribution
of Y = Bτ−t given τ is normal with mean zero and variance τ − t; denote the probability
density function of this random variable by ϕ(y). We can compute the expectation in (24)
directly by integrating against the normal density times fτ . Letting MY denote the moment
generating function of the random variable Y , we have that

ξ(t) =
∫∞
−∞

∫∞
t exp{[−ρ + α1(1 − γ)](τ − t)} exp[α2(1 − γ)y]fτ (τ)ϕ(y)dτdy

=
∫∞
t exp{[−ρ + α1(1 − γ)](τ − t)}fτ (τ)

∫ ∞

−∞
exp[α2(1 − γ)y]ϕ(y)dy

︸ ︷︷ ︸

MY (α2(1−γ))

dτ

=
∫∞
t exp

{[

−ρ + α1(1 − γ) +
α2

2
(1−γ)2

2

]

(τ − t)
}

fτ (τ)dτ

=
∫∞
t exp

{[

−ρ + (1 − γ)(r + m
γ
)
]

(τ − t)
}

fτ (τ)dτ.

(25)

Note that ρ > (1− γ)(r + m/γ) implies that ξ ≤ 1, and from (21) it follows that V (w, t) ≤
u(w) for all t. That is, if the investor’s personal discount rate is sufficiently high, her optimal
expected future discounted utility from current wealth w is smaller than her immediate
utility from wealth w. Note also that if λx(t) = λ is constant, so that fτ (τ) = λe−λ(τ−t),
we have that ξ(t) = A, as before.

It turns out that evaluating ξ via the formulations (22) and (25) is numerically delicate
for “realistic” λx(t). In particular, we choose a Gompertz (exponential) hazard rate λx(t);
we explain this choice below in Section 5.1. The “initial” condition for the ODE (22)
is specified at T = ∞. But since λx(t) is large for large t, some numerical solvers fail.
Moreover, the choice of large T (i.e., the “numerical value” of T = ∞) affects the solutions;
the placement of the far-field condition affects the near-field solution. In addition, under
Gompertz hazard rate, the integrand in the last line of (25) approaches a delta function as
t → ∞, thus many standard numerical integration routines fail. We evaluate ξ as follows:

• use the integral formulation in the last line of (25) to evaluate ξ(T ) for some “large”
T

• use this value of ξ(T ) as the terminal condition for the ODE (22) and solve the ODE
for ξ via a Runge-Kutta solver

• during the same time-stepping procedure, use the Projected SOR Method described
in Section 4 to solve the free boundary problem for U .
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Figure 11: The two hazard rate assumptions yield the same expected future lifetime for a
50-year-old. The conditional survival probabilities differ significantly.

5.1 Numerical Experiments

In this section, we examine the impact of the more realistic mortality assumption. Consis-
tent with the mortality assumptions in Milevsky and Young (2003) and Huang, Milevsky,
and Wang (2004), we use the Gompertz hazard rate

λx(t) =
1

b
exp

(
x + t − m

b

)

.

We choose m = 90 and b = 9 to approximate the Individual Annuity Mortality 2000 (basic)
Table with projection scale G.

We consider two experiments: one for which the product features are independent of
time and one for which they are time-dependent. In both experiments, we contrast the
Gompertz hazard rate described above with the constant hazard rate λ = 0.0283. Under
both assumptions, the expected future lifetime for a 50-year-old is 35.3 years. Figure 11
shows both mortality assumptions; the top graph shows the hazard rate and the bottom
graph shows tp50, the conditional probability that a 50-year-old survives another t years,
given that she has survived to age 50. Observe that under the Gompertz hazard rate, the
conditional survival probabilities are higher for small t and lower for large t than under the
constant hazard rate.

In both experiments, we choose the parameters γ, r, µ, σ, p, ρ, w̃0, f0, and fa as in the
base scenario of Section 3.1. We describe the minimum guarantees and surrender charges
in the experiments below.
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Experiment 5.1 Product features are independent of time (Figure 12)
In this experiment, as in Section 3, we consider the case in which the product features do
not depend on time so that we can isolate the impact of the time dependent hazard rate
λx(t). In particular, we choose the minimum guaranteed amount and death benefit as in
the base scenario of Section 3.1, so that

B(Wτs
, τs) = B(Wτs

) = max {0.9w0, Wτs
}

and
D(Wτd

, τd) = D(Wτd
) = max {1.4w0, Wτd

} .

Figure 12 shows the minimum guaranteed amount and death benefit (indicated by
squares and plus signs, respectively), the lower and upper free boundaries under the Gom-
pertz hazard rate (indicated by triangles), and the lower and upper free boundaries under
the constant hazard rate (indicated by points and asterisks, respectively) for t = 0, 1, . . . , 30.
We see that for t ≤ 24, the no-surrender region is much narrower under the Gompertz haz-
ard rate; i.e., the Gompertz investor surrenders the product more readily. However, for
larger t, the Gompertz investor becomes more conservative and continues to hold the con-
tract over a wider range of fund values. In particular, for t ≥ 29, the lower free boundary
vanishes; the Gompertz investor continues to hold the EIA, regardless of how low the fund
value drops.

Even though both mortality assumptions yield the same future life expectancy
◦
e50 at

age 50, under the Gompertz hazard rate
◦
e50+t decreases with t. Under the constant hazard

rate,
◦
e50+t=

◦
e50≈ 35.3 for all t. Moreover, as we observed in the bottom graph of Figure 11,

for larger t, the conditional survival probabilities are lower for the Gompertz hazard rate
than for the constant hazard rate. Thus, as t increases, the death benefit becomes more
valuable to the Gompertz investor and she surrenders less readily.

Experiment 5.2 Time-dependent product features (Figure 13)
In this experiment, we allow the product features to vary with time. We choose the min-
imum guaranteed amount, death benefit, and surrender charges as in the base scenario of
Section 4.1, so that

B(Wτs
, τs) = max{0.9(1.03)τsw0, (1 − fs(τs))Wτs

}
D(Wτd

, τd) = max{0.9(1.03)τdw0, Wτd
},

and

fs(τs) =

{

0.01(10 − τs) 0 ≤ τs ≤ 10
0 τs > 10.

Figure 13 shows the minimum guaranteed amount and death benefit as well as the
lower and upper surrender boundaries under both mortality assumptions. We see that the
change in the mortality assumption has little impact on the free boundaries for most values
of t; though the Gompertz investor is slightly more conservative, the free boundaries are
close. Moreover, we see that no upper surrender threshold exists under either assumption
for t = 0, 1, . . . , 7; the investor will not surrender the contract, regardless of how high the
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Figure 12: The Gompertz investor surrenders more readily when t ≤ 24 and the lower free
boundary vanishes for t ≥ 29.

fund value goes, while the surrender charge is still high. For the Gompertz investor, the
finite upper surrender boundary appears in (7,8); under constant hazard rate, it appears
in (9,10). For the Gompertz investor, the future survival probabilities are higher for small
t; thus the death benefit is less valuable than under constant hazard rate. In other words,
some time between times 7 and 8, the surrender charge becomes tolerably low enough so
that the Gompertz investor is willing to pay the surrender charge and forego the protection
of the (less valuable) death benefit.

6 Fixed Maturity Time

So far, we have considered only “perpetual” EIA contracts; i.e., we have assumed that the
investor may surrender the contract at any time, but she may also continue with the EIA
(with the minimum guarantees) indefinitely. Considering the perpetual product allowed
us to examine the qualitative behavior of the surrender boundaries; however, this is not
a realistic product design. In reality, most EIA products have a fixed maturity date T .
In this section, we consider such products. In fact, we can easily adapt our model to
incorporate this feature. We find that, for the most part, the surrender boundaries for
the fixed-maturity product are qualitatively similar to those for the perpetual products
considered in the previous sections.

We consider two different product designs: one in which the investor is forced to sur-
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Figure 13: With time-dependent benefits, the mortality assumption has little impact on
the free boundaries; the Gompertz investor is slightly more conservative.

render the contract (or roll it into a new EIA) at the maturity date T , and one in which
the investor may continue with the EIA, but the minimum guarantee and death benefit are
capped at their time T levels. In other words, the guaranteed minimum growth rates are
zero beyond the maturity date.

We perform one experiment for each product design. We choose the parameter values,
product features, and mortality assumption as in Experiment 5.2 and contrast the surrender
boundaries for the perpetual product of Experiment 5.2 with the surrender boundaries
for the fixed-maturity products. The fixed maturity time coincides with the end of the
surrender charge period; i.e., T = 10.

Experiment 6.1 Forced surrender at time T = 10 (Figure 14)
Figure 14 shows the surrender boundaries for the perpetual product (indicated by triangles)
and the 10-year product (indicated by points and asterisks). We see that the surrender
boundaries are close, except near the maturity date T = 10. For the fixed maturity product,
near the maturity time T = 10, there is less uncertainty about the fund value and mortality
over the remaining horizon, so the minimum guarantee and death benefit are less valuable
than for the perpetual product. Thus, the investor surrenders the fixed-maturity contract
more readily near the maturity date.

Experiment 6.2 Guarantees capped at time T = 10 (Figure 15)
In this experiment, we assume that the investor has the option of continuing with the EIA
indefinitely, but that the guarantees are capped at their time T levels. Thus, we define the



28 Optimal Surrender Strategies for EIA Investors

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

t

N
o−

su
rr

en
de

r 
re

gi
on

 (
U

pp
er

 a
nd

 lo
w

er
 b

ou
nd

)

Upper surrender boundary (perpetual EIA)

Upper surrender boundary (maturity time T=10)

Lower surrender boundary (perpetual EIA)

Lower surrender boundary (maturity time T=10)

Figure 14: Near the maturity time T = 10, there is less uncertainty about mortality and the
fund value over the remaining life of the product, so the guarantees for the fixed maturity
product are less valuable. Thus, the investor surrenders the fixed maturity product more
readily.
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Figure 15: The surrender boundaries are constant beyond time t = 10 because the guaran-
teed minimum amounts are capped at their time ten levels.

minimum guaranteed amount and death benefit by

B(Wτs
, τs) = max{0.9(1.03)τ∗

s w0, (1 − fs(τs))Wτs
}

D(Wτd
, τd) = max{0.9(1.03)τ∗

d w0, Wτd
},

where

τ ∗
s =

{

τs τs ≤ 10
10 τs ≥ 10,

and τ ∗
d is defined similarly. The surrender charge fs is defined as in Experiment 5.2.

Figure 15 shows the surrender boundaries for the perpetual product of Experiment
5.2 (indicated by triangles) and those for the perpetual product with capped guarantees
(indicated by points and asterisks). The surrender strategies are qualitatively similar but,
as in Experiment 6.1, the investor with the capped guarantees surrenders more readily near
the maturity time T = 10. Moreover, for the product with capped guarantees, the surrender
boundaries are constant beyond time T = 10; this is because the minimum guaranteed
amount and death benefit are constant beyond this point. For the perpetual product, the
surrender boundaries continue to increase with the minimum guaranteed amount. These
results are consistent with our intuition and our prior results.
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7 Conclusion

In this paper, we considered the optimal time for an investor to surrender an EIA contract.
We examined the impact of product features, model parameters, and mortality assumptions
on the optimal strategies and observed that, in some cases, there is no upper or lower
surrender threshold. In the special case of time-homogeneous product features and constant
hazard rate, we proved a succinct and intuitive condition on the model parameters that
determines whether one or two free boundaries exist.

Several interesting directions for future work on this problem remain open; we give a
partial list below.

• Is it possible to prove a characterization of the free boundary similar to Theorem 3.3
in the time-dependent case? Friedman and Shen (2002) prove this type of theorem
for the optimal exercise boundary of an early retirement option.

• In Moore and Young (2005), we also considered the problem from the insurer’s per-
spective in the time-homogenous case. Is it possible to extend this analysis to the
time-dependent case?

• One might argue that utility of bequest is not the most natural objective. One might
consider other optimization criteria, such as expected discounted wealth (or utility of
wealth) at some fixed time T , such as retirement, or the probability of lifetime ruin;
see, for example Milevsky, Moore, and Young (2005).

• In our analysis, we have ignored the fact that, after surrendering the contract, the in-
vestor earns the growth in the index and receives dividends. How would the inclusion
of post-surrender dividends affect the optimal strategies?

• Could this analysis be extended to other indexing methods, such as the more popular
annual reset method?

Acknowledgments: I gratefully acknowledge the Society of Actuaries for funding this
project through a CKER Individual Grant. I especially thank Virginia Young, Fred Terry,
and the participants of the 2006 Actuarial Research Day at University of Western Ontario
for many fruitful discussions of this work.
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8 Appendix 1: The Proof of Theorem 3.3

In this section, we prove Theorem 3.3. To do so, we briefly summarize the results and
notation of Section 2.2 of Moore and Young (2005) and we repeat some of the definitions
and results of Section 3 for the reader’s convenience.

In the no-surrender region, we wish to solve the free boundary problem (16), which we
restate here:

{

(pµ − fa)wU ′ + 1
2
p2σ2w2U ′′ + λu(D(w)) = U(ρ + λ)
U(w) ≥ V (B(w)).

}

(26)

The functions B and D are given by

B(w) = max{sw0, w} and
D(w) = max{dw0, w}.

It is straightforward to verify that the solution to the ODE in (26) is given by

U(w) =







C1w
a1 + C2w

a2 + λ
ρ+λ

(dw0)1−γ

1−γ
, w ∈ (0, dw0)

C̃1w
a1 + C̃2w

a2 + Ãw1−γ

1−γ
, w ≥ dw0,

(27)

where a1 and a2 are the positive and negative roots, respectively, of

1

2
p2σ2a2 +

(

pµ − fa −
1

2
p2σ2

)

a − (ρ + λ) = 0 (28)

and Ã is given by

Ã =
λ

ρ + λ − (pµ − fa)(1 − γ) + p2σ2γ(1 − γ)/2
.

In Moore and Young (2005), we postulated the existence of lower and upper surrender
thresholds wl and wu. In that paper, we computed the six unknowns wl, wu, Ci, C̃i, (i = 1, 2)
by assuming:

• that U is continuous and smooth at w = dw0

• value-matching and smooth-pasting conditions at wl and wu; i.e., that the value
function U meets the constraint function V ◦ B smoothly at wl and wu.

These conditions gave six equations for the six unknowns. In that paper, we gave an
algorithm for solving the system. The key step in the algorithm was finding a root x = wu

w0

of the following function:

η(x) = B11{B12x
1−γ − B13x

a1}
︸ ︷︷ ︸

η1(x)

− [B21{B22x
1−γ − B23x

a2}
a1
a2

︸ ︷︷ ︸

η2(x)

; (29)
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see equations (2.31) and (2.32) of Moore and Young (2005). From the value of x = wu

w0
, we

were able to successfully solve for C̃j, wl, and Cj, j = 1, 2; see Section 2.2 of Moore and
Young (2005).

In this section, we prove Theorem 3.3, namely, that the existence (or non-existence) of
a real root of η, and hence of two surrender boundaries, depends on the sign of Q, where

Q = As1−γ −
λ

ρ + λ
d

1−γ
(30)

and A is given by

A =
λ

ρ + λ − (r + m/γ)(1 − γ)
. (31)

We define the constants Bij and state our assumptions below.

Definition 8.1 We define the following:

B11 =
1

a2Q

B21 =
1

a1Q

B12 = (A − Ã)(a2 − (1 − γ))

B22 = (A − Ã)(a1 − (1 − γ))

B13 =

[

a2

(

λ

ρ + λ
− Ã

)

+ Ã(1 − γ)

]

d
1−γ−a1

B23 =

[

a1

(

λ

ρ + λ
− Ã

)

+ Ã(1 − γ)

]

d
1−γ−a2

.

Assumption 8.2 To prove each of the three parts of Theorem 3.3, we must assume some
of the conditions below.

(A1): B12 > 0
(A2): B13, B22, B23 < 0
(A3): a2 < 1 − γ
(A4): B23 < B22 < 0
(A5): a1 > 1

Remark 8.3 Assumptions (A1)-(A4) are innocuous for “realistic” values of the model
parameters; they held for every “realistic” choice of parameters that we tested. On the
other hand, the order of B13 and B23 varies for “realistic” examples; thus, we do not
impose an assumption on the ordering of these constants.

Since a1 is the positive root of the quadratic function given in (28), assuming that a1 > 1
is equivalent to assuming that pµ−fa−(ρ+λ) < 0; i.e., that the drift on the index (adjusted
for the participation rate and fees) is smaller than the investor’s mortality-adjusted discount
rate. This assumption also held for all of our “realistic” choices of model parameters.
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We prove Theorem 3.3 in three parts, as Theorems 8.4 through 8.6 below.

Theorem 8.4 Assume that γ > 1 and that the model parameters satisfy the conditions
(A1) and (A2) of Assumption 8.2. Suppose Q > 0. Then there is no real root of the
function η given in (29).

Proof: If Q > 0, then B11 < 0 and B21 > 0. Assumptions (A1) and (A2) imply that
η1 < 0 on (0,∞). Since a1/a2 < 0, η2 is either positive or non-real. In either case, since
η1 < 0, η has no real root.

Theorem 8.5 Assume that γ > 1 and that the model parameters satisfy the conditions
(A1)-(A4) in Assumption 8.2. Suppose Q < 0. Then the function η given in (29) has a
real root x > 1.

Proof: Note that η has a root if and only if there exists an x such that η1(x) = η2(x),
where η1 and η2 are defined in (29). The idea of the proof is quite simple:

• we show that there exists an x∗ > 1 such that η2(x
∗) = ∞

• we show that there exists an x̃ > x∗ such that η1(x̃) > η2(x̃) and

• we use the continuity of η1 and η2 on (x∗, x̃) to conclude that the graphs of η1 and η2

must cross in (x∗, x̃).

That is the simple idea of the proof; the details follow. Figure 16 shows the qualitative
properties of the functions η1, η2, η

a
1 , and ηa

2 ; the reader might find it helpful to refer to this
figure occasionally while reading through the proof.

Note first that since Q < 0, we have that B11 > 0 and B21 < 0. Define

η̃2(x) = η2(x)
a2
a1 = B21{B22x

1−γ − B23x
a2},

and note that η̃2 has a zero at

x = x∗ :=
(

B23

B22

) 1

1−γ−a2

;

by Assumptions (A2)-(A4), x∗ > 1.
Assumption (A4) implies that η̃2(1) < 0; thus η̃2 < 0 on (0, x∗). It follows that η2 /∈ R

on (0, x∗). We claim that η̃2 > 0 on (x∗,∞). To prove this, we find a “special” xc > x∗

such that η̃(xc) > 0. Since η̃ is continuous and has no other roots on (x∗,∞), if follows
that η2 > 0 on (x∗,∞).

Let xc be the critical point of η̃2; i.e.,

xc =

[

B22(1 − γ)

B23a2

] 1

γ−1+a2

.
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Note that

xc =
(

B22

B23

) 1

γ−1+a2
(

1 − γ

a2

) 1

γ−1+a2

=
(

B22

B23

) 1

γ−1+a2

ℓ = x∗ℓ.

Also, by Assumption (A3), ℓ > 1; therefore, x∗ < xc.
We claim that η̃2(xc) > 0. To see this, note that

η̃2(xc)

B21
= B22x

1−γ
c − B23x

a2

c

= B22(x
∗ℓ)1−γ − B23(x

∗ℓ)a2

= ℓ1−γ [B22x
∗1−γ − B23x

∗a2ℓa2−1+γ].

Recall that x∗ is a zero of η̃2; thus, by Assumptions (A2) and (A3), we have that

B22x
∗1−γ = B23x

∗a2 < B23x
∗a2ℓa2−1+γ,

since ℓa2−1+γ < 1. Therefore, η̃2(xc)
B21

< 0 and, since Q < 0 implies that B21 < 0, we have
that η̃2(xc) > 0.

Thus, on (x∗, xc), we have the following:

• η̃2 > 0 and therefore η2 > 0

• η̃2 → 0 as x → x∗ and as x → ∞

• η2 → ∞ as x → x∗ and as x → ∞

• x = xc is a global minimum of η2;

see the middle graph in Figure 16.
To show that η has a zero on (x∗,∞), we first note that Q < 0, (A1), and (A3) together

imply that η1 ≥ 0 on (0,∞). Since η2 → ∞ at x = x∗, we have that η1 < η2 near x = x∗.
We claim that there exists an x̃ > x∗ such that η1(x̃) > η2(x̃); thus, the graphs of η1 and
η2 cross in (x∗, x̃). The crossing point is a zero of η.

Note that for large x, by (A2)-(A4) we have

η1(x) ≈ ηa
1(x) := −B11B13x

a1 < η1(x)

η2(x) ≈ ηa
2(x) := [B21B22x

1−γ ]
a1

a2 < η2(x);

ηa
j are the dominant terms (or asymptotic limits) of ηj, j = 1, 2; see the bottom graph in

Figure 16. We claim that ηa
1 > ηa

2 for large x. This is simply because ηa
1 is a higher power

of x. To make this more precise, observe that for large x, (A3) implies that

(−B11B13)
1

a1 x
︸ ︷︷ ︸

ηa
1
(x)

1
a1

> (B21B22)
1

a2 x
1−γ

a2

︸ ︷︷ ︸

ηa
2
(x)

1
a1

.

It follows then that ηa
1(x) > ηa

2(x) for large x. Moreover, the distance between ηa
1 and ηa

2

increases with x; see the third graph in Figure 16.
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Figure 16: In the middle graph, we see that η2 has a vertical asymptote at x = x∗ ≈ 1.50.
The top graph shows that η1 is eventually greater than η2. We can make this argument
precise by considering ηa

1 and ηa
2 for “large” x.

We have shown that the graph of η1 starts out below the graph of η2 and the (approx-
imate) graph of η1 is eventually above the (approximate) graph of η2. We conclude that
η1 is eventually greater than η2. To make this a precise argument, choose ε > 0. Since
η1 − ηa

1 → 0, η2 − ηa
2 → 0, and the distance between ηa

1 and ηa
2 increases with x, we can

choose x1, x2, and x3 to satisfy the following:

• η1 − ηa
1 < ε for x > x1;

• η2 − ηa
2 < ε for x > x2;

• ηa
1 − ηa

2 > 3ε for x > x3.

Let x̃ = max{x1, x2, x3}. Then at x = x̃, we have

η1 − η2 = η1 − ηa
1 + ηa

1 − (η2 − ηa
2 + ηa

2)

= η1 − ηa
1

︸ ︷︷ ︸

∈(0,ε)

− (η2 − ηa
2)

︸ ︷︷ ︸

∈(0,ε)

+ ηa
1 − ηa

2
︸ ︷︷ ︸

>3ε

≥ 0 − ε + 3ε = 2ε.

Since η1 > η2 at x = x̃, there must be a zero of η in (x∗, x̃); the proof is complete.
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Theorem 8.6 Assume that γ > 1 and that condition (A5) of Assumption 8.2 holds. Sup-
pose Q = 0. Then the lower surrender threshold occurs at wl = 0.

Proof: Set C2 = 0 in the solution (27) to the ODE (26), so that for w ∈ (0, dw0),

U(w) = C1w
a1 +

λ

ρ + λ

(dw0)
1−γ

1 − γ
.

Then it is easy to verify that when Q = 0,

U(0) =
λ

ρ + λ

(dw0)
1−γ

1 − γ
= A

(sw0)
1−γ

1 − γ
= (V ◦ B)(0)

and that
d

dw
U(w)|w=0 = C1w

a1−1|w=0 = 0 =
d

dw
(V ◦ B)(0);

thus, the value function U meets the constraint function V ◦ B smoothly at w = 0. Note
that we used the fact that a1 > 1 in computing the U ′(0) and that we did not need any of
the other conditions of Assumption 8.2.
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