
Math 676, Homework 1

(Turn in solutions to 5 problems.)

1. A primitive Pythagorean triple (abbreviated PPT) is a triple (x, y, z) ∈ Z3 such

that (i) x2 +y2 = z2 and (ii) x, y, and z have no common factors. Classify all such

triples, as given in (g), (h) below.

(a) Show that Z[i] is a Euclidean domain. See Niven, Zuckerman, Montgomery,

Sec. 1.2, 1.3 and generalize the proof for Z).

(b) Deduce that Z[i] is a unique factorization domain.

(c) Show that if (a, b, c) is a PPT, then c must be odd.

(d) Suppose (a, b, c) is a PPT. Show that if π is a prime element in Z[i] which

divides (a+ ib), then π does not divide (a− ib). (Hint: if π divides both, then

it divides 2a. Since π divides the relatively prime numbers c and 2a, use the

fact that Z[i] is Euclidean to conclude that π divides 1.)

(e) Conclude that if (a, b, c) is a PPT and π is a prime in Z[i] which divides a+ib,

then π2 divides a + ib.

(f) Note that the units in Z[i] are {1,−1, i,−i}. From the above, if (a, b, c) is a

PPT, then a + ib = ux2 where u is a unit in Z[i] and x ∈ Z[i].

(g) Show that (a, b, c) is a PPT iff there are relatively prime m, n ∈ Z both not

odd and m > 0 so that a = (m2 − n2) and b = 2mn, or vice-versa.

(h) How unique are n and m?

(i) (Extra Credit)(*) Classify all solutions to x2 + y2 + z2 with x, y, z ∈ Z[i],

having no common factors in Z[i]. (The question makes sense since Z[i] is a

UFD.)

2. Prove or disprove:

(a) The ring Z[1
2
] is integrally closed in its quotient field Q.

(b) The ring Z[
√

5] is integrally closed in its quotient field Q(
√

5).

3. Let d be a squarefree integer. Show that the ring of algebraic integers of Q(
√

d) is:

(a) Z[
√

d] when d is congruent to 2 or 3 mod 4.

(b) Z[(1 +
√

d)/2] when d is congruent to 1 mod 4.
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4. Prove the Cayley-Hamilton theorem: Suppose V is an n-dimensional vector space

over a field k. Suppose {v1, v2, . . . , vn} is a basis for V . Show that there exist

polynomials p1, p2, . . . , pn ∈ Z[xij] with 1 ≤ i, j ≤ n so that if T ∈ Endk(V ) is

represented by the matrix (Tij) with respect to the basis {v1, v2, . . . , vn}, then

T n + p1(Tij)T
n−1 + p2(Tij)T

n−2 + · · ·+ pn(Tij) = 0. What is p1(Tij)?

5. (a) Show that {1, 21/3, 22/3} is an integral basis of Q(21/3) (That is, show every

element of the ring of integers for Q(21/3) may be written as a unique integral

combination of 1, 21/3, and 22/3).

(b) Show that {1, θ, (θ + θ2)/2} is an integral basis for Q(θ) where θ3 − θ = 4.

6. (Theorem of the primitive element) An algebraic number field K = Q(α1, ..., αk)

where each αj satisfies a polynomial equation over Q. Show that there is an alge-

braic number β such that K = Q(β), Show that β can be taken to be an algebraic

integer. [You should know this result, but please write down a proof.]

7. (a) Let Q̄ be the algebraic closure of Q, and let A be the integral closure of Z in Q̄.

Prove that for any number field K with ring of integers OK that OK = A ∩K.

(b) Let K, L be algebraic number fields with K ⊂ L and let B an integrally closed

subring of L. Let A = B ∩K. Prove or disprove: A is integrally closed in K.

8. Prove that Q(ζn) and Q(ζm) are isomorphic (as abstract fields) if and only if

n = m or n = 2m with m odd, or m = 2n with n odd. (Hint: For odd n, consider

−ζn+1
2n = ζ2n. The remainder of the proof requires that you brush up on your

Galois theory. One approach is to look at Q(ζn) and Q(ζm) as subfields of some

suitable Q(ζN). Another is to use the fact that [Q(ζn) : Q] = ϕ(n).)

9. (*) Let a primitive Eulerian triple be a solution to x3 + y3 = z3, with x, y, z in the

UFD Z[ζ6] with ζ6 = 1+
√
−3

2
], and with x, y, z pairwise relatively prime. Show that

xyz = 0. ( This is Fermat’s last theorem for n = 3. My idea was that you imitate

the proof of problem 1 through (f), using x3 + y3 = (x + y)(x− ζy)(x− ζ5y), and

see how far you get, completing argument with infinite descent.)

10. (*) [Problem outside the course] The elements α of a number field K act as endo-

morphisms Eα on a basis of K as a vector space over Q. If [K : Q] = n then this

action is represented by n×n matrices (with Q-coefficients); these matrices depend

on the basis of K chosen. The endomorphisms {Eα : α ∈ K} form a commutative

subalgebra of Mn(C), the ring of n× n matrices, of dimension n, since it is a ring
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isomorphic to K. Prove, in general, that any commutative subalgebra of Mn(K)

over a field K containing Q has dimension at most n: do it for K = C.
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