Math 676, Homework 1

(Turn in solutions to 5 problems.)

1. A primitive Pythagorean triple (abbreviated PPT) is a triple (z,y,2) € Z3 such
that (i) 22 +y* = 2% and (ii) @, y, and z have no common factors. Classify all such

triples, as given in (g), (h) below.
(a) Show that Zz[i] is a Euclidean domain. See Niven, Zuckerman, Montgomery,
Sec. 1.2, 1.3 and generalize the proof for 7).
(b) Deduce that Z[i] is a unique factorization domain.
(c) Show that if (a,b,c) is a PPT, then ¢ must be odd.

(d) Suppose (a,b,c) is a PPT. Show that if 7 is a prime element in Z[i] which
divides (a+1b), then 7 does not divide (a —b). (Hint: if 7 divides both, then
it divides 2a. Since 7 divides the relatively prime numbers ¢ and 2a, use the
fact that z[i] is Euclidean to conclude that = divides 1.)

(e) Conclude that if (a, b, ¢) is a PPT and 7 is a prime in Z[i] which divides a+ib,
then 72 divides a + ib.

(f) Note that the units in z[i] are {1, —1,4, —i}. From the above, if (a,b,c) is a
PPT, then a + ib = uz? where u is a unit in Z[i] and z € Z[i].

(g) Show that (a,b,c) is a PPT iff there are relatively prime m,n € Z both not

odd and m > 0 so that a = (m? — n?) and b = 2mn, or vice-versa.

(h) How unique are n and m?

(i) (Extra Credit)(*) Classify all solutions to x? + y* + 2* with z,y,2 € Z[i],
having no common factors in Z[i]. (The question makes sense since Z[i] is a
UFD.)
2. Prove or disprove:
(a) The ring Z[3] is integrally closed in its quotient field Q.
(b) The ring Z[v/5] is integrally closed in its quotient field Q(v/5).

3. Let d be a squarefree integer. Show that the ring of algebraic integers of Q(\/E) is:

(a) z[/d] when d is congruent to 2 or 3 mod 4.
(b) z[(1 ++/d)/2] when d is congruent to 1 mod 4.



10.

Prove the Cayley-Hamilton theorem: Suppose V' is an n-dimensional vector space
over a field k. Suppose {vi,vs,...,v,} is a basis for V. Show that there exist
polynomials py, pa,...,p, € Zlx;;] with 1 < i,j < n so that if T € Endg(V) is
represented by the matrix (7;;) with respect to the basis {vi,vs,...,v,}, then
T + pu(Tig) T + po(Tij) T2 + -+ + pa(Tiy) = 0. What is pi(T})?

(a) Show that {1,2'/3,22/3} is an integral basis of @(2'/3) (That is, show every
element of the ring of integers for Q(2'/3) may be written as a unique integral
combination of 1, 2'/3, and 2%/3).

(b) Show that {1,6, (6 + 6%)/2} is an integral basis for Q(f) where 6% — 0 = 4.

(Theorem of the primitive element) An algebraic number field K = Q(ay, ..., ay)
where each «a; satisfies a polynomial equation over Q. Show that there is an alge-
braic number [ such that K = Q(3), Show that  can be taken to be an algebraic

integer. [You should know this result, but please write down a proof.|

(a) Let Q be the algebraic closure of Q, and let A be the integral closure of Z in Q.
Prove that for any number field K with ring of integers Ok that Ox = AN K.

(b) Let K, L be algebraic number fields with K C L and let B an integrally closed
subring of L. Let A = BN K. Prove or disprove: A is integrally closed in K.

Prove that Q(¢,) and Q((,,) are isomorphic (as abstract fields) if and only if

n =m or n = 2m with m odd, or m = 2n with n odd. (Hint: For odd n, consider
—(3 = (5,. The remainder of the proof requires that you brush up on your
Galois theory. One approach is to look at Q((,) and Q((,,) as subfields of some

suitable Q(¢x). Another is to use the fact that [Q((,) : Q] = ¢(n).)

. (*) Let a primitive Eulerian triple be a solution to x® 4+ 3® = 23, with z,y, 2 in the

UFD z[(s] with (s = %], and with z,y, z pairwise relatively prime. Show that
xyz = 0. ( This is Fermat’s last theorem for n = 3. My idea was that you imitate
the proof of problem 1 through (f), using 2% + ¢ = (z + y)(z — Cy)(z — °y), and

see how far you get, completing argument with infinite descent.)

(*) [Problem outside the course] The elements « of a number field K act as endo-
morphisms E, on a basis of K as a vector space over Q. If [K : Q] = n then this
action is represented by n x n matrices (with Q-coefficients); these matrices depend
on the basis of K chosen. The endomorphisms {F,, : @ € K} form a commutative

subalgebra of M, (C), the ring of n x n matrices, of dimension n, since it is a ring



isomorphic to K. Prove, in general, that any commutative subalgebra of M, (K)

over a field K containing Q has dimension at most n: do it for K = C.



