Math 676, Homework 1

(Turn in solutions to 5 problems.)

- 1. A primitive Pythagorean triple (abbreviated PPT) is a triple $(x, y, z) \in \mathbb{Z}^3$ such that (i) $x^2 + y^2 = z^2$ and (ii) x, y, and z have no common factors. Classify all such triples, as given in (g), (h) below.
 - (a) Show that $\mathbb{Z}[i]$ is a Euclidean domain. See Niven, Zuckerman, Montgomery, Sec. 1.2, 1.3 and generalize the proof for \mathbb{Z}).
 - (b) Deduce that $\mathbb{Z}[i]$ is a unique factorization domain.
 - (c) Show that if (a, b, c) is a PPT, then c must be odd.
 - (d) Suppose (a, b, c) is a PPT. Show that if π is a prime element in $\mathbb{Z}[i]$ which divides (a+ib), then π does not divide (a-ib). (Hint: if π divides both, then it divides 2a. Since π divides the relatively prime numbers c and 2a, use the fact that $\mathbb{Z}[i]$ is Euclidean to conclude that π divides 1.)
 - (e) Conclude that if (a, b, c) is a PPT and π is a prime in $\mathbb{Z}[i]$ which divides a + ib, then π^2 divides a + ib.
 - (f) Note that the units in $\mathbb{Z}[i]$ are $\{1, -1, i, -i\}$. From the above, if (a, b, c) is a PPT, then $a + ib = ux^2$ where u is a unit in $\mathbb{Z}[i]$ and $x \in \mathbb{Z}[i]$.
 - (g) Show that (a, b, c) is a PPT iff there are relatively prime $m, n \in \mathbb{Z}$ both not odd and m > 0 so that $a = (m^2 n^2)$ and b = 2mn, or *vice-versa*.
 - (h) How unique are n and m?
 - (i) (Extra Credit)(*) Classify all solutions to $x^2 + y^2 + z^2$ with $x, y, z \in \mathbb{Z}[i]$, having no common factors in $\mathbb{Z}[i]$. (The question makes sense since $\mathbb{Z}[i]$ is a UFD.)
- 2. Prove or disprove:
 - (a) The ring $\mathbb{Z}\left[\frac{1}{2}\right]$ is integrally closed in its quotient field \mathbb{Q} .
 - (b) The ring $\mathbb{Z}[\sqrt{5}]$ is integrally closed in its quotient field $\mathbb{Q}(\sqrt{5})$.
- 3. Let d be a squarefree integer. Show that the ring of algebraic integers of $\mathbb{Q}(\sqrt{d})$ is:
 - (a) $\mathbb{Z}[\sqrt{d}]$ when d is congruent to 2 or 3 mod 4.
 - (b) $\mathbb{Z}[(1+\sqrt{d})/2]$ when d is congruent to 1 mod 4.

- 4. Prove the Cayley-Hamilton theorem: Suppose V is an n-dimensional vector space over a field k. Suppose $\{v_1, v_2, \ldots, v_n\}$ is a basis for V. Show that there exist polynomials $p_1, p_2, \ldots, p_n \in \mathbb{Z}[x_{ij}]$ with $1 \leq i, j \leq n$ so that if $T \in \operatorname{End}_k(V)$ is represented by the matrix (T_{ij}) with respect to the basis $\{v_1, v_2, \ldots, v_n\}$, then $T^n + p_1(T_{ij})T^{n-1} + p_2(T_{ij})T^{n-2} + \cdots + p_n(T_{ij}) = 0$. What is $p_1(T_{ij})$?
- 5. (a) Show that $\{1, 2^{1/3}, 2^{2/3}\}$ is an integral basis of $\mathbb{Q}(2^{1/3})$ (That is, show every element of the ring of integers for $\mathbb{Q}(2^{1/3})$ may be written as a unique integral combination of 1, $2^{1/3}$, and $2^{2/3}$).
 - (b) Show that $\{1, \theta, (\theta + \theta^2)/2\}$ is an integral basis for $\mathbb{Q}(\theta)$ where $\theta^3 \theta = 4$.
- 6. (Theorem of the primitive element) An algebraic number field $K = \mathbb{Q}(\alpha_1, ..., \alpha_k)$ where each α_j satisfies a polynomial equation over \mathbb{Q} . Show that there is an algebraic number β such that $K = \mathbb{Q}(\beta)$, Show that β can be taken to be an algebraic integer. [You should know this result, but please write down a proof.]
- 7. (a) Let $\bar{\mathbb{Q}}$ be the algebraic closure of \mathbb{Q} , and let \mathbb{A} be the integral closure of \mathbb{Z} in $\bar{\mathbb{Q}}$. Prove that for any number field K with ring of integers O_K that $O_K = \mathbb{A} \cap K$.
 - (b) Let K, L be algebraic number fields with $K \subset L$ and let B an integrally closed subring of L. Let $A = B \cap K$. Prove or disprove: A is integrally closed in K.
- 8. Prove that $\mathbb{Q}(\zeta_n)$ and $\mathbb{Q}(\zeta_m)$ are isomorphic (as abstract fields) if and only if n=m or n=2m with m odd, or m=2n with n odd. (Hint: For odd n, consider $-\zeta_{2n}^{n+1}=\zeta_{2n}$. The remainder of the proof requires that you brush up on your Galois theory. One approach is to look at $\mathbb{Q}(\zeta_n)$ and $\mathbb{Q}(\zeta_m)$ as subfields of some suitable $\mathbb{Q}(\zeta_N)$. Another is to use the fact that $[\mathbb{Q}(\zeta_n):\mathbb{Q}]=\varphi(n)$.)
- 9. (*) Let a primitive Eulerian triple be a solution to $x^3 + y^3 = z^3$, with x, y, z in the UFD $\mathbb{Z}[\zeta_6]$ with $\zeta_6 = \frac{1+\sqrt{-3}}{2}]$, and with x, y, z pairwise relatively prime. Show that xyz = 0. (This is Fermat's last theorem for n = 3. My idea was that you imitate the proof of problem 1 through (f), using $x^3 + y^3 = (x+y)(x-\zeta y)(x-\zeta^5 y)$, and see how far you get, completing argument with infinite descent.)
- 10. (*) [Problem outside the course] The elements α of a number field K act as endomorphisms E_{α} on a basis of K as a vector space over \mathbb{Q} . If $[K:\mathbb{Q}]=n$ then this action is represented by $n \times n$ matrices (with \mathbb{Q} -coefficients); these matrices depend on the basis of K chosen. The endomorphisms $\{E_{\alpha}: \alpha \in K\}$ form a commutative subalgebra of $M_n(\mathbb{C})$, the ring of $n \times n$ matrices, of dimension n, since it is a ring

isomorphic to K. Prove, in general, that any commutative subalgebra of $M_n(K)$ over a field K containing \mathbb{Q} has dimension at most n: do it for $K = \mathbb{C}$.