
Math 676, Homework 3 (Revised 2)

(Note: Problems 1, 2, 3, 9, 10: Marcus, Chapter 3 pp. 92-94.)

1. [Fractional Ideals and Different] Let L/K be number fields with rings of integers

OK , OL. L can be considered both as an OK-module and as an OL-module. Let A be

an additive subgroup of L. Define

A−1 := {α ∈ L : αA ⊂ OL}
A∗ := {α ∈ L : TrL/K(αA) ⊂ OK}.

Define the different δ(A) (also denoted diff(A)) in terms of these definitions by

δ(A) := (A∗)−1,

it will be an OL-module, see below, and its definition is made with respect to the OK-

module structure on OL given by the trace map. The different is an invariant which is

related to the discriminant, see Problem 9.

Llet A, B denote additive subgroups of L and I a fractional OL ideal in L (called

hereafter a fractional L-ideal.)

(a) Show that A−1 is an OL-submodule of L, and A∗ is an OK-submodule of L (i.e.

OLA−1 ⊂ A−1 and OKA∗ ⊂ A∗.) Then show that

A ⊂ B ⇒ B−1 ⊂ A−1 and B∗ ⊂ A∗.

(b) Show that A is a fractional ideal in L if and only if

OLA ⊂ A and A−1 6= {0}.

(c) For a fractional ideal I of L and additive subgroups A, B of L show that

I = (I−1)−1

I∗ is an OL − submodule of L

I∗ is a fractional ideal.

II∗ ⊂ (OL)∗

I∗(I∗)∗ = (OL)∗

(I∗)∗ = I.
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(d) For the different show that:

δ(A) ⊂ (A−1)−1

δ(I) ⊂ I

δ(I) is a fractional ideal.

A ⊂ I ⇒ δ(A) is a fractional ideal.

I∗ ⊂ (δ(I))−1

δ(I) = Iδ(OL)

2. [Dual Basis for Trace] Let L/K be number fields with [L : K] = n. Let {α1, ..., αn}
be a basis for L over K as a vector space.

(a) Prove there exist β1, ...., βn ∈ L such that TrL/K(αiβj) = 1 if i = j, 0 otherwise.

(Hint: recall that d(α1, ...αn) = det[TrL/K(α1αj)] 6= 0.) Show that {β1, ..., βn}is another

basis of L over K. (It is called the dual basis for the trace bilinear form.)

(b) Let A = OKα1 ⊕ · · · ⊕ OKαn ⊂ L be the free OK-module generated by the αi.

Show that

A∗ = B

where B = OKβ1 ⊕ · · · ⊕ OKβn ⊂ L. (Hint: Given γ ∈ A∗, obtain β ∈ B such that

TrL/K((γ − β)A) = 0, and show this implies γ = β.)

3. [Power Basis and Different] Let L/K number fields, with L = K(α), noting that

L = K[α] as well. Let f(x) be the monic irreducible polynomial α satisfies over K, and

write f(x) = (x− α)g(x). Then write

g(x) = γn−1x
n−1 + γn−1x

n−2 + · · ·+ γ0,

for some γi ∈ L. This problem is to show that the dual basis to the power basis

A = OK [1, α, α2, · · ·αn−1]

is

B = OK [
γ0

f ′(α)
, · · · , γn−1

f ′(α)
]

(a) Let σ1, · · · , σn be embeddings of L in C fixing K pointwise. The the σi(α) are

the roots of f(x). Show that

f(x) = (x− αi)gi(x)
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with gi(x) being the polyomial obtained from g(x) by applying σi to its coefficients., and

αi = σi(α).

(b) Show that gi(αj) = f ′(αj) if i = j and 0 otherwise. [Hint: Show f ′(α) =
∏

(α−β)

where β runs over all roots unequal to α.]

(c) Let M be the Vandermonde matrix M = [(αj)
i−1]ij. Let N be the matrix

N = [σi(
γj−1

f ′(α)
)]ij. Show that NM = I, and conclude N = M−1.

(d) Show that if α ∈ OL then the OK-module

B = OK [γ0, γ1, · · · γn−1]

is the ring B = OK [α]. (Hint: multiply out (x− α)g(x).)

(e) Prove that if α ∈ OL then

(OK [α])∗ = (f ′(α))−1OK [α].

(f) Prove that if α ∈ OL then the different

δ(OK [α]) = f ′(α)OL.

(g) Prove that if α ∈ OL then

f ′(α) ∈ δ(OL).

4. [Localization and PID’s] Let R be a (commutative) integral domain with unit, that

is Noetherian, and contains a finite number of nonzero prime ideals.

(a) Show that if R is a Dedekind domain and has only one prime ideal, then it is a

PID, i.e. all prime ideals are principal.

(b) Extend your proof in (a) to show R is a PID if is a semi-local Dedekind domain,

i.e. it has a finite number of maximal ideals.

(c) (*) Is the PID conclusion always true without the Dedekind domain assumption?

What about being a UFD?
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5. [General Basis of OK .] Let K = Q(α) where α is an algebraic integer. We showed

that the ring of integers can be written

OK = Z[1,
f1(α)

d1

,
f2(α)

d2

, · · · , fn−1(α)

dn−1

] with di | di+1,

and fi(x) ∈ Z[x] is a monic polynomial of degree i.

(a) Show that

d(Z[α]) = (d1d2 · · · dn−1)
2∆K .

[Hint: First show that d(1, α, α2 · · · , αn−1] = d[1, f1(α), ..., fn−1(α).]

(b) Show that [OK : Z[α] ] = d1d2 · · · dn−1.

(c) Show that didj|di+j if i + j ≤ n− 1.

[Hint: Consider fi(α)fj(α)

didj
.]

(d) Show that for 1 ≤ i ≤ n− 1, (d1)
i| di. Conclude that

(d1)
n(n−1) | d(Z[α]).

6. [Cyclotomic Field Discriminant: Sharpening of Lemma 10.1.1]. Find the discriminant

of the cyclotomic field Q(ζm).

(a) Show that the discriminant of the cyclotomic field for m = pk a prime power is

∆pk := ±ppn−1((p−1)n−1.

(b) Determine for which pn the minus sign occurs in (a).

(c) Using (a), (b), prove that the discriminant of Q(ζm) for general n is

∆m := (−1)φ(m)/2 mφ(m)∏
p|m pφ(m)/(p−1)

.

7. [Quadratic Fields in Cyclotomic Fields] This exercise relates quadratic fields and

cyclotomic fields.

(a) Show that every cyclotomic field L = Q(ζn) for n ≥ 3 contains at least one

quadratic subfield K = Q(
√

D).

(b) For each odd prime p show that this quadratic field is unique, and that it is

K = Q(
√
±p) so that ±p ≡ 1 (mod 4).
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[Hint: Consider the discriminant of Q(ζp) computed in problem 6. Note that the

discriminant of a power basis is a square of something. ]

(c) Show that
√

2 is in Q(ζ8).

(d) Show that every quadratic field K = Q(
√

D) is a subfield of some cyclotomic

field. Identify the smallest m that you can, given a factorization of D. (It is m = ∆K).

8. [Ideal Class Groups] (a) Use Minkowski’s bounds on the norm of elements in ideal

classes to prove that Q(
√
−3 and Q(

√
5) have trivial ideal class group (class number 1).

(b) Show Q(
√

21) has class number 1. Do the same for Q(
√

17). [Hint: Analyze

factorization/principality of prime ideals of small norm.]

9. [Different and Ramification] Let L/K be number fields and let consider the different

δ(OL) defined with respect to OK ; it is an integral OL-ideal. Let P be a prime ideal in

OK , and Q a prime ideal in OL lying over P . This exercise shows that if Q is ramified

with index e = e(Q/P ) ≥ 2, then Qe−1 | δ(OL). That is, the different detects exactly

which of the primes lying over P ramify.

(a) Define an OL-ideal I by POL = Qe−1I, show that P contains the ideal TrL/K(I) =

{TrL/K(α) : α ∈ I}. [HInt: See the proof that a ramified prime divides discriminant.]

(b) Let P−1 be the inverse of P as an OK-fractional ideal. Show that P−1OL =

(pPOL)−1 as OL-fractional ideals.

(c) Show that (POL)−1I ⊂ (OL)∗.

(d) Show that Qe−1 | δ(OL) := (O∗
L)−1.

(e) Show that for any α ∈ OL that

Qe−1|f ′(α)OL,

where f(x) is the monic irreducible polynomial for α over OK .

10. [Absolute Different and Discriminant]

Consider a number field L/Q with discriminant ∆L. The dual module to OL is
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O∗
L = {α ∈ L : TrL/Q(αOL) ⊂ Z}. The absolute different over Z is

δ(OL) := (O∗
L)−1.

It is an OL-ideal.

(a) Let [α1, ..., αn] be an integral basis of OL and let [β1, ..., βn] be the dual basis with

respect to TrL/Q. Then [β1, ..., βn] is a basis for O∗
L over Z. (See Problem 2.) Show that

the discriminants

d(α1, ..., αn)d(β1, ..., βn) = 1.

(b) Show that |((OL)∗ : OL] = |∆L|, the absolute discriminant of OL. (Hint: Write

the αi in terms of the βi.)

(c) Prove that [OL : δ(OL)] = |∆L|. (See Problem 1.)
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