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Lecture 1

Binary Quadratic Forms

1.1 The theory of modular form originates from the work of Carl Friedrich
Gauss of 1831 in which he gave a geometrical interpretation of some basic no-
tions of number theory.

Let us start with choosing two non-proportional vectors v = (v, v9) and w =
(wl, ’UJQ) in R2

The set of vectors

A =7Zv + 7w = {mv + mow € R?| my,my € Z}

forms a lattice in R?, i.e., a free subgroup of rank 2 of the additive group of the
vector space R%. We picture it as follows:

Figure 1.1: Lattice in R?
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Let

v v
Bv,w) = (w11 w22)

V-V V-W

and
G(v,w) = (

be the Gram matrix of (v, w). The area A(v, w) of the parallelogram formed by
the vectors v and w is given by the formula

) = B(v,w) - 'B(v,w).

V-W W-W

V-W W-W

A(V,W)2 = det G(v,w) = (det B(V’W))Q et (v vV V- W) |
Let x = mv + nw € A. The length of x is given by the formula

I = o+ vl = ) (373, 0%) () =+ 2+

where
a=v-v, b=v-w, Cc=WwW-W. (1.1)

Let us consider the (binary) quadratic form (the distance quadratic form of \)
f = ax® + 2bxy + cy’.
Notice that its discriminant satisfies
D = 4(b* — ac) = —4A(v,w)* < 0. (1.2)

Thus f is positive definite. Given a positive integer N, one may ask about integral
solutions of the equation

f(z,y) = N.

If there is an integral solution (m, n) of this equation, we say that the binary form
f represents the number N. Geometrically, this means that the circle of radius
V/N centered at the origin contains one of the points x = mv + nw of the lattice
A. Notice that the solution of this problem depends only on the lattice A but not
on the form f. In other words, if we choose another basis (v, w’) of the lattice A,
then the corresponding quadratic form

f’:a/w2+26’xy+c’y2,



where ' = v - v/, V =v' -w, ¢ = w' -w has the same set of integral
solutions for the equation

f'(x,y) = N.

Let

vV =av+yw, Vv =pv+ow.

for some «, 3,7, € Z. Since the matrix

Q@
)
is invertible in the ring of integral matrices, we must have

det M = ad — By = 1.

It is easy to see that
/~ / /- ! . .
(V/ v/ v/ w/> :Mt<v vV v W>M
v.-w wew VW W-W
a v\ [(a v\ [fa b\ [a B
d d) \B o) \c d)\y §)°

This can be also expressed by saying that the form f’ is obtained from the form f
by using the change of variables

and hence

r— ar+ Py, y—yr+9y.

We write this in the form
ff=Mf.

Following Lagrange, we say f and f’ are equivalent. An equivalence class is
called a class of quadratic forms. Obviously, for any positive integer /N, the set
of integral solutions of the equations f(x,y) = N depends only on the class of
forms to which f belongs. Also it is clear that two equivalent forms have the same
discriminant.
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1.2 As we saw before any lattice A determines a class of forms expressing the
distance from a point in A to the origin. Conversely, given a positive definite
binary form f = ax? + 2bxy + cy?, we can find a lattice A corresponding to this
form. To do this we choose any vector v of length \/a and let w be the vector
of length /c which forms the positive angle with v defined by cos ¢ = b/+/ac.
Obviously we use here that f is positive definite. Of course, A is defined uniquely
up to an orthogonal transformation of R
In this way we obtain the following:

Theorem 1.1. There is a natural bijection between the set of lattices in R*> modulo
an orthogonal transformation and the set of classes of positive definite quadratic
forms.

Let us describe the set of classes of forms in a more explicit way.

Theorem 1.2. Let f be a positive definite binary form. Then there exists a form
g = Ax® + 2Bxy + Cy? equivalent to f which satisfies the conditions:

{0<2B<A<C}.

Proof. Let f = ax®+ 2bxy + cy? and A be a lattice associated to it. Let us change
a basis of A in such way that the corresponding form

g=|V[?2* + 2v' - wzy + | w'|*y?

satisfies the assertion of the theorem. We take v’ to be a vector from A of smallest
length /a. Then we take w’ to be a vector of smallest length in A which is not
equal to +v’. I claim that the pair (v/, w’) forms a basis of A. Assume it is false.
Then there exists a vector x € A such that x = av’ + bw’, where one of the
coefficients a, b is a real number but not an integer. After adding some integral
linear combination of v/, w’ we can assume that |al, [b| < 1. If a,b # 0, this gives

1
Ix[* = lal VI + PIw|* + 200" - w' < (Jal [V + blllW[)* < S Iw'I1°

that contradicts the choice of w’. Here we have used the Cauchy-Schwarz in-
equality together with the fact that the vectors v’ and w’ are not proportional. If a
or b is zero, we get ||z|| = 1[|v/[ or ||z|| = ||w’||, again a contradiction.



Now let us look at g. The projection of v/ + mw’ to w’ is equal to (m +

W;’VIT;)W, . We can choose m so that the length of the projection is less than or

equal than % However, the shortest projection corresponds to the shortest vector.

. . ! xar! .
By our choice if w’, we must have —1 < b = Y™ < 1 Tt remains to change v’
2 V1l 2

to —v’, if needed, to assume that b = v - w’ > 0, hence 0 < 2b < a.

]

Definition. A positive definite binary quadratic form az? + 2bxy + cy? is called
reduced if
0<2b<a<ec

The previous theorem says that each positive definite binary quadratic form is
equivalent to a reduced form.
Let
Q={(a,b,c) eR*:0<20<a<ca>0,ac> b’} (1.3)
By Theorem 1.2, any positive definite binary quadratic form is equivalent to a

form ax? + 2bzy + cy?, where (a,b,c) € Q.

1.3 Let us find when two reduced forms are equivalent. To do this we should
look at the domain €2 from a different angle. Each positive definite quadratic form
f = ax® + 2bxy + cy? can be factored over C into product of linear forms:

f = az®+ 2bzy + cy* = a(x — zy)(z — zy),

where
_ _ K2
N A A (1.4)
a a

It is clear that f is completely determined by the coefficient a and the root z.
Observe that Im z > 0. We have a bijective correspondence

f = az®+ 2bzy + cy* — (a, 2)
from the set of positive definite binary quadratic forms to the set R, x #H, where
H={2e€C:Imz >0}

is the upper half-plane. Let us see how the group GL(2,Z) acts on the both sets.
We have
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Mf = a((ax + By) — z(yx + dy)) ((ax + By) — Z(yx + dy)) =

a(z(a—vz1) —y(=B +02))(z(a — v2) —y(=F +92)) =
—B+ 6z —B+ 0%
y)(x — ———y).

ala — 2y*(x — o p——

Let us consider the action of GL(2,7Z) on C \ R by fractional-linear transforma-
tions (also called Moebius transformations) defined by the formula

a fB az+
R ) 1.
(0 5) =t a5
Notice that
ImM~z:Ima2+B*Im (a2+5)(72+5)*a5_/871mz. (1.6)

R vz 012 |y 4 dP

This explains why the transformation is well-defined on C \ R. Also notice that

Mt :detM(ﬁ _5).

Thus the root z is transformed to the root 2/ = M ™! - z and we obtain, for any
M € GL(2,Z),

M7 f=alyz+6*(x—M-2)(x— M -2).

1.4 Until now we considered binary forms up to the equivalence defined by an
invertible integral substitution of the variables. We say that two binary forms are
properly equivalent if they differ by a substitution with determinant equal to 1. In
other words, we restrict ourselves with the subgroup SL(2,Z) of GL(2,Z).

Since

GL(2,Z) = SL(2,7Z) U ((1) 0 ) SL(2,7)

and ((1) _01) (az? + 2bxy + cy®) = ax® — 2bry + cy® we obtain that each f is

properly equivalent to a form ax? + 2bxy + cy?, where (a, b, c) € Q and

Q= {(a,b,c) €R*: |2b| < c < a,a,ac—b* > 0}.



Definition. We shall say that f = ax® + 2bxy + cy® is properly reduced if
(a,b,c) €S

Since

GL(2,Z) = SL(2,Z) U (g’ é) SL(2,7)

and (9 }) corresponds to the switch of the basis vectors v, w of the lattice, we
obtain

Theorem 1.3. There is a natural bijective correspondence between proper
equivalence classes of positive definite binary forms and lattices in R? modulo
rotation transformation.

Let QF be the set of positive definite binary quadratic forms on R2. The
group SL(2, Z) of integral unimodular invertible matrices acts naturally on QJ by
f— M~'f. The map QF — R, x H defined in above is SL(2, Z)-equivariant if
we let SL(2,Z) act on the target by

(a,2) = (a|yz + 6%, M - 2).

Note that we have restricted ourselves to the subgroup SL(2,Z) in order to have
Im M -z > 0.

Using (1.1) we see that the conditions 0 < [2b] < a < ¢ correspond to the
conditions

1 1
—§§Rez§§, |z| >1, Imz>0.

Let D be the subset of the upper-half planes described by the above inequalities.
It is called the modular figure and looks as follows:

So we have a bijective correspondence between () and R, x D.

Note that, if the modular figure is the closure of a fundamental domain of the
group SL(2, Z) acting on the upper-half plane. This means that it is a closed subset
of H such that its interior contains a unique point in each orbit of the group. If we
start applying elements of the group to D, we obtain infinitely many fundamental
domains pictured in the following figure.

Now suppose f, f' € Qand M~'- f = f’ for some M € SL(2,Z). Replacing
(f, M) with (M - f, M), if needed, we may assume that Im M - z > Im z.

The formula (1.3) implies that |yz + §| < 1, where M = (: g) This gives
v € {0,1,—1}.
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—1

DO =

O —
Fig. 2

o=
—_

Figure 1.2: Modular Figure

Assume v = 0. Then the Moebius transformation defined by M~! is the
translation z — z + § and hence takes z out of the domain —% <Rez< % unless
B =0orf==x1andRe z = j:%. In the first case M = 41 and f = f’. In the
1 41
0 1
Assume v = 1. If 7 = 1, then |z 4 6| < 1 implies

second case M = + ( , [ =ax? £axy + cy? and [’ = az® F axy + cy®.

(i) §=0,]z| =1, 0r
(i) 2 =p:= 1Y and § = 1.

(0%

In case (i) we have M = £ <1

_01) and M -z = o — % This easily implies

a=0or(a,2) = (—1,p),(1, —p2)- So, in the first case, M = (_01 (1)) and

M - f = cax® — 2bxy + ay?. Since (c,b,a) € , we get a = c. Again f is of the
form ax® + 2bxy + ay? and is properly equivalent to ax? — 2bzy + ay?.

In the second case f = a(z® + zy + y?) and M f = a(z® — zy + ).
a a—1
1 jadM-p=(ap+(a—1)/(p+
1) = a+ p. This implies a = 0, f = a(2® + 2y + y*), M f = f.

Now, in case (i1), we get M =



e SR S |
g

Figure 1.3: Modular figure

Finally, the case v = —1 is reduced to the case v = 1 by replacing M with
—M.
This analysis proves the following:

Theorem 1.4. Let f = ax® + 2bxy + cy? and ' = a'x? + 2W'zy + y? be two
properly reduced positive definite binary forms. Then f is properly equivalent to
flifand only if f = f  or f = ax® £ axy + cy?, f = ax® F avy + cy?, or
f = ax® + 2bxy + ay?, f’ = ax® — 2bzy + ay®. Moreover, M f = f for some
M +# +1 if and only if one of the following cases occurs:

(i) f=a(x*+y*) and M = £ G _01),-

(ii) f—a(ij:xy—l-yQ)andM—j:(:Fll _Ol),i(g _11)

The proof of Theorem 1.4 shows this enlarged set {) contains a representative
of each orbit of SL(2, Z). Moreover, two points (a, b, ¢) and (a', ¥, ¢') in {2 belong
to the same orbit of SL(2,7Z) if and only if eithera = ¢ = a’ = ¢,b = = or
a =a,bl = —b=a/2. Clearly

Q:R+XD

To get the fundamental domain for the action of SL(2,Z) on Q5 we have to con-
sider the subset €2’ of ) defined by the following inequalities:

Q' ={(a,bc) €Q: |20l <a<c or a=c>2b>0 or a=2b>0}.



10 LECTURE 1. BINARY QUADRATIC FORMS

The corresponding subset of the modular figure is obtained by deleting from it the
vertical line Re z = 1/2 and the part of the unit circle where the argument is less
than 7 /2.

Since we do not need we leave it to the reader to state an analog of Theorem
1.3 for reduced (but not properly reduced) forms and find a fundmanetal domain
for action of GL(2,Z) on Q5.

1.5 Theorem 1.4 has a nice application to number theory.

Definition. A binary quadratic form ax? + 2bxy + cy? is called integral if a, 2b, c
are integers. It is called primitive if (a,2b,c) = 1.

Corollary 1.1. The set of reduced integral positive definite binary forms with fixed
discriminant D = 4d is finite.

Proof. If we fix the discriminant D = 4d = 4(b? — ac), then there are only finitely
many points in the domain {2 whose coordinates are integers. O]

Definition. We say that two integral positive definite binary forms are in the same
class if they are properly equivalent.

Corollary 1.2. The set of classes of primitive integral positive definite binary
forms with the same discriminant is finite.

Exercises

1.1 Let A be a lattice in R?. Show that the number of vertices of shortest distance
from the origin can be equal only to 2, 4 or 6. Find the lattices with 4 and 6 shortest
distance points.

1.2 Show that any subgroup of R? which is a discrete set (i.e. each ball in R?
contains only finitely many elements of the set) is a free abelian subgroup of rank
at most 2.

1.3 We say that two lattices A and A’ are similar if A = aA’ for some nonzero
complex number o.

(i) Show that any lattice is similar to a lattice with a basis (1,7), where 7 =
a + bi, b > 0. We say that such a lattice is reduced and denote it by A..
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(ii) Show that the distance quadratic form of the lattice A, is equal to 22 +
2R (7)xy + |7|?y? and its proper equivalence class is equal to the orbit of 7
with respect to SL(2, Z).

1.4 Let A be a lattice in R2. Let us identify R? with C in the usual way. Consider
the set O, of complex numbers z such that z - A C A.

(i) Show that O, is a subring of C and A is a module over Oy;

(i) Show that O, = Z unless there exists ¢ € C such that cA is contained in
some imaginary quadratic extension of Q.

(iii) Show that the ring O, depends only on the similarity class of A.

1.5 We say that a lattice A admits a complex multiplication if the ring O, defined
in the previous exercise is different from Z. Assume that A satisfies this property.
Prove the following assertions:

(i A admits a complex multiplication if and only if it is similar to a reduced
lattice A, such that ' = QQ(7) is a quadratic extension of Q.

(i1) the filed K coincides with the field of fractions of O,.

(iii) the integer multiple of the distance quadratic form of A, is an integral
quadratic form.

(iv) Let K = Q(v/—d), where d is square-free. Let (1,w) be a basis of the
ring of integers O of K (where w = /—d if d Z 1 mod 4 and w =
1(1++/—dotherwise). Show that the ring O, has a basis (1, fw) for some
integer f.

1.6 Let K = Q(v/—d) be an imaginary quadratic field (where we continue to
assume that d is square-free).

(1) Find a natural bijective correspondence between the similarity classes of
lattices contained in K and the proper equivalence classes of primitive inte-
gral positive definite binary forms az? + 2bzy + cy® which decompose into
the product of linear forms over K and whose discriminant D = 4(ac — b?)
is equal to the square of the volume of the fundamental parallelogram of the
corresponding lattice.
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(ii) Let ax?®+ 2bzy+ cy? represents a class of primitive integral positive definite
binary forms corresponding to the lattice A with complex multiplication
defined by the ring O,. Show that a and —b + v/b? — ac generate an ideal
in O, not equal to the whole ring.

1.7 Let A and A’ be two lattices admitting complex multiplication with Oy = Oy, = O.
Define A - A’ as the subgroup of C generated by the products v/, € A,y € A'.

(i) Show that A - A’ is a lattice A” with Op» = O;

(i) Show that the operation of product of lattices defined in part (i) is compatible with
the similarity relation and defines the structure of a finite abelian group on the set
of similarity classes of lattices A with the same ring O, .

1.7 Using the previous exercises define the structure of an abelian group on the set C'(D)
of proper equivalence classes of primitive integral positive definite binary forms of given
discriminant D.

(i) Compute the product of two forms az? + cy? and a'z? + ¢'y? with ac = d’¢’.

(ii) Show that the class of the form 22 + ny? (resp. x? + zy + ny?) is the unit of the
group C(D) if D = 4n (resp. if D = 1 + 4n).

(iii) Show that the class of ax? —bxy+-cy? is the opposite of the class of az?+bxy+cy?.

1.8 Using Exercise 1.5 (ii) show that there is a natural isomorphism between the group
of similarity classes of lattices with complex multiplication defined by a ring O and the
group C'(O) of ideal classes of O.

1.9 Find all reduced primitive integral positive definite quadratic binary forms with dis-
criminant D = —4, —8, —12, —20, —56. Compute the number i (D) of classes of primi-
tive integral positive definite quadratic binary forms for these values of D.

1.10 Show that h(—4n) > 1if n is not a prime number different from 4.



Lecture 2

Complex Tori

2.1 As we saw in the previous lecture there is a natural bijection between the set
of proper equivalence classes of positive definite binary quadratic forms and the product
R, x D', where D’ is the subset of the modular figure D whose complement consists of
points % +iy and €, 0 < ¢ < m/2. The factor R corresponds to the first coefficient a of
the form f = az? + 2bxy + cy?. Now recall that the set of equivalence classes of positive
definite binary quadratic formis also bijective to the set of lattices in R? modulo orthog-
onal transformation. The set of proper equivalence classes of positive definite binary
quadratic forms corresponds to the set of lattices modulo rotation transformations. Now
to get rid of the factor R let us consider lattices equivalent if one is obtained from another
by multiplying with a nonzero complex number v, i.e. A ~ A’ if A’ = {yv|v € A}. Since
each complex number can be written in the form ¢’ we see that we allow, additionally
to rotations, positive scalar dilations of lattices. If v, w is a basis of A, then yv,yw is
a basis of vA. In particular, if v = r is real positive, the corresponding quadratic form
f = ||v||?x? + 2v - way + ||w]||*y? is multiplied by r2. Thus, we may always assume
that ||v||? = 1, hence the equivalence class of A is determined by one root z € H of the
quadratic form f modulo Moebius transformations. Thus we obtain

Theorem 2.1. There is a natural bijection between the set of equivalence classes of lat-
tices in R? and the subset D' of the modular figure D.

Now let us find another interpretation of elements from D, this time as isomorphism
classes of elliptic curves.

Let A be a lattice in R?. Consider the orbit space
E =R?/A.
One can choose a representative of each orbit in the fundamental parallelogram

II={zv+yw|0 <z,y <1},

13
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where v, w is a basis of A. In this parallelogram two points belong to the same orbit if and
only if they differ by v or w. So, if we identify the opposite sides of II, we get a bijective
map from II onto E. Topologically, E is homeomorphic to the torus, or the product of
two circles. In fact, as a topological group,

R?/A 2 R?/7% = (R/Z) x (R/Z) = S' x S*.

However, we can do more; we put a structure of a complex manifold on £ which will
depend only on the equivalence class of A.

Before we do it let me recall some basics about complex manifolds. Let X be a
topological space. A geometric structure on X is defined by assigning to any open subset
U of X a certain ring O(U). Its elements will be interpreted as functions on U. This
assignment satisfies the following property:

(i) if V' C U then there is a unique homomorphism of rings r;/1, : O(U) — O(V)
such that ryy/; © 77y = ryyv Whenever V.C U C W.

We would like to interpret elements of O(U) as functions on U and the homomor-
phism 77y is as the restriction of functions on U to the subset V. In order to do this,
we shall require an additional property. Let x be a point of X. Consider the following
equivalence relation on the union of rings O(U) where U runs through the set of open
neighborhoods of z. Let f € O(U), g € O(V). We say that f ~ g if there exists an open
neighborhood W of x contained in U N V' such that ry/y (f) = ry/w(g). Denote the
set of equivalence classes by O,. There is a natural structure of a ring on O, such that
for any U containing x the canonical map O(U) — O, is a homomorphism of rings. We
require

(i1) Foreach x € X the ring O, is a local ring, i.e. contains a unique maximal ideal.

Let m, denotes the unique maximal ideal of O, and k(x) = O,/m,. This is a
field. For any open neighborhood U of x there is a canonical homomorphism of rings
O(U) = O, — k(x) the image of f € O(U) in k(x) is called the value of f at = and
is denoted by f(x). In this way each f € O(U) can be considered as a function on U,
although at each point = of U the value of f at x may belong to a different field. Of course,
we can consider the common set of values by taking the union of all fields x(x). In many
special cases, each ring O(U) is equipped with a structure of an algebra over a field k
and the restriction homomorphisms are k-algebra homomorphisms. In this case we may
consider k as a subring of O(U); its elements are called constant functions. If are lucky
the residue homomorphisms O(U) — () induce an isomorphism of fields & — r(z).
In this case we may consider the value of any function on U as an element of the same
field k.
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A topological space X together with a collection Ox of the rings Ox (U) satisfying
the previous conditions (i) and (ii) is called a geometric space. The collection Ox is
called the structure sheaf of the geometric space.

An example of a geometric structure on X is obtained by taking Ox (U) the ring of
continuous real functions on U.

Obviously, a geometric structure Ox on X equips each open subset U C X with the
restricted geometric structure. We shall denote it by Op. A continuous map f : X — Y
of geometric spaces is called a morphism of geometric spaces if for any open subset
U C Y there is a homomorphism of rings f# 1 Oy (U) — Ox(f~H(U)) satisfying the
following properties:

(i) forany V C U the following diagram is commutative:

f#
Oy (U) —— Ox(f~'(U))
TU/Vl lrf_l(U)/f_l(W
i

Oy (V) —— Ox(f7H(V))

(ii) Let f(z) = y and let fﬁc : (Oy)y — (Ox)z be defined as follows. Take a
representative ¢ € Oy (U) of ¢ € (Oy ), and define fjf () to be the equivalence
class of f# (¢) in (Oy),. It is easy to see that this is wel-defined. We require that
fjfm maps m, to m,.

One interprets the homomorphism f# as the composition of a function on U with the
map f : f~1(U) — U. In fact, for each z € X with f(z) = y the homomorphism ffw
induces a homomorphism of fields ff 2« k(y) = k() such that, forany ¢ € Oy (U),y €
U,

FEUYG)(x) = fila(6(f(2)))

So, a morphism of geometric spaces is a continuous map f : X — Y which transforms
functions on Y to functions on X.

We leave to the reader to define compositions of morphisms of geometric space and
to show that the identity map X — X is a morphism of geometric spaces. This will
define a category of geometric spaces. The notion of isomorphism of geometric spaces is
immediate: it is a morphism of geometric spaces which admits the inverse.

To define a geometric structure on X one need not to define O(U) for all U;; it suffices
to do it only for an open set in a base {U; };cr of the topology. Then for any open U we
set

O(U) = lim O(U)
U;cU
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Here we use the definition of the projective limit: the subset of the product [[,.; O(U;)
which consists of strings (..., a;,...,ay,...) such that ry, /1, (a;) = 7y, v, (a;) when-
ever Uy, C U; NU;.

We will be mainly concern with an example of a complex structure. Let us define
it. Let X = C” be equipped with its standard topology defined by the Euclidean metric
2] = (|z1]? + -+ + |2a|>)/%. We define a complex structure on X by assigning to
each open ball U,.(a) with center at a and radius 7 the ring O(U,(a)) of complex valued
functions on U,.(a) which admit an expansion

f@)= > oz —a)™ (2 — @)™

i1 eeyin >0

absolutely convergent in U,.(a). A complex valued function on an open set U belongs to
O(U) if and only if for any point a € U there exists a ball U,.(a) contained in U such that
the restriction of f to it belongs to O(U,(a)). Such functions are called complex analytic
or holomorphic functions on U. A non-trivial result from complex analysis says that a
function f = uw + v : U — C is holomorphic in U if and only if it admits continuous
partial derivatives with respect to the real and imaginary coordinates z;,y; in C™ and
satisfies the Cauchy-Riemann differential equations in U

i (Z)_l(au 7 8v)+£(0u . ov
0z; 2 o0x; y; 2" 0y; 0x;

) =0.

We shall denote the ring of holomorphic function on U by O"!(U). The sheaf defined by
the rings Q" (U) defines a structure of a geometric space on C". It is called the complex
affine n-dimensional space. Clearly the field C can be identified with constant functions
and all residue fields «(x) can be identified with C.

Definition. A geometric space (X, Q) with Hausdorff X is called a complex manifold of
dimension n if for each x € X there exists an open neighborhood U such that the geo-
metric space (U, Op) is isomorphic to an open ball in C™ with the restricted geometric
structure of the complex affine n-dimensional space C". A complex manifold of dimen-
sion 1 is called a Riemann surface. A morphism of complex manifolds (not necessary of
the same dimension) is called a holomorphic map.

A complex manifold is an example of a geometric space (X, Ox ) where the following
additional property of Ox is satisfied:

(i) Let U = U;erU; be an open covering. Suppose that a collection of functions
fi € O(U;) satisfies

ru,uinv; (fi) = o uino, (f5), Vi, € L

Then there exists a unique f € O(U) such that, for any i € I, 7/, (f) = fi-
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Example 2.1. Each non-empty open subset of C™ with the restricted structure of the geo-
metric space is a complex manifold of dimension n. A map f : U — V of an open subset
of C™ to an open subset of C" is given by n functions f;(z) (defining the composition
U — V — C"). It is holomorphic if and only if each f;(z) is a holomorphic function on
U. More generally, let f : X — Y be a holomorphic map of complex manifolds. Take an
open neighborhood V' of a point y € f(X) isomorphic to an open subset V/ of C™ and let
x € X be mapped to 3. Then f~!(V) contains an open neighborhood U of x isomorphic
to an open subset U’ of C"™. The map f : U — V defines amap f' : U’ — V' of open
subsets of the corresponding complex affine spaces. Then f is holomorphic if and only if
1 is holomorphic (for all z € X).

Example 2.2. Let X = C U {occ}. Define the topology on X by extending a base of the
standard topology on C by adding open neighborhoods of co of the form

Ur(0) ={z€C:|z| >r}U{oo}

Now extend the structure sheaf O"! on C by adding the rings O(U,.(00)), each equal to
the ring of complex valued functions f(z) on U, (o0) such that f(1/z) € O(U;,,.(0)). We
have X = Uy U Uy, where Uy = Up(co) = X \ {0} and U = U (0) = X \ {o0} = C.
The homeomorphism 7 : Uy — Uy defined by the formula z — 1/z is an isomorphism of
the geometric spaces. In fact f is holomorphic on an open U C Uy if and only if f(1/2)
is holomorphic on 71 (U). Since Uy is obviously isomorphic to C, we obtain that X
is a geometric space. It is called the Riemann sphere or complex projective line and is
denoted by CP'. Using the stereographic projection, we see that CP! is homeomorphic
to a two-dimensional sphere.

Remark 2.1. A more traditional way to define a structure of a complex manifold is by
using local charts. A collection of {(Uy, ¢ )} of open subsets U, of X together with
homeomorphisms ¢, from Uy, to an open subset of C" is called a local chart if X = U,U,,
and, if U, N Ug # 0, the map ¢g 0 ¢! : ¢o(Us NUg) — ¢5(Us N Up) is holomorphic.
Two local charts are called equivalent if their union is a local chart. A structure of a
complex manifold of dimension 7 on X is an equivalence class of local charts. We leave
it as an exercise to check that the two definitions are equivalent.

Let G be a group which acts holomorphically on a complex manifold X. This means
that for each g € G the map u(g) : © — g-x is holomorphic. It follows from the definition
of an action of a group on a set that (g ~') is the holomorphic inverse of 1(g). Thus each
1(g) is an automorphism of the complex manifold X. We would like to equip the set
of orbits X/G of G with a structure of a complex manifold. We restrict ourselves with
the case when G acts properly discontinuously on X. This means that for any compact
subsets A, B of X the set {g € G : g(A) N B # 0} is finite. In particular, for any x € X
the stabilizer subgroup G, = {g € G : g - x = z} is finite.
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Theorem 2.2. Let G be a group which acts holomorphically and properly discontinuously
on a Riemann surface X. Then the orbit space X /G admits a structure of a Riemann
surface such that the canonical map p : X — X /G is holomorphic. This structure is
unique up to isomorphism.

Proof. First we define the topology on X/G. This is standard. By definition a subset of
X/G is open if its pre-image p~ ! (U) is an open subset of X. Now we define the structure
sheaf. By definition

Ox/c(U) = Ox(p~ ' (U))" =
{feOx(p'(U)): f(g-2) = f(x),Vg € G,z €p ' (U)}

It is immediately verified that this defines a structure of a geometric space on Y = X/G.
Let us show that it is isomorphic to a Riemann surface. Let y = G - = be an orbit,
considered as a point of Y. Since X is locally homeomorphic to R?, it is locally compact.
Thus z contains an open neighborhood U whose closure U is compact. Let U = Uy D
Us D ... be a sequence of strictly decreasing open neighborhoods of = with N, U,, =
{z}. Since each U is relatively compact and G acts properly discontinuously, the set
G(n) ={g9 € G: U,Ng(Uy,) # 0} is finite. Clearly G(n) C G(m) for m < n. Thus
there exists some N such that G(m) = G(IV) for all m > N. I claim that G(N) C G.
In fact, if this is false g - @ = 2/ # x for some g € G(N). Themapg : X — X
matches the filter of open neighborhoods U,, of x with the filter of open neighborhoods
g(Uy) of 2’. Since our topology is separated, we can find an open subset U,, with large
enough n such that g(U,,) N U, = 0. However this contradicts the definition of G(N).
So G(N) C G5. Obviously, G, C G(N). Thus G(N) = G, and in particular is finite.
Therefore the set Nye, g(Un) is an open neighborhood of z. It is invariant with respect
to G. Moreover, for any 2/, 2/ € Uy we have 2" = g - 2/ for some g € G implies
g € G. In particular g(Un) N ¢'(Un) # 0 if and only if g, ¢’ belong to the same coset
of G modulo the subgroup G. Thus

P p(UN) = Ugeag(Un) = [ 9(Un)
9G.€G/H

is the disjoint union of open subsets homeomorphic to Uy, and hence is open. This
implies that V' = p(Uy) is an open neighborhood of y = Gz in Y. Since each G-
invariant function on p~!(V') is determined uniquely by its values on Uy we obtain

Oy (V) = O(Uy)%

If we replace V' by a smaller open subset V' and replace Uy with Uy = Uy Np~ (V')
we similarly get
Oy (V') = O(Uy)*
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This shows that V' is isomorphic, as a geometric space, to the orbit space Uy /G In fact
the isomorphism is induced by the restriction of the morphism p : X — X /G of geomet-
ric spaces to Uy. Its fibres are G-orbits in U,. Thus we have reduced our assertion to
the case when the group G is finite and also fixes a point z € X. Now we have to use the
assumption that X is of dimension 1. Without loss of generality we may assume that X
is an open ball of finite radius r in C with center at the origin. For each g € G the map
u(g) : X — X is given by a holomorphic function f(z) with f/(z) # 0 at each point in
X and f(0) = 0. An elementary theorem from the theory of functions in one complex
variable says that f(z) = ze', i.e. g defines a rotation of the ball. Since G is of finite or-
der, we obtain that '™ = 1 for some d > 1. We also see that G, is a cyclic group of order
d. Now any function ¢(z) invariant with respect to the transformations z — zn,n? = 1
must be a holomorphic function in ¢ = z¢. This easily follows by considering the Taylor
expansion of ¢(z) at 0. Now it is easy to see that the map z — z¢ defines an isomorphism
of geometric spaces U, (0)/G — U,.a(0). This proves the assertion. O

Remark 2.2. It follows from the proof that the assertion of the theorem remains true in any
dimension if we additionally assume that GG acts freely on X, i.e., the stabilizer subgroup
G of any point z € X is trivial. In general case X /G is not a complex manifold but an
analytic space with quotient singularities (also called a complex orbifold).

Corollary 2.1. Let us identify R? with C in the natural way. Then E = R? /A admits a
structure of a compact complex manifold of dimension 1 for which the factor map C — E
is a holomorphic map of complex manifolds.

Proof. The group A acts on the complex manifold C by translations z — 2z + v,v €
A. This action is obviously properly discontinuous. In fact any compact set B in C is
contained in a finite union of y-translates of the fundamental paralellogram

M={z€C:z=awj +bws,0<a,b<1},

where w1, ws is a basis of A. Thus for any compact set A, we have (mjw; +mowa + A) N
B = () if |mq|, |mq| are sufficiently large. This leaves us only with finitely many ~ such
that (y + A) N B # 0. O

Definition. A Riemann surface X is called a complex torus of dimension 1 or an elliptic
curve if it is isomorphic to C/A for some lattice A.

Theorem 2.3. Two elliptic curves C/A and C/ A’ are isomorphic if and only if A’ = aA
for some a € C\ {0}.

Proof. We shall use the simple observation that the geometric spaces C and £ = C/A are
locally isomorphic. This means that for any point z € C has a neighborhood isomorphic
to an open neighborhood of z + A € FE. This follows immediately from the proof of
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Theorem 2.2. Assume A’ = aA for some non-zero complex number a. Consider the map
C — C defined by the formula z — az. It is an automorphism of the complex manifold
C which maps A onto A’. Tt induces a bijective map of the orbit spaces C/A — C/A’. Tt
follows from the previous remark that this map is holomorphic.

Conversely, assume that there is a holomorphic isomorphism f : £ = C/A — E' =
C/A'. Let f(0+ A) = zo + A’. Consider the map ¢,, : E — E’ defined by the formula
z+A — (2+20)+A. Ttis easy to see that it is a holomorphic automorphism. Composing
f with t_.; = ¢! we may assume that f(0 + A) = 0+ A’. Now we use that the
projection maps p : C — C/A and p’ : C — C/A’ are universal covers of the topological
spaces. The composition C — C/A — C/A’ is a continuous map of a simply-connected
topological space C to the torus C/A’. Tt has a unique lift to a homeomorphism f:c—>cC
of the universal covers. It is also a holomorphic map satisfying f (0) € A'. In fact, the
composition p’ o f is equal to f o p and hence is holomorphic. This easily implies that f
is holomorphic. Now for any 7 € A and z € C we have f(z + v) — f(z) € A'. Thus the
continuous map z — f(z+7)— f(z) € A’ is constant and hence f(z+7) = f(2)+ f(7).
This shows that the partial derivatives of f are periodic with respect to A. By Liouville’s
theorem, they must be constant. Hence f is a linear map of C which maps A to A'. O

Corollary 2.2. There exists a natural bijection between the set of isomorphism classes of
elliptic curves and the modular figure D.

The group law on C defines a group law of the quotient group C/A. It follows from the
previous theorem that any holomorphic isomorphism of elliptic curves which sends 0 to
0 is a homomorphism of groups. The group of holomorphic group automorphisms of the
elliptic curve C/A is isomorphic to the group {a € C* : aA = A}. Let wy, w2 be a basis
of A. Replacing A with zA for some z € C* we may assume that w; = 1,wy = w € H.
Then

aw=oaw+ B, a-1=~w+74,

a
v 4
(w, 1) € C?%is a complex eigenvector of M with eigenvalue a. The eigenvalue a = z + iy
satifies the characteristic equation

for some integral invertible (over Z) matrix M = < ) . This shows that the vector

— (v + &)t + det M = 0.

We have a + @ = 2r = —(a + ) € Z and |a| = 22 + y?> = det M = 1. The only
solutions are

(z,y) = (0, £1), (£1,0), j: ,£/3/2).

This gives
a = =+i, 1, +e>/3 £et7/3,
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Thus there are the following possibilities for the group G of holomorphic group automor-
phisms of elliptic curve:

G =~17/2,7./4,7/6.

The first case is realized for any lattice A. The second case is realized by the lattice Z+ Zi.
The third case is realized by the lattice Z + Ze?™/3.

Let us show that any elliptic curve with G # {%} is isomorphic to either E; =
C/Z + Zi or E, = C/Z + Ze*™/3. By Corollary 2.3, we may assume that w belongs
to the modular figure. Thus |[Re w| < 1/2 and |w| > 1. We already noticed in Lecture

1 that the derivative of the Moebius transformation z — ‘f‘yiig at the point zg is equal to

(czo + d)~2. Since a? = 1 for some d > 0, the matrix M is of finite order. This implies
that the derivative of the corresponding Moebius transformation is a complex root of 1. In
particular, we have |yw + §| = 1. This implies

aw+ B |(aw + B)(yw + 0)|

w| = =
] Yw + 0 |yw + 82

= [(aw + B)(h@ + 9)|.

Since |w| > 1,and ad — Sy = 1 this gives |aw + B, |y@ + §| > 1. Thus
wl = law + 8] > [allw], || = o+ 6] > [y]lw].

Assume « # 0. Then we must have |a| = 1,8 = 0, |w| = 1. Assume v # 0. Then
we must have |y| = 1,6 = 0, |w| = 1. Thus we have the following possibilities for the

matrix M:
1 0 0 1 0 1 0 1
=g 1) = (1) = (0 ) =0 o)

This gives the following possibilities for w:

. 10 0 1\ ..
w-z,M-:l:(O 1),:&(_1 0),G:Z/4.

; 10 0 1 0 1
_ _2mi/3 _ ~
w=e ,Mi(o 1),1(_1 1),1(_1 _1>,G_Z/6.

This proves the assertion.

Moreover we have shown that the group PSL(2,Z) = SL(2,Z)/=+1 acts on the upper
half-plane H freely except at the orbits of the points w = 7, e>™/3. The stabilizer group
PSL(2,Z); = 7Z/2,PSL(2,Z) /s = Z/3. The elliptic curves corresponding to these
two exceptional orbits are called harmonic (resp. anharmonic).
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Exercises

2.1 Let X be the set of prime numbers in Z together with 0. Define a topology on X
by declaring that sets of the form V(n) = {p € X : p|n},n € Z are closed. For each
open set D(n) = X \ V(n) take O(D(n)) to be the ring of rational numbers whose
denominators are products of powers of prime divisors of n. Show that this defines a
geometric structure on X. Show that x(x) = F), the prime field of p elements, if z = p
is prime and the field of rational numbers Q otherwise. Show that for any f = a/b €
O(D(n)) the value of f at x is equal to itself if x = 0 and is equal to % ifx =pis
prime.

2.2 Using the notion of a geometric structure give a definition of a differentiable manifold
of class C*.

2.3 Show that the projective space P"(C) (defined as the set of one-dimensional linear
subspaces in C"*1) has a structure of a complex manifold of dimension n. Show that the
natural map C"*1\ {0} — P"(C) defined by sending z = (zq, .. ., z,) to the line Cz is
a holomorphic map.

2.4. Let (X, Ox) be a geometric space. Assume that the value of f € O(U) at a point
x € U is not equal to zero. Prove that the restriction of f to some open neighborhood V'
of x is an invertible element of O(V').

2.5 Prove that any holomorphic function f : X — C defined on a connected compact
Riemann surface must be a constant function.

2.6 Let A be a lattice with complex multiplication (see Exercise 1.4). Show that the ring
O, is isomorphic to the ring of holomorphic group endomorphisms of the elliptic curve
C/A.

2.7 Let A be a cyclic subgroup of the multiplicative group C* of the field C generated by
a complex number g with |g| # 1. Show that the factor group C*/A has a structure of a
complex manifold of dimension 1 isomorphic to an elliptic curve.

2.8 Generalize the construction of an elliptic curve by showing that a quotient group
C™ modulo the subgroup A generated by 2n vectors linearly independent over R has a
structure of a compact complex manifold of dimension n. It is called a complex torus of
dimension n.

2.9 Consider the action of the group G = {#£1} on C? defined by sending (z1, 22) to
(=21, —22). Show that C?/G does not admit a structure of a complex manifold such
that the canonical map C? — C2/G is holomorphic. However C? \ {0} /G is a complex
manifold of dimension 2.

2.10 Let P(z1,...,2,) : C* — C be a complex polynomial in n variables. Assume
g—i(al, ...,an) # 0, where P(ay,...,a,) = 0. Show that there exists an open neigh-

borhood U of the point (ai,...,a,) such that U N P~1(0) is a complex manifold of
dimension n — 1. Generalize this to the case of a polynomial map C* — C¥.
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2.11 Let P(zg,...,2,) : C* — C be a complex homogeneous polynomial in n + 1
variables. Assume that the equations g—z_ =0, ¢=0,...,n,have nocommon solutions

in C"™1\ {0}. Show that the set of zeroes of P, considered as a subset of projective space
P™(C) is a complex manifold of dimension n — 1. Generalize this to the case of the set of
zeroes in P"(C) of a finite set of homogeneous polynomials.
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Lecture 3

Theta Functions

3.1 It is known that a compact smooth manifold of dimension n can be always embed-
ded in R?"*!, For example, a real torus R? /A can be embedded in R? as follows. Choose
a basis (v, w) of A and two positive numbers < R. Then use the familiar formula from
Calculus

v 4+ yw — ((R + rcos2mz) cos 2y, (R + r cos 2mx) sin 27y, 7 sin 27wx).

It is clear that changing zv + yw to v + yw + v, € A does affect the result, so the
map factors through R? /A. It is easy to check that it defines an embedding of smooth
manifolds. The image is equal to a 2-dimensional torus.

Figure 3.1: 2-torus

This theorem does not have its analog in the complex case. A compact complex
manifold cannot be embedded in C for any N. This follows from the fact that any holo-
morphic function on a connected compact complex manifold must be a constant function.
However, it is often possible to embed a complex manifold into projective space P"(C).
Recall that the complex projective space P(V') associated with a vector space of dimen-
sion n + 1 over a field k is defined to be the set of one-dimensional subspaces (lines)

25
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of V. Choosing a basis in a line shows that P(V') can be also defined as the orbit space
V'\ {0} with respect to the multiplicative group k* of k that acts by scalar multiplication.
Choosing a basis in V' we can identify V with k”*! and denote a line spanned by a vector
(20,---,2n) by (20 : ... : 2,). The projective space associated with the vector space k"1
is denoted by P" (k). The set P"(C) is a complex manifold of dimension n. It is covered
by n + 1 subsets U; = {(20, ..., 2n) : 2zi # 0} each isomorphic to C" (see Exercise 2.3).

A theorem of Chow says that in a compact complex manifold embedded in a projec-
tive space is isomorphic to a projective algebraic complex manifold. The latter is defined
as the set of solutions in P"*(C) of a system of homogeneous algebraic equations

filzo,...,xn) = ... = fn(zo, ..., x,) = 0. 3.1
This system must satisfy the following smoothness conditions:

(i) the polynomials fi, ..., fy generate a prime ideal [x in the ring of polynomials
Clzoy .-, znls

(i1) the rank r of the matrix

of of
Oxg e Oxn
J=1: i |(a,...,an) (3.2)
9fN 9fn
oxg Ut Oz
does not depend on the point (ay, . .., a,) satisfying the equations (3.1).

The number d = n —r is equal to the dimension of the complex manifold defined by (3.1)
(see Exercise (2.11)). Not every complex manifold X can be given in this way. A neces-
sary (but not sufficient) condition is that the field M (X') of meromorphic functions on X
has the transcendence degree over C equal to the dimension of X. A meromorphic func-
tion is defined by choosing a covering of X by open connected subsets U; and assigning
to each U; an element f; of the field M (U;) of quotients of O(U)"! with the compatibil-
ity condition f; = f; in M(U; N U;). Here we use the fact that O(U;)"! does not have
zero divisors. The transcendence degree of the field M (X) over C is always less or equal
to the dimension of X (see [Shafarevich], vol. 2, Chapter 8, §2). If X is a projective
algebraic complex manifold, then its field of meromorphic functions coincides with the
field of rational functions. A rational function is an element of the field R(X') generated
by fractions W formed by homogeneous polynomials of the same degree consid-
ered modulo the ideal Ix. The transcendence degree of this field is always equal to n —r.
Dropping the condition (ii), we obtain the definition of an irreducible complex projective
algebraic variety. Its dimension is equal to n — 7, where 7 is the maximal value of the
rank of the Jacobian matrix.
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We shall prove later that any compact complex manifold of dimension 1 is isomorphic
to a projective algebraic complex manifold (a smooth projective curve). In this lecture we
shall find such an isomorphism explicitly for complex tori X = C/A. Let us try to find
a non-constant map f : X — P"(C). A holomorphic map f : X — P*(C), after
composing with the natural map C — C/A, is defined by n + 1 holomorphic functions
fo, ..., frn on C which need not be periodic with respect to A but must satisfy the weaker
property:

filz+7) =ey(2)fi(2), i=0,....,n, vE€EA,

where e, (z) is a holomorphic invertible function on C. Let us try to find such functions.

Definition. A holomorphic function f(z) on C is called a theta function with respect to a
lattice A if, for any v € A, there exists an invertible holomorphic function e, (z) such that

f(z+7) =ey(2)f(2), VzeC.

The set of functions e = {e(2)} is called the theta factor of f(z).

Given a linearly independent ordered set ( fo, . .., f) of theta functions with the same
theta factor e we can define a map
p:C =P 2z (folz):...: fu(2)). (3.3)

If z is replaced with z + 7, € A, then the vector (fo(2), ..., fn(z) is replaced with a
vector ey (2)(fo(2), ..., fn(2)). This shows that the values of the map depend only on the
coset z + A, formula (3.3) defines a map

¢ : T =C/A — P"(C).

Of course, we have also assume that the functions f;(z) do not have a common zero since
(0:0:...:0) does not exist in P"(C). If this condition is not satisfied we sat that the
map is a rational map. It follows from the definition of a complex structure on 7 that the
map ¢’ is also holomorphic.

Example 3.1. Let A = Z + Z7, where 7 € H. We know that each lattice can be reduced
to this form by means of a homothety transformation. Set

Ozi7) = 3 e,
rez

This function is holomorphic on C. In fact, we shall show that the series converges uni-
formly on any bounded set in C. Then we can differentiate the series and see that the
derivative with respect to z is zero. Thus the series represents a holomorphic function on
C. Assume that |Im z| < ¢ on a bounded set. Then

Z |€7ri(r2’r+27"z)‘ < Z e—7rr2Im (7’)627rcr.

rEZ reZ
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Choose N such that e=™’Im (T)gd77¢ - 1 for > N. Then

Z efﬂ’rzlm (7)627rcr < Z efm“zIm (T)/Q.

r>N r>N

The latter series is obviously converges.
Now let us check that ©(z; 7) is a theta function. Obviously it is periodic with respect
to z = z + m, m € Z. We also have

9 . 2 M2+
@(z + T 7_) _ E :efrz(r T+2rz+2rnT) _ § :em((r—i-n) T4+2z(r+n)—n*t—2nz)
reZ reZ

— eﬂ'i(fn27'72nz) Z eﬂi((r+n)2‘r+2z(r+n)) — eﬂi(fnz‘ernz)@(Z; 7_)'
reZ

This shows that ©(z; 7) is a theta function with the theta factor
emnr(2) = e TITEI), (3.4)

This theta function is called the Riemann theta function.

3.2 How to find a general form of a theta function? First notice that the theta factor
satisfies the following condition:

eyt (2) = ey (2 + 7 )ey (2). (3.5)

This follows from comparing the equalities:
f+y+9) = eyt (2)f(2),

fE+y+7) =ey(z+)f(z+7) = ey(z+7)ey(2) f(2).

Let ¢(z) € O(C)* be a holomorphic invertible function on C. For any theta function
f(z) with theta factor e (z) the function f(z)¢(z) is also a theta function with the theta
factor

e4(2) = ey(2)d(z +7)p(2) " (3.6)

Definition. A set of holomorphic invertible functions {e},ca satisfying the functional
equation (3.5) is called a theta factor with respect to the lattice A. Two theta factors
{eq}yen and {e,}] c, are called equivalent if they are either related by (3.6) for some
invertible holomorphic function ¢(z) or obtained from each other by translation of the
argument z — 2 + a.
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Let Th({e}; A) denote the set of theta functions with theta factor {e.,}. Obviously
it is a subspace of the space O(C) of holomorphic functions on C. Notice that for any
f,9 € Th({e,}; A) the meromorphic function f/g is periodic with respect to A. So, it
defines a meromorphic function on C/A. Such functions are called elliptic functions.

We have

Th({e,};A) = Th({e} }; A)

if {e} is equivalent to {€’,}. The isomorphism is defined by composition of multipli-
cation with a function defined by (3.6) and the inverse image under the translation map
z— z+a.

Remark 3.1. Let e = {e, },cn be a theta factor. It defines an action of A on C x C defined
by the formula:

v (zt) = (247, e4(2)1).

The fact that this formula satisfies the axions of an action of a group in a set follows from
equation (3.5). Letp : C x C — C, (z,t) — z, be the first projection. Its section is a
holomorphic map s : C — C x C satisfying p o s is the identity map. It is clear that it
must be of the form s¢ : 2z — (2, f(2)), where f is a holomorphic function on C. A theta
function f(z) defines a section satisfying the following property

V(s7(2)) = (2 +7,64(2)f(2)) = (2 + 7, f(z + 7)) = 57z +7)-

In other words, for any v € A and a holomorphic section s, let s denote the section
defined by z — ~y(s(z —)), we can characterize theta functions as holomorphic sections
s satisfying Vs = s, for any v € A.

A holomorphic map L — M of connected complex manifolds is called a line bundle
if there exists a cover of M by open subsets U; such that there exists an isomorphism
of complex manifolds ¢; : U; x C — Ly, = p_l(Ui). A collection consisting of an
open cover 4 = (U;) of V' and isomorphisms ¢; as above is called a trivialization of L.
Let gij = ¢; 0 qﬁj_l, where all maps are restricted to U; N U;. It defines an invertible
holomorphic map of (U; x Uj) x C to itself of the form z — (2, ¢;;(2), where ¢;; is an
invertible holomorphic function on U; N U;. We can identify g;; with this function and
call the collection of functions g;; transition functions of L with respect to a covering iL.
Changing the set of isomorphisms (¢;) with the set (¢; o g;, where g; : U; x C is a map
to its self defined by an invertible function g; on U;, we obtain another trivialization with
new transition functions ggj = gijgigj_l. We say that two trivializations obtained in this
way are equivalent. An isomorphism of line bundles f : L — L’ is an isomorphism of
complex manifolds that commutes with the projections to M. One can find an open cover
over which both line bundles are trivialized with transition functions (g;;) and (g;;). Then
an isomorphism will define an equivalence between the two trivializations.
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By definition, a line bundle is zrivial if it is globally isomorphic to V' x C. A line
bundle is trivial if and only one can find an open cover with transition functions g;; and a
collection of invertible functions g; on each U; such that g;; = g; g;l on U; N Uj.

Returning to theta functions, we consider the action of A on the trivial line bundle
C x C defined by a theta factor e = (e4(2)) and let L be the orbit space C x C/A with
the projection L — T induced by the first projection of the trivial line bundle. One can
show that L — T has a structure of a line bundle and, conversely, any line bundle on 7'
is obtained from a theta factor. A theta function with respect to the theta factor becomes
a holomorphic section of the corresponding line bundle: Thus we see that there is an
isomorphism of vector spaces

Th(e; A) = D(T, L).

Two line bundles are isomorphic if and only if the theta factors are equivalent. Thus
we obtain that the set of equivalence classes of theta functors is bijective to the set of
isomorphism classes of line bundles over the torus T". The multiplication of theta factors
as holomorphic functions on C corresponds to the multiplication law on the latter set
defined by multiplying of the transition functions on a common open trivializing cover
and taking the inverses. The set of isomorphism classes of line bundles on a complex
manifold M equipped with such structure of an abelian group is denoted by Pic(M) and
is called the Picard group of M. Thus, we obtain

{theta factors on A}/equivalence <+ Pic(C/A).

One can show, although we don’t really need it, that it is possible to find ¢(z) such
that log(e~(2)¢(z +7)¢(2) ') depends linearly on 2. Thus we may assume that the theta
factor e (z)’ looks like

ey (z) _ e—27ri(a.yz+b,y) )
Suppose two such theta factors are equivalent. Then there exists a holomorphic function
¢(z) such that

(ay — a’w)z +0b, — b'7 =¢(z+7v) —¢(2) mod Z

Then after differentiating twice we obtain that (¢(z + v) — ¢(z))” = 0. Thus ¢(z)” is
periodic and holomorphic, this implies that it is constant. Hence ¢(z) is a function of the
form az? 4 Bz + 6. Thus the only change allowed in a theta factor is a change

ayz + by = (ay + 207)z + (by + 7). (3.7)

In particular, we may always replace a theta factor to an equivalent one to assume that
ey, (z) = 1, where (71, 72) is a basis of A. The corresponding theta function f(z) satisfies

Flztmm) = f(2),  flz+mny) = e 2rinaztnbyt(5)a), (3.8)
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For example, if f(z) is a Riemann theta function, we get a, = %7‘ +zand aprz + bpr =
n(%T +2)+ (3)7 = %HZT -+ nz that agrees with formula (3.4).
Formula (3.5) shows that

Qy+y = Gyt ay,
byiy = ayy +by+by modZ

The first equality implies that the function (7, z) + a-z is a Z-linear function in the
first variable and C-linear function in the second variable. Since A spans C over R, the
function extends to a R-bilinear function a on C x C.

Lemma 3.1. The alternate R-linear form w(zx,y) = a(x,y) —a(y,x) : Cx C — C takes
values in R and satisfies w(ix,iy) = w(x,y). Its restriction to A x A takes values in Z.

Proof. Plugging in z = ~/ in the definition of a theta function, we obtain that a,y" —
@~y € Z. Thus the bilinear form w takes integer values on A x A, and hence takes real
values on C x C. Since w is C-linear in the second argument, we have

w(iz,iy) — w(z,y) = a(iz,iy) — a(iy,ix) — a(z,y) + a(y, x)

=ia(iz,y) —ia(iy, x) + ia(z,iy) — ia(y, ix) = i(w(iz,y) + w(z,iy)).

Now the left-hand side is real, but the right-hand side is purely imaginary. This proves
that the left-hand side is zero. O

Remark 3.2. If we view C as the tangent space of C at ant point z € C, then the alternating
form w defines a symplectic structure on C that descends to a symplectic structure on 7.
The condition w(iz, iy) = w(x,y) says that this structure is compatible with the complex
structure of 7'.

Let 71, 2 be a basis, then

k=w(vy2,7) = —w(71,72)

depends only on the orientation of A, i.e. a choice of an order of basis vectors. We choose
it to be a non-negative integer. It is called the degree of the theta factor and also the order
of a theta function with theta factor e (2) = exp(a~z + by). Formula (3.7) shows that it
does not change if we replace theta factor with equivalent one.

Proposition 3.1. The order of a theta function f(z) is equal to the number of its zeros z
modulo A (i.e. zeros satisfying z = a1 + by2,0 < a,b < 1) counting with multiplicities.
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Proof. We use a well-known formula from the theory of functions in one complex vari-
able: the number of zeroes (counted with multiplicities) of a holomorphic function f(z)
on an open subset D of C inside of a compact set K contained in D together with its
oriented boundary I" is equal to

1
Z=— [dl dz.
omi ). og f(z)dz

Here we also assume that f(z) has no zeroes on I'. Let us take for K a small translate
zo + 11 of the fundamental parallelogram

M={z=ayn+byrecC0<ab<1}

of the lattice A such that its boundary I" does not contain zeros of f(z).

flz+m)

2o+t

2 Z+m

It is easy to achieve since a holomorphic function in one variable has a discrete set of
zeroes. We obtain

20471 zo+71+72
27riZ:/Fdlogf(z):/ ! dlogf(z)—i—/ " dlog f(z)

20 z0+m

zo+y1+72 20+72
—/ dlogf(Z)—/ dlog f(2)

0+72 20

20+71 . 20+t72 .
_ _/ d(e_Qﬂl(a"’22+b"’2))+/ d(e_27”(a71z+b71)) _ 27ri(a7271—a7172) — omik.

20 20

O]

Remark 3.3. We can identify C with the universal cover of a complex torus 7' = C/A
and the lattice A with the fundamental group 71 (7") that coincides, because it is abelian,
with the first homology group H; (T, Z). The second homology group Ho(T',Z) of T is
isomorphic to A? Hy(T,Z) = 7Z. The second cohomology group H2(T,Z) is equal to
Homy(H2(T,Z),7Z) and hence coincides with the abelian group of alternating Z-values
bilinear forms on A x A. Thus our bilinear form w can be viewed as an element of
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H?(T,Z). Let L, be the line bundle on T defined by a theta factor of a theta function
f(2). Then the form w can be identified with the first Chern class of the line bundle, and
the degree of f(z) becomes the degree of the line bundle. The Riemann-Roch Theorem
which we will be discussing in a later Lecture implies that the number of zeros of any
holomorphic section of L. is equal to its degree. It is clear that zeros of the section sy
defined by f(z) on T is equal to the union of orbits of zeros of f(z) on C. This explains
Proposition 3.1.

3.3 Let us modify a little the definition of the Riemann theta function ©(z; ) introduc-
ing the theta functions with rational characteristics

ﬂab(z; 7_) _ Z e71’1'[(a+1")27'+2(z+b)(aJrr‘)]7 a, be Q
rez

We leave the proof of the next Proposition to the reader. It is similar to the proof of the
property of the Riemann theta function.

Proposition 3.2. The following properties hold
o Vyp(z;7) = egma(b_b,)ﬁa/b/(z;ﬂ ifd —a, b/ —bel

o Jap(z+ 1;7) = XMWy (2;7);

o Jyp(z+T1;7) = 6_2”%6“(_7_2’3)19&17(2; T).

o Dop(z7) = em@TH2ENNQ (2 4 b+ ar; 7).

Corollary 3.1. Suppose a,b € %Z. Then Uy (2; 7)F depends only on the fractional parts
of a, b and it is a theta function of degree k with theta factor equal to the kth power of the
theta factor of the Riemann theta function ©(z; 7).

Example 3.2. The functions

01(z|T) = 19%%(2;7) =1 Z (—l)r_%vrq%, (3.9)
res+7
r2

O (2|7) = D14z 7) = > g, (3.10)

TE%"FZ

n2
O3(z|T) = Yoo(2z;7) = ZU”QT, (3.11)
nez
n2

O4(z|T) == ’00%(2;7') = Z(—l)”v”qT, (3.12)

neL
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where v = €2™% g = 2™, are called the Jacobi theta functions.

Let us find the zeros of the Jacobi theta functions. We know that they form one orbit
in C with respect to A. Let us show that the function ¥; (z|7) is odd, this would imply that
it vanishes on the orbit of the origin. We have

Jap(—27) = 3 emllatnPreacasbion)]
rez

Z 67?’[[(7(177‘)274»2(sz)(70,*7‘)] — ﬁfa,fb(z; 7.)'
el

By the first property from Proposition 3.2, 911 (2z;7) = —9_1_1(z; 7). This proves the
2 2

11
22

assertion. As soon as we know the zeroes of V1 1 (z; 7), the last property from Proposition

11
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3.2 gives the zeros of the Riemann function ¥5(z| ). They form the orbit of £ + 7. Using
this property again, we obtain that the zeros of ¥5(z|7) is the orbit of % and the zeros of
U4(z|7) is the orbit of L.

We know that the theta factor of ©(z; 7)" satisfies e1(z) = 1,e,(z) = e~ ™H(T+22),
We call it the Riemann theta factor of order k.

Proposition 3.3. A theta factor of degree k is equivalent to the Riemann theta factor of
degree k.

Proof. Let f(z) be a theta function of order k& with some theta factor e. Let Z = {z] +
A, ...,z + A} be its set of zeros counted with multtiplicities. We know that the set of
zeros of fi(z) = 19%% (z — z;;7) is equal to z; + A. Thus the set of zeros of the product
fi1(z) - fr(2) coincides with the set of zeros of f(z). This implies that the meromorphic
function f/fi--- fx has no zeros and poles, hence must be a theta function of degree 0.
Its theta factor is equal to e/r(—2z1 — - - — 2), where 7, is the Riemann theta factor of
degree k. A theta function of degree 0 corresponds to the trivial theta factor of the form
¢@=* tb=+¢_This shows that e is equivalent to ). O

Obviously, the linear spaces of of theta functions with equivalent theta factors are iso-
morphic. So, to find its dimension it is enough to consider theta functions with Riemann
theta factor of degree k.

Theorem 3.1. The linear space of theta functions with Riemann theta factor of degree k
is equal to k. One can choose a basis formed by the functions

Os(z;7) := ﬁﬁyo(kz, kt), s=0,...,k—1.
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Proof. Let f(z) be a theta function from this linear space. Since, for any m € Z, f(z +
m) = f(z), we can expand f(z) into a Fourier series

f(z) = Z cn€?™m* ¢, € C.

nez

Replacing z with z + 7, we obtain

f(z + 7_) _ Z Cne27rin7'627rmz _ e—m’k(?z—f—r)f(z) _

nez
§ :Cnefkﬂ’we%rz(nfk)z — § :CnJrkefkﬂzTe%rmz'
nez nez
Comparing the coefficients at 2™, we get
Cnai = Cpe™ 2R (3.13)

If £ = 0 we must have ¢,, = 0, # 0, hence f(z) = ¢¢ is a constant. If k& # 0 we get a
recursion for the coefficients. In this case all coefficients are determined by k coefficients
€y ... Cck—1. Let s € {0,...,k — 1}. Then it is easy to check that

Coprk = 67ri[(s+rk)2r/k:] Cs (314)
is the explicit solution of the reccurency 3.13. This shows that f(z) can be written in the
form

k—1
f(Z) = ZCSGS(Z,T)k,
5=0
where
65(23 T)k _ Zeﬂi[(s+rk)27/k]e?m’z(s-‘rrk) _ Zewi[(%-i-r)ZkT—i-?kz(%-&-r)] _ 9%,0(k23 ]{T).
reZ reZ

The uniqueness of Fourier coefficients for a holomorphic function implies that the func-
tions O4(z; 7); are linearly independent and hence form a basis of the space of theta
functions with the Riemann theta factor of degree k. O

3.4 Now we are ready to use theta functions to embed 7' = C/A in a projective space.

Lemma 3.2. The set of zeroes of ©4(z; T)y, consists of the points

s 1 1 J .
-+ = — 4+ =+ A =0,....,k—1.
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Proof. As in Example 3.2 we show that the zeros of Jq4(2; 7) are (a + 3)7 + (b+ 1) +
Z+ Zt. If z is a zero of O,(z; )y, then kz is the zero of 20 (z; k7). Thus

s 1 1
kz—(%+§)kz7+§+Z+Zk¢T.
This gives
s 1 1 1
=(-+= —+ —Z + Zr.
z (k+2)7'+2k+k + Zt

Theorem 3.2. Let Ty = C/7Z + 7Z. For each k > 1 the formula
Z (@0(2;T>k7 c. ,@k_l(z; T)k)

defines a holomorphic map ¢y, : Ty = C/(Z + Z1) — P*=Y(C). If k > 3, this map is a
holomorphic embedding (i.e. injective and the derivative at each point is nonzero).

Proof. Since the functions Og(z;7); have the same theta factor and, by the previous
lemma, they vanish on disjoint sets of points, the map is well-defined. The map is holo-
morphic since the theta functions are holomorphic functions. Let us show that it is injec-
tive when k£ > 3. Suppose ¢ (21) = ¢k (2]). Using Proposition 3.2, we see that, for any
integers m, n,

m Nt

Os(z + i’ + ?;T)k =Vso(kz +m+n7ik7) =

2mwims 2mims

eTeimr(nT—i-Qk:z)ﬁ%O(kz; kT) _ eTeinw(nT—i—ka)@s(z; T)k~

This shows that
m Nt m nT

¢(Z1+?+?):¢(Zi+z+?)-

Note that, if & > 2 we can always choose m and n such that the four points 21, 27, 20 =
21+ P+ 55, 25 = 21 + 4+ 57 are distinct. The linear space generated by the functions
Os(z; 7)k is of dimension k. So, if & > 3, we can find a nontrivial linear combination f
of these functions such that it vanishes at z1, z5 and some other k£ — 3 points 23, ..., zk_1
which are distinct modulo A. But then f also vanishes at 2] and z5. Thus we have k + 1
zeroes of f counting with multiplicities. This contradicts Proposition 3.1 and proves the
assertion.

It remains to show that ¢y, is an embedding, i.e. the map does not have critical points,
the points the differentail of the map is equal to the zero map. Suppose zj is a critical
point. This means that the derivative f(z)" vanishes at zo. As above, we obtain that
f'(20) = f'(20 + & + 5F) = 0. But the we can find a nontrivial linear combination
of the functions O;(z;7); such that vanishes together with its derivative at zo and also
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vanishes at some k£ — 3 points 21, ..., zx_3 (because this poses k — 1 = 2 + k — 3 linear
conditions on the coefficients of the linear combination). Thus, the set of zeros of this
linear combination consists of zo + A, zo+ 7+ + - +Aand z; +A,i = 1,...,k— 3. The
first two points come with multiplicities > 2. Altogether we get k + 1 points counting
with multiplicities. This contradiction proves finishes the proof of the theorem. O

After we have proved that a complex torus 77 = C/A is isomorphic, as a complex
manifold, to a nonsingular algebraic curve, we equip it with the structure of a nonsingular
projective algebraic variety of dimension 1, a nonsingular projective curve. We call it an
elliptic curve and redenote it by F instead of T". To indicate that the lattice A is equal to
Z + Z1, we denote this elliptic curve by E .

Remark 3.4. For any compact complex one-dimensional manifold M and a line bundle L
of sufficiently large degree k, the dimension dim I'(M, L) is equal to k + 1 — g, where g
is the genus of M. Our theorem shows that a one-dimensional complex torus has genus
equal to 1.

Remark 3.5. Let us consider the group %A /A. If we consider it as a subgroup of C/A we
see that

%A/A: {a € C/A : ka =0}

is the subgroup . F of k-torsion points on the elliptic curve E = C/A. The group ;. F acts
by translations on E and on the space of functions V generated by O4(z; 7). In fact, we
have 1 .

Os(z+ 137 = e F 0, (2 )i

as we have already noticed in the proof of Theorem 3.2. Also

Oulz+ 1)k = Vzglkz + mikr) = 3 emillbrt) G 2GH D) (br40)] —

k
} . rer o (3.15)
Zewz[(kr+s+1) T H2z(kr+s+1)—22—7)] _ 6_W1(2Z+E)@5+1(Z; 7_)k7
rEL

where O (z; 7)r = Oo(2; 7).

Example 3.3. Let us take k = 3 and find the image of the map
¢3 : By — P*(C).

Consider the action of the group G = %A /A on P?(C) by projective transformations
defined on generators by the formula:
(1/3) - (w0, w1, m9) = (w0, €™ Py, '™/ Pay);

(3.16)
(T/3) . (xo,.l‘l,:EQ) = (ZCl,xQ,xo).
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Then it follows from the previous remark that the map ¢3 is G-equivariant if we make G
act on E by translations. This implies that the image of £ must be invariant with respect
to the action of GG as above. It is clear that for any homogeneous polynomial F'(Ty, T1, 1)
of degree 3 the theta function F(Oq(z;7)3, ©1(z;7)3, ©2(2; 7)3) has Riemann theta fac-
tor of degree 9, hence belongs to the space of theta functions of dimension 9. On the other
hand the space of cubic homogeneous polynomials in three variables is of dimension 10.
This implies that there exists a cubic polynomial F' such that

F(Oo(z;7)3,01(2;7)3,02(2;7)3) =0,

so that the image C of ¢3 is contained in the set of zeroes of the homogeneous poly-
nomial F(xq, 1, 22) in CP2. As we already noticed any compact closed subvariety of
P (C) must be the set of zeroes of a system of homogeneous equations. Some elementary
algebraic geometry (or better commutative algebra) tells us that C' is the set of zeroes of
one polynomial. The degree of this polynomial cannot be less than 3. In fact any polyno-
mial of degree 1 defines a a complex manifold isomorphic to P*(C) hence homeomorphic
to a two-dimensional sphere. But C' is homeomorphic to a torus. Similarly, a polyno-
mial of degree 2 defining a complex manifold can be reduced by a linear homogeneous
transformation to the form :L'% + x1x2. Hence it defines a complex manifold isomorphic
to P1(C) (use the projection map (o, x1,z2) — (z0,71)). So we see that C is the set
of zeroes of F'. The polynomial F' must be a common eigenvector for the action of the
group %A /A =2 (Z/3Z)? on the space W of homogeneous cubic polynomials given by the
formula (3.16). Also it satisfies the condition that its partial derivatives have no common
zeroes. Exercise 3.1 asks to check that this is possible only if F' = x3 + 23 + 23+ axoz1 22
for some scalar a. This implies that the image of ¢3 is a plane projective curve defined by
equation

xp + 23 4+ 23 + axvgrize = 0. (3.17)

Since E; is a compact complex manifold of dimension 1, it is easy to see that it must
be equal to the whole curve. Also since it is a manifold the partial derivatives of the
polynomial in (3.17) do not have a common solutions in P? (C) (see Exercise 3.2). This
easily implies that

a® +27#£0.

The equation (3.17) is called the Hesse equation of an elliptic curve. So we have proved
that any elliptic curve is isomorphic to a complex submanifold of the complex projective
plane given by the Hesse equation.

The parameter a is of course depends on 7. As we will see later it is a modular
form with respect to the subgroup I'(3) of the modular group I' = SL(2,7Z) of matrices

A= (:g) such that o, =1 mod 3,3,y =0 mod 3.
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Remark 3.6. Consider the affine part of the Hesse cubic where xg # 0. It is isomorphic
to the curve C’ in C? given by the equation

1+$3+y3—|—'yazy:0. (3.18)
It follows that the functions
O4(z; O9(z;
Bi(2) = TR g () = 22ETR
O0(z;7)3 Oo(z;7)3

define a surjective holomorphic map C2\ Z — C’ whose fibres are equal to the cosets
z 4+ Z + 7Z. Here Z is the set of zeroes of ©¢(z;7)3. Observe that the functions @4 (z)
and ®o(z) are elliptic functions with respect to A, i.e. meromorphic functions with the set
of periods A. In other words we have succeeded in parametrizing the cubic curve (3.18)
by double-periodic functions. For comparison let us consider a homogeneous equation
of degree 2. Applying a homogeneous linear transformation we can reduce it to the form
x% - 22+ $§ = 0 (if it defines a complex submanifold). Dehomogenizing, we get the
equation of a (complex) circle

S:at+y?=1.

In this case its parametrization C — S'is defined by one-periodic holomorphic functions
cos 27z, sin 27z . Its fibres are cosets z 4+ Z. One of the deepest results of mathematics is
the Uniformization Theorem of Klein-Poincaré which says that any equation f(x,y) = 0
defining a Riemann surface in C? admits a parametrization by automorphic functions.

Exercises

eu®

3.1 Let ®(z,u) = =}. Show that ®(z,u) = >_,_, ¢s(u)Z, where

ez —

s

1 s+1 s—1i
¢5(U)ZS+1;(J{)BM i

are Bernoulli polynomials and the coefficients B; are Bernoulli numbers satisfying ¢s(u+
1) — ¢(u) = w®. Using these Bernoulli polynomials prove that any theta factor is equiva-
lent to a theta factor for the form e, (z) = 2™@*Fby,

3.2 Using Exercise 2.11 show that the equation 3 +y3 + 23 +~y2yz = 0 defines a complex
manifold of dimension 1 in P2(C) if and only if v® + 27 # 0.

3.3 Show that the image of a 3-torsion point of C/A under the map ¢3 is an inflection
point of the Hesse cubic (a unique point at which some line intersects the curve with
multiplicity 3). Find the projective coordinates of these points.
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3.4 Show that the image of 2-torsion points in . on the Hesse cubic are the four points
(0,1,-1), (1, a,a), where a is a root of the cubic equation 2¢3 4+ 72 + 1 = 0.

3.5*% Show that the parameter v in the Hesse equation (3.17) is equal to the following
function in 7:

~ 00(0;37)% + ¢"/*00 (73 37)% + ¢*Po0(27; 37)°

B q%/6900(0; 37) 900 (7; 37)00(27; 37)

3.6 Analyze the proof of Theorem 3.2 in the case £k = 2. Show that ¢- defines a holo-
morphic map £, — P!(C) such that for all points 2 € P!(C) except four, the pre-image
consists of 2 points and over the four points the pre-image consists of one point. Find
these points in E;.

3.7 Show that the functions 9(z; k7) are theta functions of degree k2.
3.8 Show that the map C — P*(C) given by the formulas
z —r (1900(2), 1910(2’), 190;(2), Y

2

11
2 22

(2))

defines an isomorphism from C/2A =2 C/A onto a complex submanifold of P*(C) given
by two homogeneous polynomials of degree 2.

3.9 Show that each ¥,;(z; 7) considered as a function of two variables z, T satisfies the
differential equation (the Heat equation):

0%f(z,7) Of(z,7)
4 —0.
072 i or 0
3.10 Check the following equalities:
1 T T+ 1 T T
Poo(0:7) = Doy (5:7) = =™ M1 (=5 7) = €T M (557);
1 . miT/4 7+ 1 . miT/4
190%(0;7):1900(5;7):ze / 19%0( 5 ;T) = ie / 19%%( i T);

1

T T+1
919(0:7) = =031 (557) = €™ Mgy (——

T = e”i7/41900(%; 7).

3.11 Prove that, for any w € C, the product ¥4 (2 +w; )04y (2 —w; 7) is a theta function
of order 2 with theta characteristic (a+a’, b+b'). Deduce from this the addition formulae:

790%(0)2190%@ +w)dg(z —w) = 190%(2»)2190%(10)2 — ﬂ%%(z)%‘%%(w)z,
19%()(0)219%0(2’ + w)ﬁéo(z —w) = 19%0(2)219%0(10)2 — 19%%(2)279%%(11])2,
190%(0)219%%(,2 + w)'ﬁ%%(z —w) = 19%%(,2)2190%(10)2 - 190%(,2)219%%(10)2.



41

3.12 Show that cubic homogeneous polynomial F' defining Hesse equation with parameter
a satisfying a® 4 27 = 0 is the product of three linear factors and it vanishes at three non-
collinear lines in P2(C). Show that all curves defined by the Hesse equation intersect at
9 points. Together with the the three lines zo = 0,27 = 0, z2 = 0, we have 12 lines and
9 points. Prove that each point lies on four lines, and each line contains 3 points. This is
the famous Hesse configuration (123, 9,4) of lines and points in projective plane.



42

LECTURE 3. THETA FUNCTIONS



Lecture 4

Theta Constants

4.1 In this lecture we shall study the functions of 7 equal to (0, 7) where ¥(z,7) is a
theta function. To show that they are worth of studying we shall start with the Riemann
theta function ©(z; 7). We have

O;T) =D T =3"q", q=¢". @.1)

reZ re’
We have
o0
2 2
O0;7) =" ... Y ¢t =Y " e(n)g",
rEZL rxEL n=0
where

cr(n) =#{(r1,...,me) €ZF =71} 4. i)

So ©(0; 7)* is the generating function for counting the number of representations of an
integer as a sum of k squares. For example c3(6) = 24 since all representations of 6 as a
sum of 3 squares are obtained from 6 = 22 + 1 + 1 by changing the order and signs.

Let us show that (1) = ©(0; 7)* satisfies the following functional equation:

I(=1/7) = (—=iT)*29(7), I(r+2) =9(r). (4.2)

Here in the first equation we take the branch of the square root which is positive on the
purely imaginary ray iR~ . The second equation follows immediately from the Fourier
expansion. To prove the first one we use the Poisson formula in the theory of Fourier
transforms. Recall that for any rapidly decreasing at infinity smooth function f on R" one
defines its Fourier transform f by the formula:

foo= [ emxtse

43
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Let A be a lattice in R™ and A be the volume of its fundamental parallelopiped. Let
AN ={xeR":x-veZ,Vv e A}. Then the Poisson formula says that

Y rx) =4 f). 4.3)

x€EA yeN

We apply this formula to our case. Taken = 1 and A = Z and f(z) = e~™*Y considered
as a function of x € R. Then the left-hand side of (4.3) is equal to ©(0,iy). Now the
Fourier transform of f(x) is easy to compute. We have

f(x) = /OO e2mito—mty gy /OO ¢ ome Yy gy —

—00 —00

This verifies (4.2) when we restrict 7 to the imaginary axis 7 = %y. Since the set of zeroes
of a holomorphic function is discrete this suffices.
Note that if k¥ = 8n, (4.2) gives
-1
I(—) =70 (4.4)
T
We shall interpet this later by saying that ©(0; 7)" is a modular form of weight k/2 with
respect to the principal congruence subgroup I'(2).
To give you an idea why the functional equation of type (4.2) is useful, let me give
one numerical application. Take 7 = iz purely imaginary with x > 0. Then (4.2) gives

—7racr2_i —7r7"2/:v_i = —7r?/x
Ze —\/526 —\/5(14—2;6 )

rEZ rez

Suppose we want to compute the value of the left-hand side at small z. For x = .001 we
need fifty terms to reach the accuracy of order 10710, But now, if we use the right-hand
side we have

Ze—w.0017‘2 = 10(1 + 9e—100m ).

rEL

—1007 107434 400

Since e we need only two terms to reach the accuracy of order 10~

4.2 We know that the zeroes z of O(z;7) = Jgo(z; 7) satisfy
2z=(142m)7+ (1 + 2n).

Then

e:l:27r7,z _ _€7r1’r(2m—1)’
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where we consider only positive m. Let ¢ = €™ be as before, and consider the infinite
product

[e.9]

Plziq) = [ (1 +¢75 ™) (14475 e 27), (4.5)
m=1
Recall that an infinite product [ [~ , f,, of holomorphic functions on an open subset U
of C represents a holomorphic function equal to limy_ anl fn if for any compact
subset K of U the series - ;(1 — f,,) is uniformly convergent.
Since |¢| < 1, the infinite series

[es)
27rzz —27iz
§ S +e )
=1

is absolutely convergent for any 2z and the infinite series (4.5) is a holomorphic function
on C. Its zeroes are the same as the zeroes of O(z; 7). This implies that

2m—1

Oz 7) = doo(27) = Q) [] (1 +¢7% X#)(1+ g% 7275
m=1

for some function Q(¢). Using formula from Example 3.2 from Lecture 3, we obtain

2m—1 .
% Q H 1 — q = 27rzz>(1 —q T 6727rzZ); (46)
19%0(2;7_) _ Qqé( Tz —mz H 1+qm 27r7,z <1+qm —271'12)’ (47)
m=1
. 1 mz mz N m mz m _—2miz
ﬁ%%(Z’T):ZQQS( Hl — 2 (l—q e 2 ) (48)
Plugging in z = 0 we get
s 2m—1
Poo(0;7) = Q H(1+q > )%
m=1
s 2m—1
Po1 (1) =Q [[(1—¢ 7 )%
O3 }1 (4.9)
910(0;7) = 2Qq% [ (1 + ™)
m=1
19%%(0; T)=0
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Differentiating ¢1 1 (z; 7) in z, we find

11
22
00

(0;7) = —27Qqs [ (1 —a™)>. (4.10)

m=1

)

11
22
To compute the factor () we use the following:

Theorem 4.1 (C. Jacobi).
9

[

= —mo001,%1.
i 00¥10%04

Here, following the classic notation, we set
19(1[)(0; 7_) = 19(11%

dOap(z;7) ,
_— 0 = .
dz ( ) ab

Also notice that when (a, b) = (¢/2,71/2) where €,7 = 0, 1 the classic notation is really

Ven(z;7) = Ven(2; 7).

£n
22
However we keep our old notation.

Proof. Consider the space Th(2; A),p with a,b = €/2,¢ = 0,1. Its dimension is 2. If

(a,b) = (1/2,0), the functions V1, (z; 7)o (z; 7) and 911 (z; 7)1 (2; 7) belong to this
2 22 2

space. It follows from (3.12) and (3.7) that

V1o(2:7),900(2;7), 190% (z;7) are even functions in z,
2

v

(z;7) is an odd function in z.

11
22

Thus 19%0(2; T)Wo0(z; 7) is even and V1 1 (z; 7')190% (z;7) is odd. Now consider the func-

11
22
tion

F(2) = 0a(2; )00 (23 7) — O (25 7) Dary (25 7).

Observe that F(2) = Yap(2;7)2 (Vg (2;7) /Vap(2; 7). The function %{;ff)) is almost
periodic with respect to A, that is

oo (2 + M+ 0TIT)  oriima'—a)—n(y —b) Vot (25 7)
e =2 7
Yap(z + m+n7;7) Yap(2;T)

This implies that F'(z) € Th(2; A)ag+a/—a,20+5'—b = Th(2; A)gtar pye. In particular,

19%%(2; 7‘)'790%(2;7‘) - 190%(2;7')'19%%(2; 7) € Th(2; A)%o-
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Since this function is even (the derivative of an odd function is even, and the derivative of
an even function is odd) we must have

19%%(2; 7')/190%(2; T) — 190%(2; 7')'19%%(2; T) = 019%0(2’;7')1900(2';7'), 4.11)
for some constant c. Since ¢ 11 (0;7) =0, we get
'19/1 1’1901
c— 22 2
714900

Differentiating (4.11) twice in z and plugging in z = 0, we obtain

" " / / " /A
11U51 — 001011 =071 19319 1,000(91 P00 + P1000)-
73 03 03 "33 23 03 320 ( 30 20 00)
This gives
" " "
1911 1901 1910 /i
22 __ 2 + 2 + 00
¥, 0 9 Y
11 0l 1o 00
292 2 2

Now we use the Heat equation

0?9 (2, 7) (2, 7) OV0ap(2;7)(2,7)
622 — 47”7

=0 (4.12)

(see Exericse 3.10). This allows us to rewrite the previous equality in terms of derivatives
in 7. We get

N

dlog?y:  dlogdyi91,900
2 _ 2 2 .

dr dr

Integrating, we get
19/

= at 191,00
% 04730 00,

N

for some constant a. To compute o we use (4.14) when ¢ = 0 (i.e. taking Im 7 go to
infinity). This gives a = —m. The theorem is proven. O

4.3 Now we are in business. Multiplying the equalities in (4.9) and comparing it with
the equality (4.10), we obtain from the Jacobi theorem 4.1

oo
- 1 . m\2 _ q/ _ —
21Qqs Hl(l q")° = 11 = 771900190%19%0
m=

—2mQ%s [T (- )2 [J (1 +qm 2 [T (1 + ™2

m=1 m=1 m=1
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This gives
o

1—q™
oo (L4 g™) (14 g™ 2)(1 - ¢™F32)

Here again we fix the sign in front of ) by looking at the value of both sides at ¢ = 0.

Replaing ¢ with t? and using the obvious equalities

’,:18

o0
H 1+ 2+ = T+,
m=1

m=1

o0

0o oo
H(l_tQm):H(l_tm H +t2m1 1+t2m),
m=1 m=1

m=1

we finally obtain

o0 o0

Q= H — ") =TT -qm).

m=1

Now substituting @) in (4.9) we get

o
= —2mq'/® H (1
m=1

19/

11
22

(4.13)

(4.14)

Here comes our first encounter with one of the most notorious functions in mathematics:

Definition. The Dedekind n-function is the holomorphic function on the upper-half plane

defined by

oo
%H 17q q:€27ri7'.

Thus Q = ¢~ /'2n(7) and we can rewrite (4.5) in the form

Yoo = n(7)f(7)?,
790% = W(T)fl(T)z
930 = 1l
9y, = —2mn(r)3,

o=
[~

(4.15)

(4.16)
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where
>0 2m—1
=gV I[0+q ) (4.17)
m=1
o
hi)=¢ [ (4.18)
m=1
oo
Fa(r) = V24" TT (1 + ¢™). (4.19)
m=1
They are called the Weber functions.
4.4 Letus give some applications.
We have ,
Yoo(z;7) = Ze”(ZTZJr”QT) = Z q%vr,
r€Z reZ
where ¢ = e2™7, v = €™ It follows from (4.4) and (4.9) that
s — m—1
doo(zi7) = [ (1 - g™+ T (1 +qg T v,
m=1
Comparing the two expressions we get the identity
[e.e]
2m—+1 -1
Zqzv—Hl—q )4 o), (4.20)
reZ
Here are some special cases corresponding to v = 1 and v = —1:
2 > m 2m+1 o
daz =JJ0-d™0+q 7 ), (4.21)
reZ m=1
r 2 00 m 2m=1.9
Y Uz = [0 -dm-q )2 (4.22)
rel m=1
To get more of this beautiful stuff, let us consider the function J11 (0,37). By (??), we
6 2
have !
_ mi/6 mir/12 9% | T _
19%%(0,37') e e 19(2 + 2737')00

o0

eﬂ*i/6e7ri‘r/12 H ((1 _ eGﬂ'imT H _ 7m(6m+4 )(1 _ eﬂi(6m+2)7) _

m=1
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oo
em‘/6em'7/12 H (1 o qm)‘
m=1
On the other hand, we have

(0,37) = Z omillm+3)23r+2(m+ 1) 3] _
meEZ

v

11
62

e7ri/6€7ri7'/12 i (_1)m67r(3m2+m)7' _ 671'2'/6671'2'7'/12 Z (_1)mqm(3m+1)/2'
m=0 meZ
This gives the Euler identity

Z(_l)rqr(?ﬂ“-‘rl)/Q _ H (1 o qm). (4'23)
reZ m=1

In particular, we get the following Fourier expansion for the Dedekind’s function 7(7):

n(r) =gz Yy (~1)7g" /2
re€Z
The positive integers of the form n + (k — 2)@, n = 1,2,... are called k-gonal
numbers. The number of beads arranged in the form of a regular k-polygon is expressed
by k-gonal numbers. In the Euler identity we are dealing with pentagonal numbers. They
correspond to the powers of ¢ when r is negative.
The Euler identity (4.23) is one of the series of MacDonald’s identities associated to

a simple Lie algebra:
o0

Doankd = [0 -

rE€Z m=0

The Euler identity is the special case corresponding to the algebra si(2).

Exercises

4.1 Let p(n) denote the number of partitions of a positive integer n as a sum of positive
integers. Using the Euler identity prove that

pln) — p(n = 1) = p(n = 2) + pln — 5) + ..+ (~1)pln — SK(3k — 1)+

(=1)*p(n — %k(Sk 1)) 4... =0,
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Using this identity compute the values of p(n) for n < 20.
4.2 Prove the Gauss identity:

2 ﬁ(l _ x2n+2)<
n=0

4.3 Prove the Jacobi identity:

(e e}

-1 00
(1 _ x2n+1)) _ Z$r(r+1)/2'
r=0

n=0

[T —am2=> (1) (@r+ 1)2"CD/2,
n=1 r=0

4.4 Using (4.2) prove the following identity about Gaussian sums:

1 Q71 2/ 1 pil 2/
. e_ﬂ"" p/q — _— 6_7”" q p_
Vi 22

Here p, q are two coprime natural numbers.[Hint: Consider the assymptotic of the function
f(z) = ©(0yiz + ) when x goes to zero.]
4.5 Prove the Jacobi triple product identity:

o

T2
[Ta -+ 200 +q )= gzt

n=1 reZ
4.6 Prove a doubling identity for theta constants:
2 _
D91 (27)7 = Joo(T) 01 (7).

(see other doubling identities in Exercise 10.10).

4.7 Prove the following formulas expressing the Weber functions in terms of the 7-
function:

i) = e 23y TN i) = ), o) = VE2n@rn(n).

2 2
4.8 Prove the following identities connecting the Weber functions:

R (T)i2(7) = F1(27)f2(7) = V2.
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LECTURE 4. THETA CONSTANTS



Lecture 5

Transformations of Theta Functions

5.1 Let us see now that the theta constants 1., and their derivatives ﬁ;b satisfy the
functional equation similar to (4.2). This will imply that certain powers of theta constants
are modular forms. For brevity we denote the lattice Z + 7Z by A,. We also set, for any
rational a,b € Q,

Th(k’,Aq—)ab _ {f e O((C) : f(Z +m+ m‘) _ eQwi(—ma—nb)emk(n%——i—nz)f(z)}'

This is the space of theta functions with theta factor obtained from the Riemann theta
factor of degree k by multiplying it by a root of unity {e2™(=™a="b)} Tt follows from
Proposition ?? that this space is spanned by theta functions 6, (z;7)*. Also, it follows
from Theorem 3.1 that

dim Th(k, Ar)ep = k.

Theorem 5.1. Let 9(z;7) € Th(k; Ar)ap and M = (3 g ) € SL(2,Z). Then

szQ

i) g

z  ar+p
NT+8 AT+ 6

€ ) S Th(k‘;A7—>a/b/,

where

%

k
(@, b)) = (aa + b — %,m + b+ ==).

Proof. First observe that for any f(z) € Th({e,};A) and ¢t € C*,
2
8(2) = 1(5) € Th({e, }; 00,

where
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In fact, for any 7/ = tvy € tA,

8z +17) = JEED) = 1 9) = e, )1 C) = ey Do(2).
We have
Th(k; AT)ab = Th({é’»y}; 7+ TZ)>
where

emtnr (Z) _ eQﬂ'i(mafnb) e*ﬂ'ik(anJrnQ‘r) ) 5.1

For any M = <: ?) € SL(2,7Z) we have

(yT+0)Z + (at+ B)L =7 + TZ.
Thus for any ¥ € Th(k; A;)qp, We have
(2(y7 +9)) € Th(el; 2+ 1'2),

where
, ar+p

iy
€;n+nr’(z) = e(m+m")('yr+6)(2(77' +9)).
We have, using (5.1),
€1(2) = exrys(2(yT + 6)) = e2mila3—) =miK(OT+O)+97T)
e—m’kz’y((’y'r-i-é)(Z+1)2—('y7'+6)22)eﬂik’yéeQm'(ad—b'y) )
This shows that
wiky(yT+6)22 . _ .
eI Th({el, (2)}; Z + 7'Z) = Th({el,(2) s Z + 7'Z),

where
6/1/(2) _ eﬂi[k’75+2(a5—b7)]_ 5.2)

Now comes a miracle! Let us compute e”,(z). We have

"
T

miky(yT+08) ((z4+7")2—22)

eh(z) =e rrtyra) (07 +6)) =

TN o 2y 4 8)) = (5.3)

eﬁik['y(yr—o—é)(2,27-’—0—7-’2)—(2az(77+6)+a27)627ri(—ba+ﬁa)] _ 67riikG627ri(—ba+,8a)
= )

where
G =y(y1 +6) (227" + 7’2) —2az(yT+9) — a’r =
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at + [ at + 8.4 _ o
7(77+5)(22(77+5)+(’Y7’+5)) 20z(yT 4+ 0) —atT =
fy(a7+ﬁ)2_ o
227(047—1—5)—1—777_’_5 20z(yT +0) — a1 =
2 _ 2
ot v(at + 5)* — o (yT + 6).
YT 49

Here we used that ad — 8y = 1. Now
y(ar + B8)? — &?7(y1 + ) = 2yafT + B2 — daPT =

—afad — By)T +aB(yT +6) — B(ad — By) = — (a7 + B) + aB(yT +9).
This allows us to rewrite GG in the form

at + 8
YT +4

G=-2z— +aBf=—-2z—71 +ap.

Putting G back in the expression (5.3) we get

///(Z) _ e—ﬂik(22+r’)em‘[kaﬁ—Q(ﬁa—ab)].

er

Together with (5.2) this shows that

Th({e;{/ (Z)}’ AT’) = Th(k‘, AT’)a/b’a

where - .

(a', V) = (6a — b+ %,—Ba—l—ab— %ﬁ) (5.4)
Summarizing we obtain that, for any J(z,7) € Th(k; A;)ap,

RO (v + 8)2;7) € Th(k, Aoy (5.5)
Now let us replace (: f) with its inverse (:g _aﬁ ) We rewrite (5.13) and (5.14) as

e~ TR (AT Y (—yr 4+ @)z 7) € Th(k, A ), (5.6)
where & .
(a',b) = (ca + vb — %, Ba + 6b + TB)

aT+

It remains to replace T with Py

in (5.15) to obtain the assertion of the theorem.

Substituting z = 0 we get



56 LECTURE 5. TRANSFORMATIONS OF THETA FUNCTIONS

Corollary 5.1. Let ¥1(z,7), ..., Vi(z; T) be a basis of the space Th(k; A;)qp and

V1 (z,7),...,0,(2;7) be a basis of Th(k; Ar)qy, where (o', V') are defined in the Theo-
rem. Then, for any M = ( ) € SL(2,Z) there exists a matrix A = (¢;;) € GL(k, C)
depending on M and T only such that

' a7'+ﬁ p
(0, WM Zczm (0,7).

5.2 Letustake k = 1 and (a,b) = (¢/2,n/2),¢,n = 0,1. Applying the previous
Theorem, we get
Oap(z57+1) = C’19a7b+a+%(z; T)

for some C' depending only on 7 and (a, b). In particular,

2mia(T+1) — qae27ria we obtain

Since the substitution 7 — 7 + 1 changes ¢“ into e
C = eﬂ'i/4

Similarly, using the formulas (4.16) and (4.17) which give the infinite product expansions
for other theta constants, we find

Yoo(z; 7+ 1) = 190%(z;7), 5.7
ﬁo%(z? T+ 1) = 9g0(z;7), (5.8)
I1g(zi7+1) = —e”i/419%0(z; 7). (5.9)

Now take M = ( 1 ) ‘We have

e ™% /T900(2/7; —1/7) = Bigo(z;7)
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for some B depending only on 7. Plugging in z = 0 and applying (4.2), we get
B =/ —ir, (5.10)

where the square root takes positive values on 7 € iR.
In particular,

Yoo (0; —1/7) = V—im900(0; 7). (5.11)
Applying the formula (??) we have
—miz2 /T z 1 —miz2 /T z 1 1

e 190%(;;—;) — e/ 1900(; §§—;) =

efm'z2/7-1900(2 + 5; _1) _ Befm'z2/7-eﬂ'i(z+%)2/fﬁoo(z + %; 7.) —_ (5.12)
T
Be™T/4H2) 900 (2 + %; T) = Bﬁéo(z; 7).
In particular,

9(0; 71/7)05 = 72'7'?9(0;7')%0. (5.13)

Replacing here 7 with —1/7, we obtain

9(0; —1/7’)%0 = \/77'19(0;7)0%. (5.14)
This shows that
e_mz2/719(z/7'; —1/7’)%0 = ViTd(z; T)o%- (5.15)

Finally, using (5.13), (5.14) and (5.15) and applying the Jacobi theorem, we obtain

9(0;—1/7)1 1 = -1V —iﬂ?%%(O; 7). (5.16)
22
We know from Theorem 5.1 that
e*”izz/Tﬁ(z/T; —1/7)%% = B'(z; 7')%_% = —B/ﬁ(Z,T)%%

for some constant B’ depending only on 7. Differentiating in z and setting z = 0 we

obtain .
=9(0; —-1/7), = B'Y
T 22
Comparing with (5.16), we get B’ = B and hence

9(0; —1/7)11 = 7v/—i19(0; —1/7) (5.17)

11 11
22 22
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5.3 We shall interpret the previous computations later by saying that powers of theta
constants are modular forms with respect to certain subgroups of the modular group. Right
now we only observe the following

Corollary 5.2. Let f(7) = Then, for any M = ( ) € SL(2,Z), we have

ll
22

art + 8
YT 4+ 0

£ ) = C(M)(vr + 6)7 f(7),

where ((M)8 = 1.

Proof. We shall prove in the next lecture that it is enough to check this for generators

of the group SL(2,7Z). Also we shall show that the group SL(2,Z) is generated by the

matrices My = (1), My = (9 '), —1. We have from (4.14) and (4.15)
fr+1)%=f(n)°  f(=1/7)° =12f(7)"

This proves the assertion. O

Corollary 5.3. Let n(7) be the Dedekind n-function. Then

oo
Hl_q q2627r27—

satisfies
at + Bioy 12 24
n(77+5) = (7 +0) "n(r)™"
Proof. Use (4.10)
911 = —2mn(7)°.
22
]
Corollary 5.4. Let M = (: §> € SL(2,Z). Assume that the products of3,~vd are
even. Then
z at + 2
) §)2e™= /0T Q2 5.18
(o T = clar + 0k CE MR

where (8 = 1 and the branch of the square root is chosen to have non-negative real part.
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Proof. Recall that O(z;7) = 9¢p(z; 7), so Theorem 5.1 gives immediately that

z  ar+p

— (M miyz2 [ (yT+9) .
77'+5’77'+5) c(M,)e Oz )

o(

for some constant ¢(M,7) depending only on M and 7. Take M = (° §). Then
formula (5.13) checks the assertion in this case. Take M = ((1) if) Then the assertion
follows from (5.10). Now we argue by induction on || + |4|. If |6| > |v|, using that

O(z,7+2) = 0(z;7), we substitute 7 £ 2 in (5.16) to obtain that the assertion is true for

M — (: gigz‘ ) Since we can decrease |§ & 2| in this way, the assertion will follow

by induction. Note that we used that |§ £ 2| is not equal to |d| or |y| because (v, d) = 1
and ¢ is even. Now, if [0| < |y|, we use the substitution 7 — —1/7. Using (5.13) we
see that the asssertion for M follows from the assertion fo M’ = (? :f; ) This reduces
again to the case 0| > |v/|. O

Exercises

5.1 Show that the constant (M) in (5.16) is equal to i (‘%') when + is even and § is

odd. If ~ is odd and ¢ is even, it is equal to e~/ 4(%). Here (7) is the Jacobi-Legendre
symbol, where we also set (2) = 1.

5.2 Extend the transformation law for theta functons by considering transformations de-

fined by matrices <f{‘ g ) with determinant n not necessary equal to 1:

- T 22
e"”ﬁléﬂ( nz ;aT—i-ﬂ
YT4+0 T+ 6

) S Th(nk‘, Ar)a’b/v

where ¥(z;7) € Th(k, A;)qp and

ko

k
(@, V) = (aa + b — %,mwm =)

5.3 Using the previous exercise show that

(1) Aﬁ%(z; T/2) = 190%(2; 7')19%%(2; 7) for some constant A;

(ii) A’ﬂéo(z; 7/2) = Yo0(2; 7')19%0(2; 7) for some constant A’;
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(iii) (Gauss’ transformation formulas

19%0(0;7'/2)19%%(2;7'/2) = 219%0(,2;7)19%%(7: T),
190%(0; 7'/2)19%0(2;7'/2) = 21900(2;7)19%0(2';7'),
[Hint: Apply (??) to get A = A’, then differentiate (i) and use the Jacobi theorem].

5.4 (Landen’s transformation formulas) Using Exercise 5.2 show

9q1(0;27)0

ol
2

190% (0; 27)190% (22;27) = Yoo (2; 7)190% (z;71),
5.5 Let n be an odd integer.

(i) Show that, for any integer v, 1, 1 (#;7) depends only on the residue of ¥ modulo
n.

(i) Show that
nd v 2v
H ﬁo%(ﬁﬂ') = H ﬂo%(gﬂ')'
v=1

(iii) Using Exercises 5.3 and 5.4 show that

Yoo(z; 27)75‘%0(2; 27)190% (2z;27)  Yoo(z; 7)19%
Y00(0; 27)19%0(0; 27)190% (0;27)  Dgo(0; 7')19%0(0; 7)Y,

(iv) Show that the expression

-] ot ) 04517000 557)
1900(0 T)n 1191 (0 )" 119 (0 T)

does not change when 7 is replaced with 2.

(v) Show that
[T Yool T)910(5; )190%(%;7)
Fo0(0; 7)1 105 7)1 (05 7)™

n—1
Hyil ﬂOO(n7 )19% (naT)ﬁ()Q( 7T)

n—1 2
0 GOy 10305 717 T (05771




(vi) Prove the formula

n—1

[L2, 1900(%;7')19%0(%5 7)190%(%? 7) o15n
. \n—1 . \n—1 .\n—1

Yoo (0;7) 19%0(0,7') 190%(077)

_ ) _ 2. w2
5.6 Let A = Zwy + Zws. Set t(z;wi,we) = ﬁ%%(wl, wf)
(i) Show that
t(z + wiwr,we) = —t(z; wi,w2),
_ﬂ..2z+w2
t(z + woswi, wo) = —e “1 t(z3 w1, wa).

(i) Letw],w) be another basis of A. Show that
2
t(z;wh, wh) = Ce® Tt (25w, wo)
for some constants C, a, b.

(iii) By taking the logarithmic derivative of both sides in (ii) show that

B _t”/(O;wl,wg) tm(();wi,wé) B t”(O;wl,wg)
6t/ (0;w1,w) — 6F/(0;0f,wh)” 2t/ (001, w2)
and ) .
O — t (0§W17W2)_
t'(0; wi, wa)’
(iv) using (iii) show that
97, (0) 97, (0)
a 232 33
69, , (O)W% 69", , (0)w?

22 22

and b = 0;

(v) using the Heat equation (see Exercise 3.8) show that

19/%”% (0) _ 193108 n(7)
¥, (0) - dr ’
22

_ w2
where 7 = o2
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5.7 Define the Weierstrass o-function by

—22(9"" /6w%19/l
2

[T
N

o(z;wr,ws) = wie

Show that
(i) o(z;w1,ws) does not depend on the basis wy, wo of the lattice A;
(i) o(—2) = —0o(2);
(iii)

o(z4wi) = —eMCEt25(2) oz 4 wy) = —eET22)5(2),
where 1 = 0/ (w12) /o (w12); 12 = 0/ (w22) /o (w22).
(iv) (Legendre-Weierstrass relation)
Mmwz — Nawi = 2.
[Hint: integrate the function o along the fundamental parallelogram using (iii)];

)
mi dlogn(T) _ mwydlogn(r) o«

= _QT% dr = w% dr 2wy’

where 7 = wo /wy.

5.8 Using formulas from Lecture 4 prove the following infinite product expansion of
o(z;wi,ws):

2 o0 -2 m, 2
wp m: _ (1—q"v™?)(1 —q™v?)
olsonon) = 2o o=t [T LI

m=1

27 22

— .
where ¢ = ™' %1, v = e™i2/w1,



Lecture 6

Modular Forms

6.1 We have seen already in Lecture 5 (5.2) and Corollary 5.3 that the functions 6(7)** =
00(0; 7)* (resp. n(7)?*) satisfy the functional equation

f(r+2)=f(r), f(=1/m)=7"f(r),

(resp.
flr+1)=f(r), f(=1/7)=72f(r)).

In fact, they satisfy a more general equation

at +
YT 40

FETEBY _ r sy g, v(a 5)er, 6.1

v 4

where T is the subgroup of SL(2,Z) generated by the matrices & ({ '), (%) (resp.
(15,6 1)):

To see this we first rewrite (6.1) in the form

Flg-m)ig()" = f(7), (6.2)
where p 8
. _ aar +5 _9
Jg(T) = drvr+0 (yr+6)"" (6.3)
By the chain rule
Jgg' (T) = jg(g/ “T)jg (T). (6.4)

Thus replacing 7 with ¢’ - 7 in (6.2), we get
(f(g- (g 7))ig(d" - T)ig(T) = [lgg - T)igg(T) = (7).

63
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This shows that
F(Dkg = f(g - 7)jg(r)"F (6.5)

satisfies
F()klgg") = (F(D)k9)lkg’s V9,4 €T.

In other words (6.5) defines a linear representation
p:T — GL(O(H)™
of I in the space of holomorphic functions on H defined by

p(9)(¢(2)) = dleg ™. (6.6)

1

Note that we switched here to g~ in order to get

p(gg’) = pg) o p(g).

It follows from the above that to check (6.1) for some subgroup I' it is enough to
verify it only for generators of I'. Now we use the following:

Lemma 6.1. The group G = PSL(2,7) = SL(2,Z)/{%} is generated by the matrices

0 -1 11
=(a) m=0)
These matrices satisfy the relations
S =1, (ST)®=1.

Proof. We know that the modular figure D (more exactly its subset D’) is a fundamental
domain for the action of G in the upper half-plane H by Moebius transformations. Take
some interior point 29 € D and any g € G. Let G’ be the subgroup of G generated by
S and T'. If we find an element ¢’ € G such that ¢’g - zg belongs to D, then ¢'g = 1
and hence g € G'. Let us do it. First find ¢’ € G’ such that Im (¢’ - (g - z0)) is maximal

possible. We have, for any g = (: §>,

Im z Im 2
[vT + 6] — |llz| + 19]

Img-z= < Clm z,

where C'is a positive constant independent of g. So the set {Im ¢’z : ¢’ € G’} is bounded
and discrete and hence we can find a maximal element. Take 2 = g - 29. Let ¢’ realize
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this maximum. Applying transformations 7" we may assume that [Re T"¢'g - zo| < % It
|T™q'g - 20| > 1 we are done since 2’ = T"¢'g - zg € D. If not, we apply S. Then

—1 2

ImS -2 =Im — =Im —— <Im 2,
% |Z"2

contradicting the choice of ¢’. This proves the first assertion. The second one is checked
by direct matrix multiplication. O

This explains why (6.1) is satisfied for the functions 65, and n(7)?*.

Definition. Let I be a subgroup of finite index of SL(2,Z). A holomorphic
(resp. meromorphic) function f : H — C satisfying

at +
T 4+ 9

. e
FETED = o+ 070 =i s, va= (2 F) e
is called a weak modular form (resp. a weak meromorphic modular form) of weight k
with respect to I

We shall later add one more condition to get rid of the adjective "weak”.

Remark 6.1. . Some authors prefer to call 2k the weight of a weak modular form admitting
k to be equal 1/2. Since j, has a meaning for any group I acting discretely on a complex
manifold M, our definition can be easily extended to a more general situation leading to
the notion of an automorphic form of weight k.

6.2 Suppose we have n + 1 linearly independent functions fy, ..., f, satisfying (6.1)
(with the same number k). Then we can consider the map

f:H—=CP", 7= (fo(r),..., fu(T). 6.7)

When we replace 7 with ‘f{::?, the coordinates of the image will all multiply by the same

number, and hence define the same point in the projective space. This shows that the map
f factors through the map

f:H/SL(2,Z) — CP".

Now recall that the points of #/SL(2,Z) are in a natural bijective correspondence with
the isomorphism classes of elliptic curves. This allows us (under certain conditions) to
view the set of elliptic curves as a subset of a projective space and study it by means
of algebraic geometry. Other problems on elliptic curves lead us to consider the sets of
elliptic curves with additional structure. These sets are parametrized by the quotient H /T’
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where I is a subgroup of SL(2,Z) of finite index. To embed these quotients we need to
consider functions satisfying property (6.1) but only restriced to matrices from I'.

Many examples of such functions are obtained from powers of theta constants.

We will need one more property to define a modular form. It is related to the behaviour
of f(z) when Im z goes to infinity. Because of this property the image of the map (6.7) is
an algebraic variety.

Let I' be a subgroup of SL(2, Z) of finite index. We can extend the Moebius action of
I" on H to the set
H* =HUQU {0} = HUPHQ)

by requiring that the subset P!(Q) is preserved under this action and the group I' acts
naturally on it with respect to its natural linear action on Q?:

(3 ?) - (p,q) = (ap + Bg,vp + dq).

In particular, if we identify rational numbers = with points (z : 1) € P(Q) and the
infinity oo with the point (1, 0) we have

ar+5 - .
<a B>x: yr+0 1f7$+5#0 (68)
v 9 00 ifyxr+0 =0.
a o
<’Y 5) y -
a f
<a B)'OO: A (6.9)
¥ 6 oo ify=0.

Note that SL(2, Z) acts transitively on the set Q U {oo}. In fact for any rational number
x = g with (p, q) = 1 we can find a pair of integers u, v such that up — vqg = 1 so that

(u —’U> p
- — = 00.
q p q

Thus any subgroup of finite index I" of SL(2, Z) has only finitely many orbits on QU{oc}.
Each such orbit is called a cusp of I". For each cusp ¢ = I'-x of I represented by a rational
number x or oo the stabilizer group I, is conjugate to a subgroup of SL(2,Z) . In fact,
if g - © = oo for some g € SL(2,Z), then

g-Typ-g - 00=00.
Since
at +

YT +9

00 =00 v=0,
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we have
_1 1 B

Let h be the smallest positive 5 occured in this way. Then it is immediately seen that
g-T', - g~!is generated by the matrices

hoo (1R . (-1 0
Ti<01’ I=lo 1)

The number £ is also equal to the index of the subgroup g - I'; - ¢! in SL(2,Z)s =
(T, —I). In particular, all = from the same cusp of I" define the same number h. We shall
call it the index of the cusp. Let f(7) be a holomorphic function satisfying (6.1). For
each x € Q U {oco} consider the function ¢(7) = f(7)|rg~!, where g - z = oo for some
g € SL(2,Z). We have

S(T)kgTag ™ = f(D)kg ™ 9™ = F(T)iTag™" = f(T)lkg™" = (7).

This implies that ¢(7) satisfies (6.1) with respect to the group gI',g~!. Since the latter
contains the transformation 7" we have

ST - 7) = ¢(7 + h) = 6(7).

Thus we can consider the Laurent expansion of ¢(7)

o(1) = Z eq’, q=eXmT/h, (6.10)
rEL

This converges for all ¢ # 0. We say that f(7) is holomorphic at a cusp (resp. meromor-
phic) if a, = 0 for r < 0 (resp. a, = 0 for r < —N for some positive V). It is easy to
see that this definition is independent of the choice of a representative x of the cusp. Now
we are ready to give our main definition:

Definition. A holomorphic (resp. meromorphic) function f(7) on the the upper half-
plane H is called a modular form (resp. meromorphic modular form) of weight k with
respect to a subgroup I' of SL(2,7Z) of finite index if it is holomorphic (resp. meromor-
phic) at each cusp and satisfies

flg-7) =jgs(r)"f(r), VgeT.

A modular form is called a cusp form or a parabolic form if its Fourier expansion at each
cusp has no constant term. A meromorphic modular form of weight O is called a modular
function with respect to I
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6.3 Let us give some examples.
Example 6.1. Let
A(r) = n(m)*.

It is called the discriminant function. We know that A(7) satisfies (6.1) with k& = 6 with
respect to the group I' = SL(2,7Z). By (4.9)

Since
A(r)=q [T (1 —gm
m=1

we see that the Fourier expansion of A(7) contains only positive powers of ¢. This shows
that A(7) is a cusp form of weight 6.

Example 6.2. The function Jgo(7) has the Fourier expansion me /2. Tt is convergent at
q = 0. So U3k is a modular form of weight k. It is not a cusp form.

Let us give more examples of modular forms. This time we use the groups other than
SL(2,Z). For each N let us introduce the principal congruence subgroup of SL(2,Z) of
level N

T(N)={M = <f: g) €SL(2,Z): M =1 mod N}.

Notice that the map

SL(2,Z) — SL(2,Z/NZ), <: f;)%(i f)

is a homomorphism of groups. Being the kernel of this homomorphism, I'(V) is a normal
subgroup of I'(1) = SL(2,Z). I think it is time to name the group I'(1). It is called the
full modular group.

We have

Lemma 6.2. The group I'(2) is generated by the matrices

s (1 2 se (10
e (8, s (4, 0).

Proof. Let H be the subgroup of I'(1) generated by 72, —I and ST?S~!. We know that
I'(1) is generated by 7" and S, it is easy to verify that H is a normal subgroup of I'(1)
contained in I'(2). Since I'(1)/T'(2) = SL(2,Z/2) it suffices to show that the natural
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homomorphism ¢ : I'(1)/H — SL(2,7Z/2) is injective. Let g € I'(1) \ H be an element
of the kernel of ¢. It can be written as a word in S and 7'. Since

ST)=¢(T™), ¢(T%) =1, $°=1, S§7'=35,

we can replace g with another element from the same coset modulo H to assume that g is
aword in S and T where no S? or T appears. Since we know that (ST)? = STSTST =
1, we have the following possible expressions for g:

S, ST, STS, STST, STSTS, T.
Here we used that ¢(T'S) = ¢(ST) ! since ¢(725?) = 1 and similarly
¢(TST) = ¢(STS) ™, ¢(TSTS) = ¢(STST) ™",

H(TSTST) = ¢(STSTS) ™.

Also ¢(ST) = ¢(STST)~!. Thus it is enough to verify that the elements S, ST, ST'S,
T are not in the kernel, i.e. do not belong to I'(2). This is verified directly. O

Example 6.3. Consider the theta constants 1955. Applying the transformation 7/ = 7 + 1
twice and using formulas (5.1) , we obtain

1900(7' + 2) = 190%(7' -+ 1) = 190[)(7'),

Fo1 (7 +2) = Boo(7 + 1) = g1 (),

o

_ mif4 _ /2
19%0(7'4-2) =€ 19%0(7'4-1) =€ 19%0(7').

Next, using formulas (5.11)-(5.14), we have

~ -1 g —1 -1
Poo(STE57) =t (5 2)-7) = Io(gyg) = €+ ol 242) =
ST 49) 2o~ ) =

T T

1

637”'/2(_, + 2)1/2(7)1/21900(7-) = —i(21 — 1)1/21900(7').
T

Similarly we obtain

Uy

=

A 1 1
(ST%S7) = ™4 (—= 4 2)129,1(—= +2) =
T 2 T

7;637ri/4(_l

1
—+ 2120 (—2) = (27 = 1), (1),

T
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v"%o(STQST) = —i(27 — 1)1/%90%(7).

Applying Lemma 6.2, this shows that

Joo(r)*,  D1o(r)h, Do () 6.11)

1
2
are weak modular forms with respect to the group I'(2). This group has three cusps
represented by 0, 1, and oco. Since 'y, is generated by the matrices -7, we see that co
is the cusp of I'(2) of index 2. Since the subgroup I'(2) is normal in I'(1) all cusps have
the same index. Also it is enough to check the condition of holomorphicity only at one
cusp, say the co. By formula (4.6) 9,,(7)* has infinite product in q% = ™ with only
non-negative powers of ¢. Thus the functions (6.11)) are modular forms of weight 1 with

respect to I'(2). Since

)
m>_-

o0
1o(7 H (1—¢™'1+q¢™),
we see that ¥4 o 1s a cusp form.
2

6.4 We know that any elliptic curve is isomorphic to a Hesse cubic curve. Let us give
another cubic equation for an elliptic curve, called a Weierstrass equation. Its coefficients
will give us new examples of modular forms. Recall that dim Th(k, A;). = k. Let use
<, > to denote the linear span. We have

Th(1,A;)

=<v11(z;7) >=<T >;

13 =<0
Th(2,A,) =< T2, X' >
Th(3,Ar)11 =< 737X Y >
for some functions X’ € Th(2,A;),Y’ € Th(3,A;)
tions

11. Now the following seven func-
22

T6, T4X/, TQXIQ, X/3, T3Y/, TX,Y,, Y/2

all belong to the space Th(6, A;). They must be linearly dependent and we have

aT® +bT*X"? + T?X"? +dX" + eT3Y' + fTX'Y' + gY"? = 0. (6.12)
Assume g # 0,d # 0. It is easy to find

X =aX +8T% Y =~Y' +06XT +wl?
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which reduces this expression to the form
V2T — X3 — AXT* — BT® =0, (6.13)
for some scalars A, B. Let
p(z) = X/T?  pi(z) =Y/T°.
Dividing (6.13) by T we obtain a relation
p1(2)* = p(2)° + Ap(2) + B. (6.14)
Since both X and T belong to the same space Th(2, 7) the functions p(z), p1(z) have

periods v € Z + 7Z and meromorphic on C. As we shall see a little later, p1(z) =
Consider the map

ap
dz "

E,=C/A =P 2= (T(2)%T(2)X(2),Y(2)).

Since T'(2)3,T(2) X (2), Y () all belong to the same space Th(3, A, )1 1 this map is well-
272
defined and holomorphic. It differs from the map from Example 3.2 only by a composition

with a translation on E; and a linear change of the projective coordinates coordinates.
This is because, for any f € Th(k; A) we have

b+ ar

erile® T2t f(; 4 ) € Th(k; A)as
(see Lecture 3). So it is an isomorphism onto its image. The relation (6.13) tells us that
the image is the plane projective curve of degree 3 given by the equation

y*t — a® — Axt? — Bt? =0, (6.15)

Now it is clear why we assumed that the coefficients d, g in (6.12) are not equal to zero. If
g = 0, we obtain an equation f(x,y,t) = 0 for the image of E; in which y enters only in
the first degree. Thus we can express y in terms of x, ¢ and obtain that E- is isomorphic
to P1(C). If d = 0 we obtain that f could be chosen of degree 2. Again this is impossible.
Note that we also have in (6.13)

4A3 +27TB% #0 (6.16)

This is the condition that the polynomial 23 + Az? + B does not have a multiple root. If
it has, (6.13) does not define a Riemann surface. A cubic equation of the form (6.15) with
the condition (6.16) is called a Weierstrass cubic equation.
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We know from Lecture 3 that 7' = 11 (z;7) has simple zeroes at the points z =
22

~ € A,. Since X does not vanish at these points (it is a linear combinations of 7 and
Yo0(2;7)?), p(2) has poles of order 2 at z € A. Differentiating (6.14), we obtain

201(2)p1(2)" = (Bp(2)* + A)p(2)'.

Let p1(21) = 0. If 3p(21)2+ A = 0, the polynomial 22 + Ax + B is reducible since p(z1)
must be its double root. So, p1(z) has common roots with p(z2)’. Now both functions have
a pole of order 3 at points from A. This shows that the function g, /¢’ has no poles and
zeroes, hence it is constant. Let cp; = p. Replacing g1 by c3p1, p by ¢?p, Aby ¢*A, B
by ¢® B we may assume that

o1(2) = p(2)". (6.17)
Let
(2) =a_oz 2 +ag2® + ...

be the Laurent expansion of g(z) at 0. Note that p(z) must be an even function since all
functions in Th(2, A;) are even. We have

/

01(2) = p(2) = —2a_2273 + 2a22 + .. ..

Plugging in the equation (6.11) we obtain 4a®, = a®, hence a_y = 4. Finally, if we
replace p(z) with p(z)/4 we can assume that

p(z) =272+ 2% +eg2 + ..., (6.18)

and
p(2)? = 4p(2)* — gap(z) — gs. (6.19)

Here we use the classical notation for the coefficients of the Weierstrass equation. Differ-
entiating (6.18) we find

p(2) = =223 + 202 + 4eg2® + ..., (6.20)
Plugging this in the Weierstrass equation (6.19), we easily get
0(2)% — dp(2)? = —20c9272 — 28cy + 22(..).

Thus the function p(2)'2 — 4¢p(2)3 + 20c29(2) + 28¢4 is holomorphic and periodic. It
must be a constant. Since it vanishes at 0, it is identical zero. Comparing this with the
Weierstrass equation, we find that

g2 = 20c2, g3 = 28¢4. (6.21)
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After all of these normalizations, the elliptic function @(z) with respect to A, is
uniquely determined by the conditions (6.18) and (6.19). It is called called the Weier-
strass function with respect to the lattice A.

One can find explicitly the function p(z) as follows. I claim that

1 1 1
= = — — — —3)- 6.22
p(2) = 0(2) = +7g\:{0}<(z ) (6.22)

First of all the series (6.22) is absolutely convergent on any compact subset of C not
containing 0. We shall skip the proof of this fact (see for example [Cartan])[?]. This
implies that ¢(z) is a meromorphic function with pole of order 2 at 0. Its derivative is a
meromorphic function given by the series

, 1
o(z) =-2 Z m

yEA

It is obviously periodic. This implies that ¢(z) is periodic too.
Since ¢(z) is an even function, ¢(z)’ is odd. But then it must vanish at all v € 1A. In
fact

¢'(—/2) = =¢'(v/2) = =¢'(—7/2+7) = =¢'(7/2).

The same argument shows that ©(z)" vanishes at the same points. It follows from the
Cauchy residue formula that the number of zeroes minus the number of poles of a mero-
morphic double periodic function inside of its fundamental parallelogram is equal to zero
(see computations from Lecture 3). This shows that ¢’ and ¢’ has the same set of zeroes
and poles counting with multiplicities. This implies that ¢/(z) = cgp(z)’ for some con-
stant c. Now comparing the coefficients at z=3 we see that ¢ = 1. So p(2) = ¢(z).
After integrating we get p(z) = ¢(z)-+constant. Again comparing the terms at 22 we
get ¢(z) = p(z). This proves (6.22).
After differentiating p(z) at 0 we obtain

co=3 Z 54, c4 =95 Z 7?6'

veA\{0} v€A\{0}

Remark 6.2. Now it is time to explain the reason for the names “elliptic functions” and
“elliptic curves”. We know that the Weierstrass function @(z; 7) is a solution of the dif-
ferential equation (%)2 = 42 — gox — g3. Thus the function z = p~!(z) is given, up to

adding a constant, by the indefinite integral

2= / _dv : (6.23)
43 — gox — g3
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This is called an elliptic integral. Of course, the function = p(z) does not have single-
valued inverse, so one has to justify the previous equality. To do this we consider a
non-empty simply connected region U in the complex plane C which does not contain the
roots eq, eg, ez of the polynomial 423 — gox — g3. Then we define f : U — C by

fw= [ ==
u Va3 — gox — g3

This is independent of the path from « to oo since U is simply connected. Using analytic
continuation we obtain a multivalued holomorphic function defined on C \ {ej, e2,e3}.
Using the chain rule one verifies that o(f(u)) = +u. So, f is well-defined as a holomor-
phic map from C \ {e1,e2,e3} to (C/A;)/(z — —z). It can be shown that it extends
to a holomorphic isomorphism from the Weiertrass cubic y?> = 42> — gox — g3 onto
(C/A;) \ {0}. This is the inverse of the map given by z — (p(2), p(2)'). As was first
shown by Euler, the elliptic integral (6.23) with special values of go and g3 over a special
path in the real part of the complex plane z gives the value of the length of an arc of an
ellipse. This explains the names “elliptic”.

6.5 Next we shall show that, considered as functions of the lattice A = Z + Zr, and
hence as functions of 7, the coefficients go and g3 are modular forms of level 4 and 6,
respectively. Set for any positive even integer k:

1
Bp(r)= > 3
veA-\{0}
Assume |7| > R > 0 and k& > 2. Since

1 N
Z k<// |z + iy| Fdzdy =
h/’ le+iy|>R

YEZA+TZ\{0}

oo 21 00

//r_k+1drd0 = 27‘(‘/7‘1_de,
R 0 R

we see that Fy(7) is absolutely convergent on any compact subset of H. Thus Ej(7) are
holomorphic functions on A for £ > 2. From (6.21) we infer

g2 = 60E,, g3 = 140F. (6.24)

We have

ar+ 6, at + Tk
Ek(’YT+5)_( z):#o[m(vTjLé)—Fn] -
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(v +6)* [(ma +ny)T + (mB +nd)] ™% = (y7 + 6)F Ey(7).
(m,n)#0
This shows that Ej(7) is a weak modular form with respect to the full modular group
I'(1). We can also compute the Fourier expansion at the cusp co. We have

1 1
FE = —_— — .
= Y ot X (o)
meZ\{0} neZ\{0} “meZ
Since k is even, this can be rewritten in the form
) =2 19 - -
> e (Y m+m)k OEDMNOD mﬂmk)y
meN neN mez neN meZ

where 1
C(S):ZE, Res>1
meN
is the Riemann zeta function. Now we use the well-known formula (see for example
[Cartan], Chapter V, §2, (3.2)):

o

meot(mz) = Z (z+m) L.

meZ

Setting ¢t = €>™%%, we rewrite the left-hand side as follows:

weot(nz) =7 =i

cosmz _e™Fe ™ t41 >
sinmz eﬂ-iz_e_ﬂ—iZ):ﬂ—Zt—l :W2(1_2Zt )

Differentiating £ — 1 > 2 times in z, we get

o0

(k—l)!Z(z+m (2mi) ka Lym,

meZ

This gives us the needed Fourier expansion of Ey (7). Replace in above z with n7, set
g = €>™7 to obtain

7) = 2((k

Z mk_lq”m). (6.25)

m=1

It is obviously convergent at ¢ = 0. So, we obtain that Ey(7) is a modular form of weight
k /2 with respect to the full modular group I'(1). It is called the Eisenstein form of weight
k/2. Recall that £ must be even and also k& > 4. One can rewrite (6.21) in the form

Ey(r) = 2¢(k) 27” ,Z or-1(m)g™, (6.26)
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where

on(m) = Z d" = sum of n'" powers of all positive divisors of m.
dlm

Now we observe that we have 3 modular forms of weight 6 with respect to I'(1). They
are g5 = 603E3, g5 = (140)2E2, A. There is a linear relation between these 3 forms:

Theorem 6.1.
(27)12A = g3 — 2742,

Proof. First notice that g3 — 27 g% is equal to the discriminant of the cubic polynomial
423 — gox — g3 (this is the reason for naming A the discriminant). Thus the function
gg’ — 27g§ does not vanish for any 7 € H. Since A is proportional to a power of ¥, ; and
22
the latter does not vanish on H (because ¥1 1 (z; 7) has zero of the first order at 0), we see
22

that A also does not vanish on H. Now consider the ratio g5 — 27¢g3/A. It has neither
zeroes nor poles in H. Let us look at its behaviour at infinity. Let

o0 [e.9]
X = Zag(n)q”, Y = Z o5(n)q".
n=1 n=1

We use the well-known formula (see, for example,[Serre][?]), )

2r—1
C(QT‘) = WB2T7T2T,

where B; are the Bernoulli numbers defined by the identity

2 2i)°

er—1 (2i)!
In particular, 120¢(4) = (2m)*/12, 280¢(6) = (27)%/216 and we can write
1 1 7Y
= (2m)*[— + 20X = (2m)%[== - —].
This gives

gs —27g5 = (2m)2[(5X +7Y)/12 4+ 100X ? + 20X 3 — 42Y?] =

(2m) g+ ¢*(...).
Now from Example 6.1 we have A(7) = ¢ + ¢?(...). This shows that the ratio R =
g3 —27g3/ A is holomorphic at oo too. This implies that R is bounded on the fundamental
domain D of I'(1). Since R is invariant with respect to I'(1) we see that R is bounded
on the whole upper half-plane. By Liouville’s theorem it is constant. Comparing the
coefficients at ¢, we get the assertion. O
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6.6 Recall that we constructed the modular forms g, and g3 as the coefficients of the
elliptic function p(z;7) in its Taylor expansion at z = 0. The next theorem gives a
generalization of this construction providing a convenient way to construct modular forms
with respect to a subgroup of finite index I of SL(2,7Z).

Theorem 6.2. Let ®(z;7) be a meromorphic periodic function in z with respect to the
lattice A = 7 + Zt. Assume that, as a function of T, it satisfies

z  ar+p3
NT+6 T+ 46

s

O( )= (T +0)"P(%7), V (: 5) el cI'(1)

Let g, (T) be the n-th coefficient of the Taylor expansion of ®(z;T) at zo = xT + y for
some x,y € R. Then

(on' +p
In T+ 9

forany M € SL(2,7) such that (z',y) = (z,y) - M = (x,y) mod Z>.

) = (97 +6)" " gn(7),

Proof. Use the Cauchy formula

dz =

. (m+ﬁ 1 j{@(z+xi’jﬁf+y; ‘iiif)
n

774—5):% Zntl

B z(y7+6)+z(ar+B)+y(y7+9) . M+5)

1 yT+6 ’ AT+
- dy —
2mi zntl “
1
3 O(z(y1 +0) + x(at + B) +y(y7 + 8); 7)(yT + 0)" 2" dz =

dz =

1 7{ D(z(yT+8) + 2T +yiT)(y T+ 6™
211 zntl

1 O(z(y7+90) +ar +y;7)(yT +0)™

2mi Zntl

dz.

here we integrate along a circle of a small radius with center at 0 in a counterclockwise
direction.
After substitution z(y7 4+ §) = 2/, we obtain

ar +

pos ) =07+ 6)" " g (7).

gn(
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Example 6.4. We apply the previous theorem to ®(z;7) = p(z) and z = % In this case

I~ To(2) — {(‘; §) eT(1): 21},

Now, replacing z with z/(y7 4 §) in (6.22), we get

z  ar+f
YT+ AT+ 6

o(

1
_ 2, —2
) =07 +0) "+ (m,r;é:(o,o) z—m(yT +9) + n(ar + B)]

Since Z + Zt = Z(y1 + 0) + Z(aT + ), we get finally that

z  ar+p
YT +8 T+ 6

o ) = (97 +8)%p(z: 7).

Thus p(z; 7) satisfies the assumption of the Lemma with m = 2. Let M € I'(1). Since
(0,4) - M — (3,0) € Z* if and only if M € I'¢(2) we obtain that the O-th coefficient
go(7) = p(3) of the Taylor expansion of p(2) at 3 satisfies

5 250) = (7 + 60l

9(57 T+ 6 2

Similarly, if we replace 1 with 7 and 7 + 5 we get that

@(;;3115)2(774-5)2@(72-;7-)7 V(i §>€F0(2)’
where
o —(2 2 erwaan - (1 Nr (0 3

We skip the verification that p(7) and p(%) satisfy the regularity condition at the
cusps. Since both T'g(2) and T'°(2) contain I'(2) as its subgroup, we see that

(R

o(

are modular forms of weight 1 with respect to I'(2).
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Exercises

6.1 Show that p(z) is a time independent solution of the Kortweg-de Vries partial differ-
ential equation
Up = Uggy — 120Uz, u = u(z, ).
6.2 Compute the first two coefficients cg, cg in the Laurent expansion of p(z).
6.3 Show that p(z) = —% log 19%% (z; T)+constant.

6.4 Let £, \ {0} — C? be the map given by z — (p(z), p(z)’). Show that the images of
the non-trivial 2-torsion points of E are the points («;, 0), where «; are the zeroes of the
polynomial 423 — gox — gs3.

6.5 Show that
p(z1) ¢'(z1) 1
det | p(z2) ¢'(22) 1] =0
rp(z3) ¢'(23) 1

whenever z1 + z2 + 23 = 0. Deduce from this an explicit formula for the group law on
the projective cubic curve 3%t = 423 — goxt? — g3t>.

6.6 (Weierstrass (-function) It is defined by

Let A = Zw; + Zws. Show that
(i) Z'(z) = —p(2);
() Z(z+w;) = Z(2) +niyi = 1,2 where n; = Z(w;/2);
(iil) Mmwa — nawy = 2mi;
(iv) Z(yz;v-A) =~"1Z(z;-A), where  is any nonzero complex number.
6.7 Let ¢(z) be a holomorphic function satisfying
¢(2) [d(2) = Z(2),
(i) Show that ¢p(—z) = —¢(2);
(i) ¢(z +wi) = —e" T3 g(2);

(iii) ¢(z) = o(z), where o(z) is the Weierstrass o-function.
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6.8 Using the previous exercise show that the Weierstrass o-function o(z) admits an in
finite product expansion of the form

oe)=2 J[ (1-2)eitie”

which converges absolutely, and uniformly in each disc |z| < R.

6.9 Let I, be an elliptic curve and y? = 422 — gox — g3 be its Weierstrass equation. Show
that any automorphism of E; is obtained by a linear transformation of the variables (x, y)
which transforms the Weierstrass equation to the form y? = 42> — c¢*gox — 8¢5 for some
¢ # 0. Show that F; is harmonic (resp. anharmonic) if and only if g3 = 0 (resp. go = 0).
6.10 Let & be an even integer and let L C R be a lattice with a basis (e1, . . ., e;,). Assume
that ||v||? is even for any v € L. Let D be the determinant of the matrix (e; - ;) and N be
the smallest positive integer such that N||v*||? € 2Z for all v* € RF satisfying v*-w € Z
for all w € L. Define the theta series of the lattice L by

Ou(r) = D #{v e L[| = 2n}e?.
n=0
(i) Show that 8y,(r) = 3", ., e™7IlUIF;

(ii) Show that the functions ©(0; 7)* discussed in the beginning of Lecture 6 are special
cases of the function 6;,.

(iii) Show that 07,(7) is “almost” modular form for the group

To(N) = {<‘;‘ §> € SL(2,Z) : Nlc},

i.e.
at +
T + 0

g

0ETED) = o+ 0 x@ou(), (& F) erov)

k
where x(d) = (#) is the quadratic residue symbol.

(iv) Prove that 07,(7) is a modular form for I'g(2) whenever D = 1 and k& = 0 mod 4.

6.11 Let ®(z; 7) be a function in z and 7 satisfying the assumptions of Theorem 6.2 (such
a function is called a Jacobi form of weight m and index 0 with respect to the group I').
Show that

(i) p(z;7) is a Jacobi form of weight 2 and index 0 with respect to T'(1);
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(ii) o(z;1,7) is a Jacobi form of weight 1 with respect to T'(1).

6.12 Let n be a positive integer greater than 2. Consider the map of a complex torus
E.\ {0} — C" given by the formula

2= (Lp(2),...,0(2) 2 ,0(2)

if n 1s odd and

z—= (1, p(2),...,0(2)

if n is even. Show this map extends uniquely to a holomorphic map f, : £ — P". Show
that f,, is an isomorphism onto its image (a normal elliptic curve of degree n). Find the
image forn = 4.

6.13 Let g = e2™7 y = 272,

(i) Show that the function

1 1 1
D D e IR D e
= <qr/2v§ _ q—r/2v—§)2 12 reB (qr/2 —q r/2)2

coincides with p(z).

(ii) Using (i) show that o(z; 7) considered as a function of 7 has the following Fourier
expansion

Gl T) = e D (e o)

1 _1
(1)2 -V 2) n=1 d‘n

% (1 —24 Z Gl(n)q”).



82

LECTURE 6. MODULAR FORMS



Lecture 7

The Algebra of Modular Forms

7.1 LetI be a subgroup of finite index of I'(1). We set
M(T') = {modular forms of weight k& with respect to I},

We also denote by M (T')? the subspace of cuspidal modular forms. It is clear that
M. (T) is a vector space over C. Also multiplication of functions defines a bilinear map

M (L) x My(T) — My (T).

This allows us to consider the direct space

M) = P Mi(T) (7.1

k=—o0

as a graded commutative algebra over C. Since M (I") N M;(I") = {0} if k£ # [, we may
view M(T") as a graded subalgebra of O(H).
Notice that

M) = é Mi(D)° (7.2)

k=—o00

is an ideal in M(T").
We shall see later that there are no modular forms of negative weight.

7.2 Our next goal is to prove that the algebra M(I") is finitely generated. In particular
each space M (T') is finite-dimensional.

Let f(z) be a meromorphic function in a neighborhood of a point a € C and let

[e.9]

[2)= Y eulz—a)"

n=m

83
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be its Laurent expansion in a neighborhood of the point a. We assume that ¢,, # 0 and
set v4(f) = m. We shall call the number v, ( f) the order ( of zero if m > 0 or of pole if
m < 0) of f at a. If f is meromorphic at co we set

Voo (f) = vo(f(1/2)).

Note that when f is a modular form with respect to a group I" we have

Vg'T(f) =v.(f), Vgel.
For each 7 € H let

2 ifreT(1)-4,
m; =<3 ifreTl(1)-e2™/3, (7.3)

1 otherwise.

Lemma 7.1. Let f(7) be a modular form of weight k with respect to the full modular

group T'(1). Then
Z vr(f) k
6

mr
reH/T(1)

Proof. Consider the subset P of the modular figure D obtained as follows. First delete
the part of D defined by the condition Im 7 > h for sufficiently large h such that f has
no zeroes or poles for Im 7 > h. Let Cy.(p), C(p?), Cr-(i) be a small circle of radius 7
centered at p = €™/3 at p? and at 4, respectively. Delete from D the intersection with each
of these circles. Finally if f(z) has a zero or pole a at the boundary of D we delete from
D its intersection with a small circle of radius r with center at a.

Fig.1
Applying the Cauchy Residue Theorem we obtain

1 f/dT:ZVT(f):ZVT(f)~

2mi Jor [ TEP rep 7

When we integrate over the part P, of the boundary defined by Im 7 = h we obtain
1 fldz

2mi Jop,  f

= —Voo(f)
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In fact, considering the Fourier expansions of f at oo, we get

f(’T) — Z ane%mT,
n=l/oo(f)

[e.o]

f) =Y (2rin)ane®™

n=voo(f)
1

Use the function ¢ = €*™7 to map the segment {7 : |Re 7| < 1,Im 7 = h} onto the

circle C : |q| = e=2™. When we move along the segment from the point % + ¢h to the
point —% + ¢h the image point moves along the circle in the clockwise way. We have

A fdr 1 Cre (e s
2mi Jop, f 2w Jo 2miq(a,. (g’ +...) T

If we integrate along the part & P; of the boundary of P which lies on the circle C,.(p?)

we get
1 fldr 1
far_ L.

This is because the arc 0P, approaches to the one-sixth of the full circle when its ra-
dius goes to zero. Also we take into account that the direction of the path is clockwise.
Similarly, if we let 90P3 = 0P N C, (i), 0Py = 0P N Cy(p), we find

r—0 277 OP; f

/
imi fldr :—lyi(f).
r—0 271 oP;3 f 2

!
imi fdr :—lyp(f).
r—=02mi Jop, f 6

Now the transformation 7" : 7 — 7 + 1 transforms the path along 0P from —% +th to
p? to the path along the boundary from the point p to the point % + ¢h. Since our function
satisfies f(7 4+ 1) = f(7) and we are moving in the opposite direction along these paths,
the two contributions to the total integral cancel out. Finally, if we consider the remaining
part of the boundary, and use the transformation S : 7 — —% we obtain

() _ A (@), dr df

ESiG) ———

When we move from p? to i the point S - 7 moves from p to i. This easily gives us that the
portion of the integral over the remaining part of the boundary is equal to (when r goes to

Zero)
1 —2kdr 1 k
_— = Ok(——) = =~
27m'[Y T ( 12) 6’
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where « is the part of the circle 7 = 1 starting at p? and ending at 7. Collecting everything
together we obtain the assertion of the lemma. O

Theorem 7.1. M (I'(1)) = {0} if k < 0. If k > 0, we have

[k/6] if k =1 mod (6)

dim My (I'(1)) = {[k/g;] +1 otherwise.

Proof. Let f(1) € My(I'(1)). Then v, > 0 for all 7 € #, and Lemma 7.1 implies
that % = A+ g + % for some non-negative integers A, B, C'. Clearly this implies that
dim M (T'(1)) = {0} whenk < Oork =1.If k = 2 we musthave A = B =0,C = 1.
Since f € M2(I'(1)) we have

In particular, this is true for go. For any other f € My(I'(1)) we have f/gs is I'(1)
invariant and also holomorphic at co (since g is not a cusp form). This shows that f/go
is constant and

My (['(1)) = Cga.

Similar arguments show that
M3 (I(1)) = Cgs,

M4(I'(1)) = Cg3,
Ms(I(1)) = Cgags.

This checks the assertion for k& < 6. Now for any cuspidal form f € My(T'(1)) with
k > 6 we have f/A is a modular form of weight k£ — 6 (because A does not vanish on H
and has a simple zero at infinity). This shows that for k > 6

Mp(T (1)) = AM;_6(T'(1)). (74)
Since M(T'(1))/M;(I'(1))° =2 C (we have only one cusp) we obtain for k& > 6
dim M, (I'(1)) = dim Mj_g(I'(1)) + 1.
Now the assertion follows by induction on k. O
Corollary 7.1. The algebra M(T'(1)) is generated by the modular forms gs and gs. The
homomorphism of algebras ¢ : C[Ty,To] — M(I'(1)) defined by sending T\ to go and T

to g3 defines an isomorphism between M(I'(1)) and the algebra of complex polynomials
in two variables.
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Proof. The first assertion is equivalent to the surjectivity of the homomorphism ¢. Let us
prove it. We have to show that any f € M(I'(1)) can be written as a polynomial in g
and g3. Without loss of generality we may assume that f € M(I'(1)) for some k£ > 0.
Write k in form k = 2a 4 3b for some nonnegative integers a and b. Since gggg does
not vanish at infinity, we can find a constant ¢ such that f — cg%gg is a cuspidal form. By
(7.4), it is equal to gA for some g € M(I'(1))x—¢. Since A is a polynomial in g2 and g3,
proceeding by induction on k we prove the first assertion. To prove the second assertion
we use that any element F'(T,T5) from the kernel of ¢ can be written uniquely as a sum
of polynomials G4 satisfying

Gd(T2T1, Tstg) = Tde(Tl, T5)

for some d > 0 and any 7 € H. In fact, writing F' as a sum of monomials in 77,75 we
define G4 as the sum of monomials 7775 entering into F such that 2i + 3j = d. Since

F(ga(=1/7),93(=1/7)) = F(r°ga,7%g3) = 0,

each G4 must belong to the kernel of ¢. This allows us to assume that F' = G4 for some
d. Dividing by T we obtain G 4(g2, 93)/9% = G(g3/9%) = 0 for some polynomial G in
one variable T = Ty /T5. Since C is algebraically closed, g3 /g3 must be a constant. But
this is impossible since g3 vanishes only at I" - 7 and g2 vanishes only at T'(1) - p. O

Corollary 7.2. The ideal of cuspidal modular forms M°(I'(1)) is generated by A.

Proof. We have seen already in (7.4) that M, (T'(1))? = AMy_g(T(1)). Also we have
M (T(1))% = {0} for k < 6. This checks the assertion. O

7.3 Let us give some examples.

Example 7.1. We know that the Eisenstein series Eyj, is a modular form of weight k£ with
respect to T'(1). Since My(T'(1)) = Cg3 = CE?, comparing the constant coefficients in
the Fourier expansions we obtain

€8) 1o

B acapth

Comparing the other coefficients we get a lot of identities between the numbers oy (n).
For example, we have

o7(n) = o3(n) +120 Y o3(m)os(n —m). (7.5)
0<m<n
Similarly we have

Eip= LEZEG.
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This gives us more identities. By the way our old relation
(2m)*A = g — 27¢3

gives the expression of the Ramanujan function 7(n) defined by

A=q - =) r(n)q"
m=1

n=0
in terms of the functions o (n):

65 691 691
7(n) = ﬁan(n) + ﬁds(n) — 3 Z os(m)os(n —m). (7.6)

0<m<n

We shall prove in Lecture 11 that 7(n) satisfies

7(nm) = t(n)r(m) if (n,m) =1,

TP = 7(p)T (") — p!r () i pis prime, k > 0.

Example7.2. Let L be alattice in R of rank n such that for any v € L the Euclidean norm
||v]|? takes integer values. We say that L is an integral lattice in R"™. If (v1,...,v,)is a
basis of A, then the dot products a;; = v; - v; define an integral symmetric non-degenerate
matrix, hence an integral quadratic form

n
Q = Z Qi LTy .
ij=1
Obviously for any v = (ay, ..., a,) # 0 we have
Q(v) = |[vlf* > 0.

In other words, @ is positive definite. Conversely given any positive definite integral

quadratic form @) as above, we can find a basis (], .. ., e},) such that () diagonalizes, i.e.
its matrix with respect to this basis is the identity matrix. Let ¢ : R™ — R"™ be the linear
automorphism which sends the standard basis (ey, . . ., €,,) to the basis (¢, . .., e},). Then

the pre-image of the standard lattice Z™ = Ze; + ... + Ze,, is an integral lattice L with
the distance function Q).
Let us define the theta function of the lattice L by setting

Or(r) =Y rr(m)g™ =Y %W, (7.7)

m=0 veL
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where
rr(m) =#{v e L:Q(v) =2m}.

(see Exercise 6.10). Since rz(m) < (2m)™? (inscribe the cube around the sphere of

radius v/2m), and hence grows only polynomially, we easily see that 67,(7) absolutely
converges on any bounded subset of #, and therefore defines a holomorphic form on H.

We shall assume that L is unimodular, i.e. the determinant of the matrix (a;;) is equal
to 1. This definition does not depend on the choice of a basis in L and is equivalent to the
property that L is equal to the set of vectors w in R™ such that w - v € Z forall v € L.
For example, if L is the standard lattice Z" we see from Lecture 4 that

Ozn (1) = ©(0;7)".

Repeating the argument from the beginning of Lecture 4 we obtain that, for any unimod-
ular lattice L,

0r(—1/7) = (—iT)"?0.(7). (7.8)

Also, if we additionally assume that L is even, i.e. Q(v) € 2Z for any v € L, we
obviously get

HL(T =+ 1) = QL(T).

In particular, if 8|n we see that 61, (7) is a modular form with respect to I'(1). It is amazing
that one does not need to assume that n is divisible by 8. It is a fact! Let us prove it.
Assume n is not divisible by 8. Replacing n by 2n (if n is even)(resp. 4n if n is odd), and
Lby L& L (resp. by L&d L @ L @ L), we may assume that n is divisible by 4 but not by
8. By (7.8) we get

0r(—1/7) = —7"/20.(7).

Since 0, is always periodic with respect to 1, this implies
GL\%ST = —0L|%T = —0r.

Obviously this contradicts the fact that (ST')® = 1. Now we know that for any even
unimodular lattice

0 € M, 4(I(1)). (7.9)

Now let n = 8. Since M3(I'(1)) = CEy we see that 6, is proportional to the
Eisenstein series F4. Comparing the constant coefficients we see that

01, = E4/2¢(4).

In particular, for any m > 1,

rr(m) = 24003(m). (7.10)
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In fact there exists only one even unimodular lattice in R® (up to equivalence of lattices).
The lattice is the famous Eg lattice, the root lattice of simple Lie algebra of type Ej.

Fig.2
Here the diagram describes a symmetric matrix as follows. All the diagonal elements
are equal to 2. If we order the vertices, then the entry a;; is equal to —1 or 0 dependent
on whether the ¢-th vertex is connected to the j-th vertex or not, respectively.
Take n = 16. Since My(I'(1)) = CEjg, we obtain, by comparing the constant
coefficients,

01, = Eg/2¢(8).

In particular, we have
T’L(m) = 160’7(771)/34, (7.11)

where By is the fourth Bernoulli number (see Lecture 6). There exist two even unimodular
lattices in R'6. One is Fg @ Fg. Another is I';s defined by the following graph:

Now let n = 24. The space Mg(F(l);:E.:panned by A and Ej5. We can write
0r = #Elz + e A.
2(12)
This gives
rr(m) = 62?0011(77%) +cp7(m), (7.12)

where 7(m) is the Ramanujan function (the coefficient at ¢" in A). Setting m = 1, we

get
65520

—_. 7.13
691 (7.13)

Ccr, = TL(l) —

Clearly, ¢y, # 0.

Except obvious examples Fs® Fs® Eg or Es®I' 4 there are 22 more even unimodular
lattices of rank 24. One of them is the Leech lattice A. Tt differs from any other lattice by
the property that 7 (1) = 0. So,

65520

rp(m) = &ﬁ(all(m) —7(m)), (7.14)

In particular, we see that
7(m) = o11(m) mod 691.

This is one of the numerous congruences satisfied by the Ramanujan function 7(m).
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7.4 Our goal is to prove an analog of Theorem 7.1 for any subgroup of finite index I"
of I'(1). Let I" C T be two such subgroups. Assume also that I is normal in I" and
let G = T'/T" be the quotient group. The group G acts on My (') as follows. Take a
representative g of g € G. Then set, for any f € M (T"),

g-f=flkg

Since f|rg’ = f for any ¢’ € I” this definition does not depend on the choice of a
representative.
The following lemma follows from the definition of elements of M (T").

Lemma 7.2. Let I be a normal subgroup of T and G = T'/T". Then
ML) = ML) = {f € Mi(I') : g f = [, ¥g € G}.

It follows from this lemma that the algebra M(T") is equal to the subalgebra of M (T")
which consists of elements invariant with respect to the action of the group I'/T”. Let n be
the order of the group G = T"/T" (recall that we consider only subgroups of finite index
of I'(1)). For any f € M(I") we have

[[r=@-m=o0
geG

since the factor of this product corresponding to 1 is equal to zero. We have
P+ hf" . +h, =0, (7.15)

where h; are symmetric polynomials in g - f,g € G. Clearly they are invariant with
respect to G and hence, by Lemma 7.2, represent elements of M(I"). In particular we see
that for any normal subgroup I" of I'(1)

M(T) = {0}, k<o0.

In fact, any modular form of negative weight k& will satisfy an equation (7.6) where we
may assume that each coefficient h; is a modular form of weight ¢k with respect to I'(1).
However no such modular forms exist except zero. If I' is not normal we choose a normal
subgroup of finite index I'” of I" and apply Lemma 7.2.

Lemma 7.3. Let B be any commutative algebra over a field F' without zero divisors and
A be a Noetherian subalgebra of B. Assume that each element b € B satisfies a monic
equation with coefficients in A:

'+ ab" . 4a,=0

(we say in this case that that B is integral over A). Also assume that the field of fractions
of B is a finite extension of the field of fractions of A. Then B is finitely generated F -
algebra if and only if A is finitely generated F-algebra.
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Proof. This fact can be found in any text-book in commutative algebra and its proof will
be omitted. O

Theorem 7.2. For any subgroup T of finite index of T'(1) the algebra M(T") is a finitely
generated algebra over C.

Proof. Let I be a normal subgroup of finite index in I'(1) which is contained in T'. It
always can be found by taking the intersection of conjugate subgroups g~ -T'- g, g €
I'(1). We first apply Lemma 7.3 to the case when B = M(I"), A = M(T'(1)). Since
A = C[T1, T>] is finitely generated, B is finitely generated. It follows easily from (7.15)
that the field of fractions of B is a finite extension of the field of fractions of A of degree
equal to the order of the group I'/T”. Next we apply the same lemma to the case when
B =M(I"),A = M(T). Then B is finitely generated, hence A is finitely generated. []

Corollary 7.3. The linear spaces My (I") are finite-dimensional.

Proof. Let fi,..., fr be a set of generators of the algebra M (I"). Writing each f; as a
linear combination of modular forms of different weights, and then adding to the set of
generators all the summands, we may assume that M (T") is generated by finitely many
modular forms f; € My, (I"),i = 1,...,n. Now My(T") is spanned as a vector space
over C by the monomials ffl .. ;L" where kii1 + ...+ ink, = k. The number of such
monomials is finite. It is equal to the coefficient at ¢t* of the Taylor expansion of the
rational function
- 1
1 (1 —th)
O

In the next lecture we shall give an explicit formula for the dimension of the spaces

M (D).

Exercises

7.1 Find a fundamental domain for the principal congruence subgroup I'(2) of level 2.
7.2 Using Exercise 7.1 find and prove an analog of Lemma 7.1 for the case I' = I'(2).
7.3 Let n = 8k. Consider the subgroup I';, of R™ generated by vectors v = (ay, ..., ay)
witha; € Zand ay + . .. + a,, € 27 and the vector (%, ol %)

(i) Show that I';, is an even unimodular lattice in R".

(i) Show that I'g is isomorphic to the lattice Eg defined in the lecture.
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(iii)) Show that I';4 can be defined by the graph from Fig.3
(iv) Show that I'14 is not isomorphic to I's G I's.

(v) Compute the number of points (z1,...,x3) € R® such that 2z; € 2Z,z; — T €
Zyx1+ ...+ x8 6Z,az%+...+x§:2N,whereN: 1,2.

7.4 Let L C R” be an integral lattice not necessary unimodular. Using the Poisson
formula from Lecture 4 show that

1 Tin 1
O(—=) = (=) ﬂf/QQL*(T)a
T 1 Dy

where L* is the dual lattice defined by L* = {v € R" : v-x € Zforallx € L} and D,
is the discriminant of L defined by Dy, = #L*/L.

7.5 Let C be a linear subspace of FY (a linear binary code). Let Lo = —-r~1(C'), where
r is the natural homomorphism Z" — 3.

S

(i) Show that L¢ is an integral lattice if and only if for any = (e1,...,¢€,) € C the
number wt(z) = #{i : ¢; # 0} (called the weight of x) is divisible by 4. In this
case we say that C is a doubly even linear code.

(i) Show that the discriminant of the lattice L¢ is equal to 2n—2k where k = dim C.

(iii) Let C+ = {y € F} : v -y = 0,Vz € C}. Show that L¢ is integral if and only if
CcCCh

(iv) Assume C'is doubly even. Show that L. = L. In particular, L¢ is a unimodular
even lattice if and only if C' = C" (in this case C'is called a self-dual code).

(v) Let C C F% be a self-dual doubly even code. Show that n must be divisible by 8.
7.6 Let A(1) = 9(0;7), B(1) = 014(0; 7).
2
(i) Show that

1 1
(A1), BT = (AR, B (“ A ) .
i Vs

(ii) Show that the expression A*B*(A* — B*)* is a modular form of weight 6 with
respect to I'(1).

(iii) Show that A*B*(A* — BY)* = 16A(1).
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(iv) Show that A% + 14A*B* + B® = T@Eél(f).

7.7 Let C' C Iy} be a linear code. Define its weight enumerator polynomial by

Wc(X, Y) _ Z anwt(x)th(x) _ ZAaniiYi,
xeC i=0

where A; is the number of x € C with wt(x) = 1.

(1) Show that
0. = Wc(A, B).

(i) Prove MacWilliams’s Identity:

1

(iii) Using Theorem 7.1 show that for any self-dual doubly even code the enumerator
polynomial W¢ (X, Y') can be written as a polynomial in X’ = X84 14X4Y44Y®
and Y/ = X4Y*(X* — Y)* (Gleason’ Theorem). where A, B are defined in the
previous problem.

(iv) Deduce from (iii) that the enumerator polynomial W (X, Y') of any doubly even
self-dual linear code is a symmetric polynomial in X, Y (i.e. W (X,Y) = W (Y, X)).
Give it an independent proof using only the definition of W (X,Y').

7.8 Let C be a self-dual doubly even linear code in F3* and 0. (7) = > rr.(m)q™ be
the theta function of the even unimodular lattice L associated to it and We(X,Y) =
3 A; XY %4~ be its weight enumerator polynomial.

(i) Show that

Lo (2) =48 + 164y, rr.(4) = 28Ag + 64044 + 1104.

(i1) Using (7.13) show that Ag = 759 — 4 A,.

79 Let A = &7 _ A, be acommutative graded algebra over a field F'. Assume A has
no zero divisors, Ag = F -1 and dim Ay > 1 for some nN > 0. Show that A,, = 0 for

n < 0. Apply this to give another proof that M(I") = 0 for & < 0.

7.10 Find an explicit linear relation between the modular forms FEjg, Eg and E4Fqg,
where F5;, denotes the Eisenstein series. Translate this relation into a relation between
the values of the functions o4(m).

7.11 Let f(7) be a parabolic modular form of weight k& with respect to I'(1).
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(i) Show that the function ¢(7) = | f(7)|(Im 7)* is invariant with respect to I'(1).
(ii) Show that ¢(7) is bounded on H (it is not true if f is not cuspidal).

(iii) Show that the coefficient a,, in the Fourier expansion f(7) = > a,q™ can be
computed as the integral

1
an = / fx + iy)e 2@+ ) g
0

(iv) Using (iii) prove that |a,| = O(n*) (Hecke’s Theorem).

7.12 Let L be an even unimodular lattice in R® and 71, (m) be defined as in Example 7.2.
Using the previous exercise show that

Sk
rr(m) = B—%U4k_1(m) + O(m%).

713 Let L = Ey & Eg & . Show that

1 432000

0y = —— i
=)™ " ool
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Lecture 8

The Modular Curve

8.1 In this lecture we shall give an explicit formula for the dimension of the spaces
My (T"), where I' is any subgroup of finite index in SL(2,Z). For this we have to apply
some techinique from algebraic geometry. We shall start with equipping H*/T" with a
structure of a compact Riemann surface.

Let I be a subgroup of SL(2,R). We say that I is a discrete subgroup if the usual
topology in SL(2, R) (considered as a subset of R*) induces a discrete topology in I". The
latter means that any point of I' is an open subset in the induced topology. Obviously
SL(2,Z) is a discrete subgroup of SL(2,IR). We shall consider the natural action of
SL(2,R) on the upper half-plane 7 by Moebius transformations.

Lemma 8.1. Any discrete subgroup I of SL(2,R) acts on H properly discontinuously.

Proof. Observe that the group SL(2, R) acts transitively on # (view the latter as a subset
of R? of vectors with positive second coordinate). For any point z € H the stabilizer
group is conjugate to the stabilizer of say z = ¢. The latter consists of matrices (‘; Z) €
SL(2,R) such that a = d, b = —c. It follows that this group is diffeomorphic to the circle
{(a,b) € R? : a®> + b*> = 1}. This shows that the map f : SL(2,R) — H defined by
f(g) = g - i is diffeomorphic to a circle fibration over H. This easily implies that pre-
image of a compact set is compact. Let A, B be two compact subsets in H. We have to
check that X = {g € ' : g(A) N B # ()} is finite. Clearly, g(A) N B # () if and only if
gg = g" forsome ¢’ € f~1(A),g" € f~Y(B). Since A’ = f~'(A) and B’ = f~1(B)
are compact subsets of the group SL(2,R) the set B’ - A’~! is also compact. In fact,
this set is the image of the compact subset B’ x A’ of SL(2,R) x SL(2,R) under the
continuous map (g', g") — ¢’¢”~!. Thus X is equal to the intersection of the discrete
subset I" with a compact subset of SL(2, R), hence it is a finite set. Ul

Applying the previous Lemma and Theorem 2.2 we obtain that  /T" has a structure

97
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of a Riemann surface and the canonical map
mr:H—H/T 8.1

is a holomorphic map.
Example 8.1. LetT' = T'(1). Let us show that there exists a holomorphic isomorphism

#/SL(2,7) = C.

This shows that the set of isomorphism classes of elliptic curves has a natural structure of
a complex manifold of dimension 1 isomorphic to the complex plane C. Since g3 and A
are of the same weight, the map

H—=PHC), T (g2(7)°, A7)

is a well defined holomorphic map. Obviously it is constant on any orbit of I'(1), hence
factors through a holomorphic map

f:H/T(1) = PYC).

Since A does not vanish on H, its image is contained in P*(C) \ {oo} = C. I claim that f
is one-to-one onto C. In fact, for any complex number ¢ the modular form f = g3 — cA is
of weight 6. It follows from Lemma 7.1 that f has either one simple zero, or one zero of
multiplicity 2 at the elliptic point of order 2, or a triple zero at the elliptic point of index
3. This shows that each ¢ € Z occurs in the image of j on H/I" and only once.

We leave to the reader the simple check that a bijective map between two complex
manifolds of dimension 1 is an isomorphism.

Notice that the explicit isomorphism H /SL(2,7Z) — C is given by the holomorphic
function 7 — g3 /(g3 — 27g3). The function
4 17283 1728(27) 2 g3
](T) =3 5 = A
gy — 2793

8.2)

is called the absolute invariant. The constant factor 1728 = 123 is inserted here to nor-
malize the coefficient at ¢~ ' for the Fourier expansion of j at co:

o
JO) =g T4 eng”, g=e" (8.3)
n=1
We have proved that
E; = B < j(1) = j(1'). (8.4)

The coefficients ¢, in (8.3) have been computed for n < 100. The first three are
c1 = 196884, o9 = 21493760, c3 = 864299970.

They are all positive and equal to the dimensions of linear representations of the Griess-
Fisher finite simple group (also called the Monster group).
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8.2 The Riemann surface H /T is not compact. To compactify it we shall define a com-
plex structure on
H*/T' = H/T' U {cusps}. (8.5)

First we make H* a topological space. We define a basis of open neighborhoods of co as
the set of open sets of the form

U={reH :Im7 > c}U{o0}, (8.6)

where c is a positive real number. Since SL(2, Z) acts transitively on H* \ H we can take
for a basis of open neighborhoods of each x € Q the set of g-translates of the sets U, for
all ¢ > 0 and all g € SL(2,Z) such that g - co = . Each g(U.) is equal to the union of
the point  and the interior the disk of radius r = ﬁ touching the real line at the point

x. In fact, if g = (: ﬁ), we have z = o/ and

5
I
Q(Uc):{T€H3Img_1'T>C}={TE’H:%>c}:
| — 7 + | ®87)
freotiy: (- 22+ (- =) < —) |
N v ¥ 4 272¢ 4rAc2?

Now the topology on H* /T is defined as the usual quotient topology: an open set in #* /T’
is open if and only if its pre-image in  is open. Since |y| > 1in (8.7) unless g € I'w,
we can find a sufficiently large c such that

I's :{QEFIQ(UC)HUC#Q)}'
Now, if x = g1 - co we deduce from this that

Iy =gl = {9 €T :g(g1(U)) N1 (Ue) # 0} (8.8)

This shows that the pre-image of some open neighborhood of a cusp on H* /T is equal to
the disjoint sum of open neighborhoods of the representatives of this cusp.

Theorem 8.1. Let I be a subgroup of finite index in SL(2,7Z). The topological space
H* /T admits a unique structure of a compact complex manifold of dimension 1 such that
H /T is an open submanifold.

Proof. To warm up let us first see this in the case I' = SL(2,Z). We saw in Example
1 that #/T"(1) = C. The complex plane C admits a natural compactification. It is the
Riemann sphere P!(C) = C U {oo}. The point oo represents the unique cusp of T'(1).
Thus we see that

H* /T = PY(C). (8.9)
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Now let us consider the general case. The canonical holomorphic map 7y : H —
H/T'(1) is equal to the composition of the holomorphic maps 7 : H — H/I' and
mr/ra) : H/T — H/T(1). It extends to the composition of continuous maps

T

mh s M D m Y 90 m(1) = PL(C).

First we see that the orbit space #*/I" is a Hausdorff topological space. This is obviously
true in the case I' = I'(1). Since H /T is Hausdorff, we can separate any two points which
are not cusps. Since we can separate oo on H* /T'(1) from any finite point, we can separate
any pre-image of oo in H*/T'(1), which is a cusp on H*/T'(1), from a point on H /T
Finally we can separate any two cusps in H /I" since the pre-image 711’5(1) ~1(U) of an open
neighborhood U of co € H*/I'(1) is equal to the disjoint union of open neighborhoods
of points in #* \ # = P!(Q). The pre-image 7} (V (¢)) of an open neighborhood V' (¢) of
acusp ¢ =I"-2z € H*/T is the disjoint union of open neighborhoods of points belonging
to the orbit I' - x. Obviously for two different T'-orbits ¢ and ¢ these sets are disjoint.
Thus the open sets V' (¢) and V' (¢') are disjoint. Let U = g;(U,) be a neighborhood of a
representative z = g1 - oo of some cusp ¢ of I'. The natural inclusion U — H* factors
through the map U/T", — H*/I';. Taking ¢ small enough and using (8.8) we see that
this map is injective. Its image is an open neighborhood U of the cusp ¢ € H*/T". Let h

be the index of the cusp. Then I, consists of matrices == ((1) Wih

T e sends U/I';, into C with the image isomorphic to an open disk. This defines
a natural complex structure on the neighborhood U. Notice that it is consistent with the
complex structure on UNH /T = U\ {c}. Also it is easy to see that the map T (1) extends
to the composition of holomorphic maps.

It remains to prove the last assertion, the compactness of H*/I". First of all, we
replace I" by a subgroup of finite index I which is normal in I'(1). Then

) and hence the map

2miT/h

WY/ = (H*/T7)/(T/T), H*/T(1) = (H*/T)/(T/T(1))
It remains to use the following simple fact from topology: O

Lemma 8.2. Let G be a finite group acting continuously on a topological space X. Then
X is compact if and only if X /G is compact.

Proof. Consider the projection 7 : X — X/G =Y. Itis a surjective map. It is obvious
that the image of a compact space is compact. Assume that Y is compact. Take an open
cover {U;} of X. Then replacing U; with Ugeqg(U;) we may assume that each U; is
G-invariant. Since U; = 7~ (7(U;)) the sets w(U;) are open in Y. Since Y is compact
we can find a finite subcover of {m(U;)}. This will give us a finite subcover of {U;}. [
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Remark 8.1. The assertion of the previous theorem does not extend to any discrete sub-
group of SL(2,R). For example, if we take I' = {1}, the space H* = H*/{1} does
not have any complex structure. In fact, any open neighborhood U of oo, after deleting
0o, must be isomorphic to the punctured open unit disk {z € C : 0 < |z| < 1}. The
latter space is not simply-connected (its fundamental group is isomorphic to Z). However
U \ {oo} can be always chosen to be equal to Im 7 > ¢ which is simply-connected. How-
ever, there is a large class of discrete subgroups of SL(2, R), including subgroups of finite
index in SL(2, Z), for which the assertion of the theorem remains true. These groups are
called fuchsian groups of the first kind.

Definition. The compact Riemann surface 7* /T is called the modular curve associated
to the subgroup I" of SL(2, Z) and is denoted by X (I").

8.3 Now let us discuss some generalities from the theory of compact Riemann surfaces.
Let X be a connected compact Riemann surface and f be a meromorphic function on X.
This means that the restriction of f to any open neighborhood U is equal to the quotient
of two holomorphic functions on U. Assume f # 0. For each point z € X we can define
the order v, (f) of f at x as follows. First we identify a small neighborhood U of = with
a small neighborhood V of 0 in C. Then f is equal to the pre-image of a meromorphic
function on V' which admits a Laurent expansion a, z" + an+1z”+1 +...with a, # 0 for
some integer n. We set

vy (f) = n.

It is easy to see that this definition does not depend on the choice of an isomorphism
between U and V. When v, (f) > 0 (resp. v,(f) < 0) we say that v, (f) is the order of
zero (resp. the order of pole) of f at x. We have the following easily verified properties

of v, (f):

Lemma 8.3. Let x € X and f, g be two meromorphic functions on X. Then
(i) va(fg) = va(f) + valg);
(ii) vo(f 4 g) = min{ve(f), va(9)} if f +9 # 0.

A meromorphic function on X is called a local parameter at z if v,(f) = 1. Lemma
8.3 (i) allows us to give an equivalent definition of v, (f). It is an integer such that for any
local parameter ¢ at z, there exists an open neighborhood U in which

f — t”z(f)€

for some invertible function e € O(U).

Let Div(X) be the free abelian group generated by the set X. Its elements are called
divisors. One may view a divisor as a function D : X — Z with finite support. It can be
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written as formal finite linear combinations D = ) a,x, where a, = D(z) € Z,z € X.
Forany D = )" a,z € Div(X) we define its degree by the formula:

deg(D) = > a. (8.10)

There is an obvious order in Div(X') defined by choosing positive elements defined
by positive valued divisors. We say D > 0 if D is positive or equal to 0.
For any nonzero meromorphic function f we define the divisor of the function f by

div(f) = > valf). (8.11)

zeX

Here we use the compactness of X to see that this sum is finite. Using Lemma 8.3, we
see that divisors of functions (principal divisors) form a subgroup P(X) of Div(X). Two
divisors from the same coset are called linearly equivalent. The group Div(X)/P(X) is
called the group of classes of divisors.

Finally we introduce the space

L(D) = {f € M(X)*: (f) + D > 0} (8.12)

The famous Riemann-Roch theorem provides a formula for the dimension of this space.
In order to state it we need two more ingredients in this formula. The first one is the notion
of the canonical class of divisors.

Definition. Let U be an open subset of a Riemann surface X and ¢t : U — C is a holomor-
phic function defining an isomorphism from U to an open subset of C. A meromorphic
differential on U is an expression w of the form

w= f(b)dt,

where f(t) is a meromorphic function on U. A meromorphic differential on X is a col-
lection w = {f(ty)dty} of differentials on open subsets U as above which cover X. It
must satify the following compatibility property: if two open sets U and U’ overlap then

dty

ol

fu=TJu .

when restricted to U N U’. Here [fitt’é' is the derivative of the function gy ¢» = ty o tL_,1 :

ty(UNU") =ty (UNU).
Two meromorphic differentials are said be equal if they coincide when restricted to
the subcover formed by intersections of their defining covers.
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Let w = {f(ty)dty } be a meromorphic function on X. Define
vy (w) = vz (fu). (8.13)

Since the function Ci%’ is invertible at =, we see that this definition is independent of the

choice of an open neighborhood U of x. The divisor

div(w) = Zl/z(w)x. (8.14)

is called the divisor of the meromorphic differential w
Since X is compact and hence can be covered by a finite set of locally compact sub-
sets, we see that div(w) is well-defined.

Lemma 8.4. Let w and W' be two meromorphic differentials on X. Then their divisors
div(w) and div(w') are linearly equivalent.

Proof. Without loss of generality we may assume that w and w’ are defined on the same
open cover and use the same local parameter functions ty7. If w = fydty andw’ = fydty
then the collection of meromorphic functions fi7/ f{; define a meromorphic function F' on
the whole X (since fy/ fur = f{;/ f{ for any two overlapping open subsets in the cover).
It follows from the definition that

div(w) = div(w') + div(F).
This proves the assertion. O

Definition. The class of linear equivalence of the divisor div(w) of a meromorphic dif-
ferential is called the canonical class of X and is denoted by Kx.

8.4 We can state (without proof) the following:
Theorem 8.2. (Riemann-(Roch) For any divisor on X,
dim L(D) = deg(D) + dimL(Kx — D)+ 1—g

for some non-negative integer g, called the genus of X.

Note that the space L(D) depends only on the linear equivalence class of D. In fact,
if D' = D + div(f), then the map g — gf establishes a bijective linear map from L(D’)
onto L(D). We use this remark to explain the notation L(Kx — D) (where Kx is not
a divisor but rather a class of divisors). This remark, together with the Riemann-Roch
formula proves the following:
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Corollary 8.1. Linearly equivalent divisors have the same degree. In particular, for every
non-zero meromorphic function f on X,

deg(div(f)) = 0. (8.15)

Proof. Replacing D with D + div(f), we do not change the dimensions of the spaces
L(D) and L(Kx — D) but change deg(D) by deg(D +div(f)) = deg D +deg(div(f)).
It follows from Riemann-Roch that deg(div(f)) = 0. O

Corollary 8.2.
deg Kx =29 — 2.

Proof. Take D = 0 and use that L(0) = O(X) = C. Here we use that a holomorphic
function on compact Riemannian surface is constant. This gives

g = dim L(Kx). (8.16)
Now take D = Kx and get deg(Kx) = 2g — 2. O
Theorem 8.3. Let b;(X) = dim H;(X,R) be the Betti numbers of X. Then
b1 =29, bp=0by=1

Proof. Since X is a connected compact manifold of dimension 2, this is equivalent to

2
e(X) =) (—1)'bi(X) =2 — 29 = — deg(Kx). (8.17)
=0

Let f be a non-constant meromorphic function on X (its existence follows from the
Riemann-Roch theorem). It defines a holomorphic map f : X — P!(C). For any point
x € X set

. (8.18)
nilf) i f@) = oo

It is a positive integer. Since deg(div(f — z)) = 0 we obtain

Yo oel)= D> el (8.19)

zef~1(z) xz€f=1(c0)

ealf) = {w —%) ifl@)=zo

Notice that, for any = € X,

ex(f) =1 if f(z) # o0 (8.20)
o0

ve(df) = {
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Here df is the meromorphic differential defined locally by fl—{dt, where ¢ is a local param-
eter at x. Since the degree of df is finite we obtain that there are only finitely many
points z € X such that e,(f) > 1. In particular, there is a finite subset of points
S ={y1,...,ys} in P}(C) such that, for any y ¢ S

Y. elf)=n=#"). (8.21)
z:f (z)=y

Taking into account the formulas (??)-(8.21), we obtain

20-2=) v(div(df)) = D (ealf) =D+ > (—elf)—1)=

reX y:f (y)#o0 y:f (y)=o0
Z(ez(f)—l)—2 Z €x = Z(ez(f)—l)—Q”: (8.22)
reX f(x)=00 reX
Y (n—#f(y) —2n.
yey

This is called the Hurwitz formula. The number n here is called the degree of the mero-
morphic function f. Formula (8.21) says that this number is equal to # f ! (y) for almost
ally € P(C).

We shall define the triangulation of X as follows. Take a triangulation 7~ of P!(C)
in which each point y; is a vertex. Consider the pre-image 7 of this triangulation in X.
Since, the restriction of f to P*(C)\ S is a covering map, the open cell of our triangulation
are equal to connected components of the pre-images of open cells of the triangulation of
the sphere. Let dg, d1, ds be the number of 0-,1-, and 2-cells 7. Then we have nd; 1- and
ndy 2-cells in 7'. We also have 3 o #f ~1(y) O-cells in 7. By the Euler formula we
have

e(X) = #I(y) —nd +ndy =

yeSs
d_#F7Hy) +n(e(®HO) — n#tS = 20— (n—#f ().
yeSs yes
Comparing this with (8.22) we obtain the assertion of the Theorem. O

Example 8.2. Let X = P'(C). Take w = dz on the complement of co and w = —z%d2
on the complement to 0. Then div(w) = —200. Hence deg(K x) = —2. This shows that
g = 0 for the Riemann sphere. Of course this agrees with the topological definition of the
genus.

Example 8.3. Let X = E; be acomplex torus. The holomorphic differential form w = dz
on C is invariant with respect to translations. Hence it descends to a 1-differential on X.
Obviously its divisor is zero. Thus deg(Kx) = 0 and the genus equals 1. Again this
agrees with the topological definition.
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8.5 Let us compute the genus of the Riemann surface X = H*/I". Consider the mero-
morphic function j(7). Since it is a meromorphic modular form of weight 0 with respect
to I'(1) it is a also a meromorphic modular form of weight 0 with respect to I'. Hence
it can be considered as a meromorphic function on X. Let 7 : X — H*/I'(1) be the
canonical projection. Since j, considered as a function on #*/I'(1) has a unique sim-
ple pole at co, we may identify j with the pull-back 7*(z) of the coordinate function
z on P1(C). We use the Hurwitz formula (8.22) from the proof of Theorem 8.4. Let
r=T-7e X. Ifr ¢T(1)-iUL(1) - pUT(1) - o0, then x has an open neighborhood
holomorphically isomorphic to an open neighborhood of 7 and an open neighborhood of
m(x). Since j — j(z) = 7*(z — j(x)), we see that e,(j) = 1. If 7 € T'(1) - 4, and
I'; = {1}, then z has an open neighborhood isomorphic to an open neighborhood U of
7 but j(x) = j(7) has an open neighborhood isomorphic to U/T'(1),. This shows that
j — j(z) = m*(z — j(z)) vanishes at x with order 2, i.e. e;(j) = 2. If 7 € I'(1) - 4, but
I'; # {1}, then = has an open neighborhood isomorphic to an open neighborhood U of
j(z), hence e, (f) = 1. Similarly we find that e, (f) = 3if 7 € I'(1) - pand I'; = {1}
and e, (j) = 1if 7 € I'(1) - pand ', # {1}. Finally, if z is a cusp of index h, then x has
an open neighborhood U isomorphic to U,./(T"), where U. = {7 : Im 7 > ¢} U oo, and
j(x) = oo has an open neighborhood V' isomorphic to U./(T"). The restriction of 7 to U
is given by sending a local parameter in V' to the h-th power of a local parameter in U.
Since 1/z is a local parameter oo, j has a pole at x of order h. This shows that v,(j) = h
and hence e, (j) = h.

To collect everything together and state a formula for the genus of X, let us make the
following:

Definition. Let X = H*/T". A point z = I'" - 7 is called an elliptic point of order 2 (resp,
of order 3)if 7 € T'(1) - i (resp. 7 € I'(1) - p) and ' # 1.

Theorem 8.4. The genus of H* /T is equal to

Br T2 T3 Too
—142= 25 e
I= TR T T3 T 2
where pr is the index of I'/T' N (£1) in I'(1) /(£1), ra is the number of elliptic points of
I of order 2, 73 is the number of elliptic points of I of order 3, and r~ is the number of
cusps of I.

Proof. Notice first that the number 1 is equal to the degree of the meromorphic function
X(T) — X(I'(1)) = PY(C) defined by the j-function j : H — C. In fact, the number
of the points in the pre-image of a general z € C is equal to the number of I'-orbits in H
contained in a I'(1)-orbit. Applying (8.22), we have

29 —2=—2u+ » (ea(j)—1) =
zeX
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“2p+ > (=D + Y, (@) -1+ D (e(i)—1).

3(@)=3(5) i(@)=3(p) j(x)=o00

We have (p — 72)/2 points over j (i) with e;(j) = 2 and (u — r3)/3 points over j(p) with
ex(j) = 3. Also by (8.21), the sum of indices of cusps is equal to u. This gives

29 —2= =2+ (p—r2)/2+2(pn—13)/3+ (1 — 7o),

hence
1% 2 3 T
=14+=-—=—-—=— —_.
9= 15" T3

O

We shall concentrate on the special subgroups I' of I'(1) introduced earlier. They are
the principal congruence subgroup I'(N) of level N and

To(N) = {(‘;‘ §> € SL(2,Z) : N|y}.

Obviously
['(N) C To(N).
Lemma 8.5.
P {éN?) [Lyn(—p72) Z:JZ z z’ (8.23)
po,N = pirgny = [I'(1) : To(N)] = NH(l +p7h),
pIN

where p denotes a prime number.

Proof. This easily follows from considering the action of the group SL(2,Z/N) on the
set (Z/N)2. The isotropy subgroup of the vector (1,0) is isomorphic to the group of
b

Io(N)/T'(N) C SL(2,Z/N). It consists of matrices of the form <8 a1>’ The number
of invertible elements a in the ring Z /N is equal to the value of the Euler function ¢(N).
The number of elements b is N. This gives the index of I'(/V) in I'o(N). The index of
To(NV) in I'(1) is equal to the number of elements in the orbit of (1,0). It is the set of
pairs (a,b) € Z/N which are coprime modulo . This is easy to compute. 0

Lemma 8.6. There are no elliptic points for I'(N) if N > 1. The number of cusps is
equal to uy /N. Each of them is of order N.
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Proof. The subgroup I' = I'(N) is normal in T'(1). If ', # {#£1}, then gT'g~! = T; for
any g € I'(1) which sends 7 to 7. Similarly for elliptic points of order 3 we get a subgroup
of I fixing €2™/3. Tt is easy to see that only the matrices 1 or —1 , if N = 2, from I'(N)
satisfy this property. We leave to the reader to prove the assertion about the cusps. O

Next computation will be given without proof. The reader is referred to [Shimura].

Lemma 8.7. The number of elliptic points and cusps for the group T'o(N) is given by the
following formula:

(i)
_Jo if 4N, .
v [pn(1+ (_71)) otherwise. .
(ii)
~ Y if9IN,
o {leN(l + (_73)) otherwise. (8.25)
(iii)

D D))

d|N,d>0

Here ¢ is the Euler function and (- ) is the Legendre symbol of quadratic residue. We

have :
B 0 ifp=2,
(—)=<1 ifp=1mod4, (8.26)
b —1 ifp=3mod4,
if p =3,
(_;)) =<1 ifp=1mod3, (8.27)

~1 ifp=2mod3.

Applying the previous lemmas we obtain

Corollary 8.3. The genus gy of the Riemann surface X (N) = H* /T'(N) is given by the
SJormula

14 BvV=6) ey S
gN’—»{ N U (8.28)

0 if N = 1.
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Here we use that —/ ¢ I'(N) for N > 1. We know that the Riemann surface X (1) =

H*/T'(1) parametrizes isomorphism clases of elliptic curves.

For any elliptic curve E' we denote by yFE the subgroup of N-torsion points. If
E = C/A we have

1

Theorem 8.5. There is a natural bijective map between the set of points of X(N) =
X(N) \ {cusps} and isomorhism classes of pairs (E, ¢), where E is an elliptic curve
and ¢ : (Z/N)? — NE is an isomorphism of groups. Two pairs (E, ¢) and (E', ¢') are
called isomorphic if there exists an isomorphism f : E — E' of elliptic curves such that

fop=4¢.

Proof. Let E = C/A. Then yE = %A/A. An isomorphism ¢ : (Z/N)* — yE is
defined by a choice of a basis in yE. A representative of a basis is an ordered pair of
vectors (a,b) from A such that (Na, Nb) is a basis of A. Replacing E by an isomorphic
curve, we may assume that A = Z + 7Z for some 7 € H and (Na, Nb) = (1, 7). This
defines a surjective map from # to the set of isomorphism classes of pairs (E, ¢). Assume
the pair (E-, (4, %)) is isomorphic to the pair (£, (4, TN,)) Since E is isomorphic to
E, we get 7' = ﬁ“{:—i’g for some M = y §
is induced by the isomorphism of C, z — z(y7 + 4). It sends 1/N to (y7 + §)/N and
7' /N to (et + B)/N. It is easy to see that

€ I'(1). The corresponding isomorphism

(ar+pB)/N =7/N moduloA <= a=1 modulo N, [=0 modulo N

(y7+9)/N =1/N moduloA <= ¢6=1 modulo N, =0 moduloN.

This shows that 7 and 7 define isomorphic pairs (E., ¢), (E,, ¢') if and only if they
differ by an element of I'( V). O

Remark 8.2. Since I'(NV) is an invariant subgroup of I'(1) the factor group

I'(1)/T(N) = SL(2,Z/N) acts naturally on X (V) and the orbit space is isomorphic to
X (1). If one uses the interpretation of H /T'(N) given in the theorem, then it is easy to
see that the action of an element o € SL(2,Z/N) is defined by sending the isomorphism
class of a pair (F, ¢) to the isomorphism class of the pair (F, o o ¢).

Theorem 8.6. There is a natural bijective map between the set of points of Xo(N) =
Xo(N) \ {cusps} and isomorhism classes of pairs (E, H), where E is an elliptic curve
and H is a cyclic subgroup of order N of NE Two pairs (E, H) and (E', H') are called
isomorphic if there exists an isomorphism f : E — E' of elliptic curves such that f(H) =
H'.
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Proof. 1t is similar to the previous proof and is left to the reader. O

Remark 8.3. There is a natural interpretation of the cusp points as the isomorphism classes
of certain degenerate pairs (E, H) but to explain this is beyond of the scope of these
lectures.

8.6 Finally we interpret the spaces M (I") as the spaces L(D) for some D on the Rie-
mann surface X (I'). To state it in a convenient form let us generalize divisors to admit
rational coefficients. We define a Q-divisor as a function D : X — Q with a finite sup-
port. We continue to write D as a formal linear combination D = ) a,x of points z € X
with rational coefficients a,. The set of Q-divisors form an abelian group which we shall
denote by Div(X)g. For any € Q we denote by |z | the largest integer less or equal
than x. For any Q-divisor D = Y a,x we set

D] = las .

Theorem 8.7. Let

3

1< 2 = 1
D:2;$i+3 Z :cl-—l-;ci, DCZD—k;Ci,

i=r1+1
where x1, ...,z are elliptic points of order 2, 41, ..., %y 2+r, are elliptic points of
order 3 and c1, . .. ,roo are cusps. There is a canonical isomorphism of vector spaces

My(T) = L(kKx + [kD])),  My(T)" = L(kKx + [kD]).
Proof. Let F' € My (T"). We define its divisor

div(F) = Y ve(F)x € Div(X)g,

zeX
by setting
1y.(F) ifz =T -7 isan elliptic point of order e,
vz(F) =S v.(F)  if cis arepresentative of a cusp z.
v (F) if x = I" - 7 is neither an elliptic point nor a cusp.

Here v (F) = n, where a,(z — 7)" + ..., an # 0 is the the Taylor expansion of F at 7.
Similarly, v.(F) is the smallest non-zero power of ¢ = 2™/ which occurs in the Fourier
expansion of F’ at the cusp c of order h.

Consider the j-function j : # — P*(C) as a meromorphic I'-invariant function on .
Its derivative satifies

d  ar+pf

v d (XT—l—ﬁi
i(7) _de('yT—i-(S

T4+ dT

at +
YT+ 6

ar+p
YT 40

)=J'( ( )= (7 +8)7%'( )-
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This shows that ®(7) = j’(7)* satisfies

at + [
YT+ 6

B( )= (y7 4 8)%k (7).

So if we consider the ratio F'(7)/®(7) we obtain a I'-invariant meromorphic function on
‘H. Obviously ® is meromorphic at the cusps. So this function descends to a meromorphic
function on X. Let us compute its divisor. Let x = I'" - 7 € X and ¢ be a local parameter
at z. We know that v (7f:(t)) = e(x) where e(z) = 1,2 or 3 dependent on whether x is
not an elliptic point, an elliptic point of order 2, or an elliptic point of order 3. Thus

_ vr(F) — v-(®) _

vF)@) = T

Let us compute v (®). We know that

2 ifie (1),
vr(j —j(1)) =<3 ife?™/3 e D(1)7,

1 otherwise.

This immediately implies that

—_

ifi € (1) -7,
if e27/3 € (1) - 7,

0 otherwise.

\V]

V‘r(j/) =

Thus
vy (®) = k(ex(j) —1)/e(z).

Now, let 2 = ¢; be a cusp represented by ¢ € P'(Q). We used the local parameter
e?™i7/M to define v, (F). Since j admits the Fourier expansion e~ ™7 47444 ¢1e>™7 +. . .
at 0o, we see that j’ has the expansion —27ie ™2™ 4 ¢o2mie?™" + . .. at the cusp c. This
shows that v.(®) = —kh. So we get

div(F/®) = div(F) — k Z(eﬁ’f(j&)—l)x + f: hici.
x =1

Comparing this with the computation of div(dj) in the proof of Theorem 8.5, we get

div(F) = div(F/®) + kdiv(dj) + k Z (1—e(x) e +k rici.
i=1

elliptic x
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Since div(F) > 0 we obtain that F//® € L(D'), where D’ is linearly equivalent to
kKx + | kD] as in the assertion of the theorem. Conversely, if ¥ € L(D’) we easily get
that F = ¥® € My(T). Finally, if F' is a cuspidal modular form, we have v, (F) > 0

at cusps. This easily implies that F'/® € L(D'" —¢; — ... — ¢, ). This proves the
theorem. g
Corollary 8.4.
2k—1)(g—1)+ kreo k/2 2k ifk > 1,
dmaty(r) — 26~ D0 1)+ kroe £ ralk/2) 4 rsl2h/3] ifk >
g+reo—1 ifk=1.
2k—1)(g—1 k—1)re k/2 2k/3| ifk>1,
im0 — {28~ D=1+ (k= oot ralk/2] rl28/3) ik >
g ifk=1
Proof. This follows immediately from the Riemann-Roch theorem (since
deg(kKx + |kD]) > deg Kx, the space L(Kx — (kKx + [kD])) = {0}). O

Corollary 8.5. Let fo, ..., fn be a basis of the space Mg (I"). Then the map
f:H—=PNQ), 7= (fo(r),...,fn(1))
defines an isomorphism from X (T') onto a projective algebraic curve in P (C).

Proof. We know this already when I' = T'(1). So we may assume that yp > 1. By
Theorem 8.5 we can identify the space Mg(I") with L(D), where

deg D = 6deg Kx + 610 + 312 + 4r3 = 129 — 12 + 61 + 312 + 4r3.

I claim that deg D > 2g + 1. If g > 0 this is obvious. If g = 0 we use the formula for the
genus from Theorem 8.4. It easily gives that

—1246r0o +3ra+4dr3=pn>29g+1=1.
It follows from the proof of Theorem 8.8 that
va(fi) = va(fi/§'°) + D(x). (8.28)

Now we use the standard argument from the theory of algebraic curves. First of all the map
is well-defined. In fact, if all functions f; vanish at the same point x, we obtain v, (f;) > 0
foralli = 0,..., N, and hence v, (f;/j'%)+ D(z)—1 > 0 fori = 0, ..., N. This implies
that L(D) = L(D — x). However, this contradicts the Riemann-Roch theorem: since

deg(Kx — D) < deg(Kx — (D —x))=29g—2—deg D+1<0,
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it givesdim L(D) =deg D+1—g > dimL(D —z) =deg D — 1+ 1 — g. Suppose
f(z) = f(a') = p € PN(C) for some = # z’. Without loss of generality we may assume
that p = (1,0,...,0) (to achieve this we make a linear transformation of coordinates). It
follows from (8.23) that f;/5'® € L(D — z — a'),i = 1,..., N. This contradicts again
Riemann-Roch. We have

deg(Kx — (D —z—2"))=29—2—deg D+2=2g—deg D <0.

Thus N < dimL(D —z —2a') =deg D —2+4+1—g=dim L(D) —2 = N — 1. This
contradiction proves that our map is injective. To show that it is an isomorphism onto the
image, we have to check that its derivative at each point does not vanish. It is easy to see
that this is equivalent to the fact that L(D — z) # L(D — 2z) for any x € X. This is
proved by the similar argument as before using the Riemann-Roch theorem. O

Corollary 8.6. Let R(X () be the field generated by homogeneous fractions f /g, where
f, g are modular forms of the same weight. Then

Proof. Ttis easy to see that R(X (I")) is the field of rational functions on the image of the
curve X (I') in PV (C). Now we apply the Chow theorem that says that any meromorphic
function on a projective algebraic variety is a rational function. O

Exercises

8.1 Show that H* is not locally compact.
8.2 Find all N for which the modular curve X (N) = X (I'(V)) has genus 0 and 1.
8.3 Find all N for which the modular curve Xo(N) = X (I'g(/N)) has genus 0.

8.4 Find all normal subgroups I' of I'(1) for which the genus of the modular curve X (I")
is equal to 0. [Hint: Use Theorem 10.4 and prove that ro = ur /2,73 = ur/3, reo|pur]-
8.5 Generalize the Hurwitz formula to any non-constant holomorphic map f : X — Y of
compact Riemann surfaces.

8.6 Show that the Moebius transformation 7 — —1/N7 defines a holomorphic auto-
morphism of finite order 2 of the modular curve X((/N). Give an interpretation of this
automorphism if one identifies the points of X(/N) with isomorphism clases of pairs
(E, H) as in Theorem 8.7.

8.7 Let
Iy (N) = {<f; 5) ET(N):a=1 modN}.
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Give an analogue of Theorems 8.6 and 8.7 for the curve H /T (N).

8.8 Using Riemann-Roch theorem prove that any compact Riemann surface of genus 0O is
isomorphic to P1(C).

8.9 Using Riemann-Roch theorem prove that any compact Riemann surface of genus 1 is
isomorphic to a complex torus C/A.

8.10 Compute the dimension of the space M (X((11)).

8.11 Using the fact that #/T"(1) = C prove that any nonsingular plane curve of degree 3
in P2(C) is isomorphic to a complex torus.

8.12 Show that any modular curve of positive genus has at least two cusps.

8.13 Find the genus of the curve X (7). Show that the cuspidal forms of weight 1 define
an isomorphism from X (7) onto a plane curve of degree 4.

814 Let N = 2,3,4,6,12 and kK = 12/N. Show that the space of cuspidal forms
M(D(IV))? is spanned by the function A (7)™
8.15 Consider the Hesse equation 2> + 43 + 23 4+ yzyz = 0 from Lecture 3.

(i) Show that it defines an elliptic curve E(+) together with an isomorphism ¢ :
(Z/3)3 — 3E.

(ii) Show that the coefficient -y considered as a function on H /T'(3) is a modular func-
tion generating the field M (X (3)).

(iii) Show that the value of the absolute invariant function j(7) on the isomorphism
class of E() is equal to

(216 — 7°)*°

i) ==y

[Hint: Find its Weierstrass equation by projecting the curve from the point (0, 1, —1).]

8.16 Desribe explictly the action of SL(2,7Z/3) on the field M (X (3)) (see Remark 8.2)
as follows:

(i) Show that —I € SL(2,Z/3) acts identically.
(ii) Show that PSL(2,F3) = is generated by the elements 7 = (} 1) and S = (§ 2).

(viii) Show that PSL(2, F3) acts on the field M(X(3)) by transforming its generator y

R 2mi/3 ., . 6—y
as follwos:T': a — e a,T:v— 672"



Lecture 9

Absolute Invariant and Cross-Ratio

9.1 Let

1 = (a1,b1), w2 = (a2, b2), x3=(a3,b3), x4 = (a4,bs)

be four distinct points on P!(C). The expression

aj bl as bg
b b
R— a2 2| |a4 4 (9. 1 )
al bl a9 b2
as bg a4 b4

is called the cross-ratio of the four points. As is easy to see it does not depend on the
choice of projective coordinates of the points. Also it is unchanged under the projective
linear transformation of P! (C):

(z,y) — (azx + by, cx + dy).

If none of the points is equal to the infinity point co = (0,1) we can write each x; as
(1, z;) and rewrite R in the form

(22 — 21) (24 — 23)
(23 = 21)(22 — 22)

R= 9.2)

One can view the cross-ratio function as a function on the space
X =(PY(C)"\A

of ordered fourtuples of distinct points in P*(C). Here A denotes the “diagonal”, the set
of 4-tuples with at least two coordinates equal. The group GL(2, C) acts naturally on X

115
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by transforming each (x1, x2,x3,x4) in (g - 1,9 - 2,9 - 3,9 - x4) and R is an invariant
function with respect to this action. In other words, R descends to a function on the orbit
space

R: X/GL(2,C) — C.

The following is a classical result from the theory of invariants:
Theorem 9.1. The cross-ratio R defines a bijective map
R: X/GL(2,C) — C\ {0, 1}.

Proof. Let (x1,x2,x3,24) € X. Solving a system of three linear equations with 4 un-
knowns a, b, ¢, d we find a transformation g : (z,y) — (ax + by, cx + dy) such that

g- (a27b2) = (1,0), g- (CL3,b3) = (07 1)7

g- (a4,b4) - (L 1>7 g (alvbl) = (17 A)7

for some A # 0,1. We recall that two proportional vectors define the same point. This
allows us to choose a representative of each orbit in the form (\, 0, 0o, 1), where we now
identify points in P!(C) \ {oo} with complex numbers. Since the cross-ratio does not
depend on the representative of an orbit, we obtain from (9.1)

R(x1, 9, x3,24) = A

Since ) takes any value except 0 and 1, we obtain that the image of R is equal to C\ {0, 1}.
Also it is immediate to see that A and hence the orbit is uniquely determined by the value
of R. O

Now let us take an orbit from X /GL(2,Z) represented by (), 0, 0o, 1) and assign to
it the cubic curve given in affine coordinates by the Legendre equation :

E\) :y? —x(z—1)(z—\) =0. 9.3)

This equation can be easily transformed to a Weierstrass equation by a linear change

of variables 2/ = z + %,y’ = 2y. In particular, we see that the functions (p(z) —

12 6(2)'/2) define an isomorphism from a torus E; = C/A to E(X) for an appropriate
7 € H. We know that the zeroes of g(z)  are the points in %A and hence the points
(xz,y) = (0,0),(1,0), (A, 0) are the non-trivial 2-torsion points on E()) (the trivial one
goes to the infinity point (0, 1,0) € P?(C)). If we take the first two points as a basis in the
group of 2-torsion points 2 £'(\) we obtain that £/(\) defines an isomorphism class of an
elliptic curve together with a basis of its group of 2-torsion points. In other words, F/(\)

represents a point in the moduli space H /I'(2). Conversely, given a point in H /T'(2), we
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can represent it by the isomorphism class of some E; with a basis of 3 I/ given by (%, )
modulo A. The points

T 1

(01,22, 23, 21) = (95 + ). 9(3), %0, 9(3) 04

define an ordered 4-tuple of points in P!(C), and hence an orbit from X. Replacing 7

with 7/ = ‘f;:ig, where (3 g) € T'(2), the point z; changes to (y7 + §)%x;,i = 2,3,4

(see Example 6.5). This shows that the cross-ratio R(z1, z2, 3, x4) does not depend on
the choice of 7 representing a point in H /I"(2). Together with Theorem 9.1, this proves

Theorem 9.2. There is a natural bijection between the set of ordered 4-tuples of distinct
points in P*(C) modulo projective transformation and the points in H/T'(2).

9.2 In view of this theorem the cross-ratio R can be thought as a function
R:H/T(2) — C.

The next theorem shows that this function extends to a meromorphic function on X (2) =

H*/T(2):

Theorem 9.3. The cross-ratio function R extends to a meromorphic function X on X (2)
which generates the field M (X (2)). It can be explicitly given by the formula

A7) = 190% (0; 7')4/1900(0; 7')4.

Proof. It follows from the previous discussion that, as a function on 7, the cross-ratio is
given by

T 1 1 7. _ 9(G+3)—9(5
R=R *‘i‘*a a0 ) o = 9.5
(005 + gholz) o0l = AL ©5)
We have
dim Mg (T'(2)) =1 — 2k + kua/2 =k + 1. (9.6)

In particular
dim M (I'(2)) = 2.
We have seen in Lecture 6 that 95, 19‘% 0’ 193 1 and (%), p(3), p(3) are examples of mod-

ular forms of weight 1 with respect to the group I'(2). There must be some linear relation
between these functions. The explicit relation between the first set is known as Jacobi’s
identity between theta constants:

Do =91, + 51 9.7)
2 2
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The proof easily follows from the transformation formulas for the theta constants from
Lecture 5. Write 1960 = 6119% 0 + 02193 , for some constants ¢y, c2. Replace 7 with —1/7
2 2
and use (5.8),(5.9) to obtain that ¢c; = co. Next replace 7 with 7 4 1 and use (5.3), (5.4)
to see that c; = ¢ = 1.
The relation between the functions from the second set is the obvious one:

T4+ 1 T

D+ 0(0) +p(5) =0 08

o(

It follows from the Weierstrass equation (the sum of zeroes of the cubic polynomial 423 —
gox — g3 is equal to zero).

Now let us find the relations between functions from the first set and and the second
one. We must have p(%) = 01193 1+ czﬁ‘io for some constants c1, co. Applying the

2 2
transformation 7 — 1 4 7 and using formulae (5.2)-(5.4) from Lecture 5, we see that
c1 = 2c2. Using the Fourier expansion of p(%, T) given in Lecture 6, we obtain that

cl = _(2Tm)2. Thus

1 -\ 2 4
p(5) = =2~ (91 + 157910): (9.9)
Similarly we obtain
p(5) = (2m) (35001 + 5910): (9.10)
41y = @m0, — =0t ©.11)
P ) T T g s T s '

Adding up we check the relation (9.8). Subtracting we obtain Thomae’s Formulae:

208 = o(2) — p(/2),

2
T 1
T, = (5 + 5) = p(r/2), 9.12)
1 T 1
2 94
91 =p(=)—p(=+=).
Now we can find an expression for the cross-ratio:
T + 1y _ 1
R— (5 i 2) 91(2) :7931/1930- 9.13)
p(3) —o(3) 2

It remains to show that the function A = ¥4 0 /94, generates the field of meromorphic
2
functions on X (I'(2)). The algebra M(T'(2)) contains the subalgebra C[9%,, 93,]. Us-

0%’
ing (9.6) we can compare the dimensions of the subspaces of homogeneous elements of
degree k to see that the algebras coincide. Thus

M(T(2)) = C[02,, 93] (9.14)

1,
03
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By Corollary 8.6, the field M (X (")) is isomorphic to the field of quotients of the algebra
M(T"). This implies that A\ generates the field M (X (I'(2)). O

Definition. The modular function
4
A= 190% / 19610

with respect to I'(2) is called the lambda-function.

Let 7 : X(2) — X(1) be the natural holomorphic map defined by the inclusion
I'(2) € T'(1). The pre-image of the absolute invariant 7*(j) is a meromorphic function
on X (2) and hence must be a rational function in \. Let us find the explicit expression
for this rational function.

Theorem 9.4.
(1— X+ A2)3
A2(1 = N)2

Proof. We know that p(3), (%) and (5 + %) are the three roots 1, z2, 23 of the equa-
tion 423 — gox — g3 = 0. Thus

j=2°

g2 = —A(z1272 + 2173 + T273) = —2[(21 + T2 + 73)—
(x3 4 23 + 23)] = 2(2? + 23 + 23).
Applying formulas (9.9)-(9.11), we obtain
T

T 7T4
02 = 2p(3)° + o0 + (5 + 1) = 2D

Using the Jacobi Theorem from Lecture 4 , we have

gs —27g% = (2m)2A = (2n)12(27) 780, 8 = (24)7r12193%198%01930.

11
22

(W1 + 051 +01001)-  9.15)

Using (9.7), we get

12/,98 8 4 94 \3
g5 — 273 (24)7r1219?]%19201980

28(1980 - ﬁéé(ﬁéo - 193%))3 sl =A+ A2)3
T34 080080 — 95, 2 (1= N)?

O]

Note that there are exactly 6 = 3! values of A\ (counting with appropriate multiplic-
ities) which give the same value of j. This corresponds to the orbit of I'(1)/T'(2) =
SL(2,F3) = Ss in its natural action on X (2). This shows that there are 6 values of the
parameter A in the equation (9.3) which define isomorphic elliptic curves.
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Exercises

9.1 Let p € P2(C) and 1, I3, I3, 14 be four distinct lines passing through p. For any line /
in the plane not passing through p let p; = INl;,7 = 1,2, 3, 4. Show that the cross-ratio of
the four points p1, p2, p3, p4 does not depend on the choice of an isomorphism [ = P! (C)
and also does not depend on the choice of the line /.

9.2 Find the expression for g3 in terms of the fourth powers of theta constants.
9.3

(i) Show that an unordered set of four points defines at most 6 different cross-ratia.
(i1) Find the sets of unordered 4 points for which the cross-ratio takes less than 6 values.

(iii)) Show that the exceptional sets of points from (ii) correspond to harmonic or anhar-
monic elliptic curves.

(iv) Verify that the function j = j(\) from Theorem 9.4 takes the same value at all six
cross-ratia.

(v) Show that there is a natural bijection between the sets of 4 distinct points in P! (C)
modulo projective transformation and isomorphism classes of elliptic curves.

9.4

(i) Show that the permutation group S4 contains a normal subgroup H of order 4
which acts identically on P'(C)*/GL(2,C) via its natural action on P!(C)* by
permuting the factors.

(i) Show that Sy/H = S3 = SL(2,F3) and the action of S4/H on the orbit space
(P1(C)*\ A)/GL(2,C) corresponds to the action of SL(2, F5) on X (2) under the
identification of (P!(C)*\ A)/GL(2,C) with X (2).

9.5

(i) Show that the affine curve 2 = (1 — 2%)(1 — Az?) is birationally isomorphic to
the curve y?> = x(x — 1)(z + Az). Show that the exists an elliptic function sn(z)
(called the Jacobi sine function) such that (sn(z)’)? = (1 —sn(2))?(1 + Asn(z)?).

(i) Define the Jacobi cosine function cn(z) by cn(z) = sn(z)’.

formula

Prove the addition

sn(z)en(w) + sn(w)en(v)
1+ Asn(z)2sn(w)?

sn(z +w) =



Lecture 10

The Modular Equation

10.1 1In this lecture we shall prove that the modular curve X((/N) can be defined by
homogeneous algebraic equations with coefficients in Z. By reducing the coefficients
modulo a prime p we obtain a nonsingular projective algebraic curve over a finite field IF,,
for all prime p except finitely many.

We shall start with the following

Lemma 10.1. Ler T and T be subgroups of finite index in T'(1). Assume that there exists

amatrix A = <?; g) € SL(2,R) such thatT' C A=Y.T'- A. Then, for any f € My(T),

at + B

poy DG 8)7*F € M(I)y.

fleA = f(

Proof. We have checked it in Chapter 6 for the case A € SL(2,Z). But this assumption
has not been used in the proof. O

Corollary 10.1. For f(7) € M(I'(1))r we have
f(NT) S M(Fo(N))k

In particular,
F(NT)/f(T) € M(Xo(NV)).
Proof. Take
_ (0 -1/VN
F = <\/N 0 > ) (10.1)

We have, for any M € T'(1),

(B (22 (L -
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< 5§ —/N )
—-Ngj o '
Clearly, this implies that I'o(N) € F -T'(1) - F~1. Now
[IWF = F(=1/N7)(N27) "2 = f(N7)(N7)(N7) =2 = NF f(N7).
This checks the assertion. (]

Example 10.1. Take N = 2 and f = A(7) € M(I'(1))g. We see that A(27)/A(T)
belongs to the space M (X((2)). Observe that ¢ = ™™ changes to ¢*> when we replace
7 with 27. So

27170 _ 2m)\24 0
A(27)/A(r) = qq Hgﬂ;ﬁ - Zm)g4 =q [JQ+a™* =2"2p(n)*,  102)
m= m=1

where f2(7) is the Weber function defined in (4.13). In particular, we see that

20— 22A(27)/A(T) (10.3)
is a modular function with respect to T'o(2). It follows from (10.2) that f3* has a simple
zero at the cusp co. The index of this cusp is equal to 1 since (§ 1) € 'o(2). We know

from Lemma 8.5 that 92 = [['(1) : T(2)] = 3. Thus I'o(2) has another cusp of index 2.
Since 0 ¢ T'9(2) - oo we can represent it by 0. We have

3H(=1/7) = 2B A(=2/7)/A(=1/7) = 2P A(=1/(7/2)) /A(=1/7) =
2%(r/2)2A(r/2) /T A(T) = A(7/2)/ A7) =

1
q2 H;?:1<1 o qm/2)24 B 0

QHOO (1- qm)24 =4q (1 + qm/2)_24.
m=1

N

m=1

This shows that f3* has a simple pole at the second cusp. Since f3* is obviously holo-
morphic on H we conclude that it has a single pole of order 1. This implies that the
meromorphic function §34 : X(2) — P!(C) has degree 1 and hence maps X¢(2) isomor-
phically onto P! (C). In particular, §3* being the inverse transform of the rational function
z on P1(C) generates the field of rational function on X¢(2):

M(Xo(2)) = C(A(27)/A(7)) = C(53"). (10.4)
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10.2 Tt follows from the Corollary 10.1 that j(NT) belongs to the field M(Xy(N)).
This field contains the field M(X (1)) = C(j(7)) as a subfield and the degree of the
extension is equal to po . We shall prove that j(NT) generates the extension, i.e.
M(Xo(N)) = C(j(7),j(N7)). We will also describe the algebraic relation between
j(r)and j(NT).

Lemma 10.2. For any natural N,

F(1)-<ng (1))-r(1): | | T4,

AcAn

where Ay is the set of integral matrices (8 S) withd > 0,ad = N,0 < b <d,(a,b,d) =
1. The number of elements in Ay is equal to [1p N

Proof. First of all the right-hand side is the set M () of integral primitive (i.e. with
g.c.d of entries equal to 1) matrices with determinant N. In fact, for any such matrix we
can apply row transformations with matrices from I'(1) to reduce it to upper triangular
form. By further row operations we can make d positive and b satisfy 0 < b < d. The
number a will be the greatest common divisor of the first column of the matrix, so is
defined uniquely. Then d will be defined uniquely by the condition ad = N and b will be
defined uniquely by the above condition. It is obvious that the left-hand side is contained
in M(N). To prove the opposite inclusion, it suffices to show that each matrix A from
A is contained in the left-hand-side. This follows from the well known fact that each
integral matrix can be transformed by integral row and column transformations to the
unique matrix of the form ( 4 T?, ) where n|n’. The last assertion can be checked by using
elementary number theory. When N = p is prime, we obviously have #A, = p + 1.
Now, if N is not prime we have

#AN =(N) = N[(1+p7") = pon.

p|N

This can be proved by using the multiplicative property of the function (n) and the
formula

d N
Y(N) =) —Fx~o((d,—)),
2 a5y

where ¢ is the Euler function. ]

Lemma 10.3. Let f(7) be a modular function with respect to T'(1) which is holomorphic

on H and admits the Fourier expansion f =Y " cnq". Then f is a polynomial in j(T)

with coefficients in the subring of C generated by the Fourier coefficients cq, . . . , C—_.
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Proof. Observe first that » > 0 unless f is constant. Since the Fourier expansion of j
starts as ¢~ + ... we can subtract c_,.j" from f to decrease the order of its pole at co.
Then we do it again, if needed, untill we get that the difference g has Fourier expansion
of the form ¢ + ... with m > 0. Since g is holomorphic at infinity and vanishes there,
it must be zero. Since all the coefficients of the Fourier expansion of j are integers, as a
result we subtract from f a polynomial in j with coefficients in Z[c_,, . .., ¢o] and obtain
0. O

Lemma 104. Let f : X — Y be a holomorphic map of compact Riemann surfaces.
Then f* : M(Y) — M(X) defines an algebraic extension of the field of meromorphic
functions. The degree of this extension is equal to the number of points in the pre-image
f~Y(y) (counting with multiplicities equal to the ramification indices) for any y € Y.

Proof. We skip the proof of this lemma. One can learn about this fact in any intruduction
book in algebraic geometry. O

Theorem 10.1. The field M(Xo(N)) is generated by j(7) and j(NT). There exists a poly-
nomial ® N[ X, Y| € Z[X, Y] such that F(5(NT),j(7)) = 0. The polynomial ®n[X, j]| €
C(y)[X] is @ minimal polynomial for j(NT) in the fields extension M(Xo(N))/ M(X(1)).
Its degree is po n. When N > 1, ®n[X, Y] is symmetric in X and Y, and if N = p is
prime,

Oy(X,Y) = XPH L YyPH _ XPYP — XY mod p.

Proof. Let Ay be the set of matrices from Lemma 10.2. Consider the polynomial

P(N)

o= J] X—j(A-7) =D smX"
m=0

AeAn

Its coefficients s, are symmetric functions in j(A - 7) and hence are holomorphic func-
tions on H. It folows from Lemma 10.2 that, for each M € I'(1) and A € Ay, we have
AM = M'A’ for some M' € T'(1),A’ € Ay. Thus j(A- (M - 7)) =j(M'- (A" - 7)) =
j(A"- 7). Thus replacing 7 by M - 7 defines a permutation among the functions j(A - 7).
This implies that s,,, are modular functions with respect to I'(1). By Lemma 10.3, each
Sm is a polynomial in j(7) with coefficients belonging to the subring of C generated by
its Fourier coefficients. However, for any A = (8 g) € Ap, we have

2mi(aT+b) 2miaT 2mib

e d —e d e d = q%C37
where ¢ = 2™ as usual, and (; is the primitive d-th root of unity equal to 2™/, Now,
using the Fourier expansion of j(7) we obtain
at+b 1 a
= 10.5
]( d ) qa/dé.g +¢(qd<d)a ( )
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where ¢ is holomorphic at infinity. Since the coefficients of j are integers we see that the
coefficients of the Fourier expansion of each j(A - 7) belong to the ring Z[(4]. By Lemma
10.3, the coefficients s,, are polynomials in j(7) with coefficients in Z[(y]. Consider
the automorphism of the cyclotomic field Q({x ) which acts by sending {x to ¢ ]’% where
(k, N) = 1. It is clear from (10.5) that this automorphism transforms j(A - 7) to j(A" - T)
for some other A’ € Ay. This shows that the functions s,, are invariant with respect to
all such automorphisms, hence must be polynomials in j with coefficients in Z.

Thus we can consider ® as an element of the ring Z[X, j]. Replacing the variable
j with Y we obtain the polynomial & (X,Y) € Z[X,Y]. This will be the polynomial
0 (1)> € An we obtain
®N(j(NT)),7) = 0. The polynomial ®x[X, j] is of degree 1/(N) and is irreducible
since its roots j(A - 7) are permuted transitively by the group I'(1). By Lemma 10.4, its
degree is equal to the degree of the extension M (Xo(N))/M(X(1)). Since ®n[X, j]
is the minimal polynomial for j(NT) over the field C(j) = M(X(1)), and its degree is
equal to the degree of the extension, we see that j(7) and j(NT) generate M (Xo(NV)).
Next, replacing 7 with —1 /N7 in the identity ® 5 (j(NT),j) = 0, we obtain

from the assertion of the theorem. First of all, taking A =

On(j(=1/7),5(=1/NT)) = ®N (4,5 (NT)) = 0.

Since ® (X, 7) is irreducible as a polynomial in X, the polynomial ® (7, X) must be
divisible by ® n (X, j). It follows from the Gauss lemma that

PN (X,Y) = c®Pn(Y, X), where ¢ = £1. If ¢ = —1, we have & (X, X) = 0, hence
®N(j,7) = 0. However, ® (X, j) is irreducible over C(j) hence j cannot be its zero.
So ¢ = 1 and we obtain that ® 5 (X, Y) is symmetric in X, Y. It remains to prove the last
property (Kronecker’s congruence relation).

S . . 1
Assume N = p is prime. Then the set A, consists of matrices A, = < S) , 0<

0 p -
s < p,and A, = <g (1)
1

that we have the following congruence for the Fourier expansion of j(As - 7) in g

). It follows from the formula (10.5) and the Fermat theorem

§(As - 7)(q) = j(@)P mod (1 - ),

j(Ap-7)(q) = j(g)’ mod p.

Here the congruence means that the corresponding Fourier coefficients satisfy the con-
gruence. The principal ideal (1 — () in the ring Z[(p] is prime and (1 — (,)|p (since

(021 i¢) (1 — ¢p) = —p). This implies

9,(X,j(q)) = (X —j(@)")(XP = j(g)) mod (1 —¢p).
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Let ,(X,j) — (X — j)(XP —j) = >_,, amX™. The previous congruence shows that
the coefficients a,, are all divisible by (1 — (), and since they are integers, they must be
divisible by p. This proves the theorem. O

Definition. The equation ® 5 (X, Y’) = 0 from the previous theorem is called the modular
equation .

Example 10.2. Let p = 2. The modular equation in this case is
FX,Y)=(X -YH(X2-Y)+2" 3-31XY (X +Y) - 2'3153(X2 + Y?)+
28.7.61-373XY 42837 - 55(X + V) — 2'2395% = 0.

For N = 3 the modular equation was computed by Stephen Smith in 1878 9 (few
coefficients turned out to be wrong and corrected by Hermann, Crelle J. 274 (1973). It
has the form

F(z,y) = x(z+2%-3-5%)% 4 y(y +27-3-5%)3 — 233+
23.32. 31222 (x + y) — 2% - 3% - 9907y (2 + %) +2- 3% - 13- 193 - 63672%y*+
210.3% .53 .17 263zy(z + y) — 231 - 55229732y = 0.

Other cases where it was computed explicitly are N = 5,7,11. The last case took
20 hours on a VAX-780. It is a polynomial of degree 21 with some coefficients of order
100,

Corollary 10.2. The modular curve Xo(N) is isomorphic to a nonsingular projective
algebraic curve defined over Q.

Proof. We assume that the reader is familiar with some basic notions in algebraic ge-
ometry (first two chapters of [Shafarevich] suffices). The theorem says that X (V) is
birationally isomorphic to the plane affine curve ®(z,y) = 0 defined over Q (i.e. its
equation is given by a polynomial with rational coeffcients). By homogenizing the equa-
tion we obtain a projective curve defined over Q. Now we use the normalization process.
Since this process can be done over the same ground field, the normalized nonsingular
curve is also defined over Q. (]

Remark 10.1. In fact, one can choose the equations defining X (V) with coefficients in Z.
This allows one to reduce the coefficients modulo a prime number p to obtain a projective
algebraic curve over a finite field IF,,. It follows from the Kronecker congruence that the
prime numbers p dividing N are “bad primes”, i.e. the reduction is a singular algebraic
curve. One can show that all others primes are “good primes”, i.e. the reduction is a
nonsingular algebraic curve. The reductions of the modular curve X((/N') modulo a good
prime p are examples of curves over a finite field with “many rational points” and are used
in coding theory.
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Definition. A holomorphic map between elliptic curves £/ — FE is called an isogeny of
order n if it is a homomorphism of groups whose kernel is a group of order n.

Let E = C/A,E' = C/A . It follows from the definition that any isogeny f : £/ —
FE can be lifted to amap f : C — C,z — az such that f(A’) C A. The kernel of this
map is the group a~'A/A’ € C/A’. So its order is equal to the determinant of the matrix
A= (‘é g) such that

awy = aw] + bwh,  aw; = cw] + dwh.

Here A = Zwy + Zws, N' = Zw) + Zwh. We can change the bases to assume that A =

(‘{; dg) is diagonal with d;|do and dyds = n. The pair (d1, ds) is defined uniquely by
the previous property and is called the type of the isogeny. The isogeny is called cyclic if

dy; = 1. In this case the kernel of the isogeny is a cyclic group of order n.

Corollary 10.3. Let E be a complex torus corresponding to the lattice 7. + 77.. Then the
set of isomorphism classes of elliptic curves admitting a cyclic isogeny f : E' — E of
order N consists of the isomorphism classes of elliptic curves E.» where

N (i(r), j(T)) = 0.

Proof. Let E' — FE be a cyclic isogeny of order N. As we have explained before,
replacing the curves by isomorphic curves, we may assume that

E:(C/Zwl—l-Z(/JQ, E/:C/ZW1+ZNU)2.

Further replacing them by isomorphic curves we may assume that w; = 1,wo = 7 € H.
Thus the isomorphism class of E is determined by the value of j at 7, and isomorphism
class of E’ is determined by the value of j at N7. But the pair (j(N7),j(7)) satisfies
the modular equation ®y(x,y) = 0. Conversely, if (j(7'),j(7)) satisfies the modular
equation, then j(7') = j(A - 7) for some matrix A = (4%) € Ay. This implies that
E! = E4.... Since 7 and A -7 are both in the upper half-plane, we must have 7/ = A-7 =
(aT +b)/d. Replacing Z + Z7' with dZ + (at + b)7Z which defines an isomorphic curve,
we see that dZ + (aT +b)Z C Z+ Z7 and hence there exists an isogeny E. — E; whose
kernel is given by the matrix A. Since (a, b, d) = 1, the elementary divisors of this matrix
are (1, ad). This shows that f is a cyclic isogeny. O

Corollary 10.4. Let T € Q(v/—d) where d is a positive rational number. Then the value
j(7) is an algebraic integer.

Proof. Let O be the ring of integers in the quadratic field Q(+/—d). It admits a basis 1, w.
Let o € O such that its norm N is square-free. Then

aw=aw+b, a=cw+d.
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Here the matrix M = (%) has determinant equal to the norm of «. Since the latter is
equal to the determinant of the matrix and is square-free, we have (a, b, c,d) = 1. Also
observe thatw = A - w = ‘;U‘jis By Lemma 10.2, M = M'A, where M’ € I'(1), and
A € Ap. This shows that

jw)=j(M w)=j(M'A w)=jA w)

and hence j(w) satisfies the equation ® 5 (X, X) = 0. This equation is a monic polyno-
mial over Z, so that j(w) is an algebraic integer. We can write nT = aw + [ for some
integers n, a, 8. Since ®,,(j(7),j(n7)) = 0, j(7) is integral over the ring Z[j(n]. So, it
suffices to show that j(n7) is an algebraic integer. Since j(n7) = j(aw + ) = j(aw) =
Jj(—aw), we obtain, by the previous argument, that j(n) is integral over j(w). Since the
latter is an algebraic integer, j(7) is an algebraic integer as well. O

Remark 10.2. Notice that 7 € Q(v/—d) if and only if the lattice A, has complex multi-
plication (see Lecture 2). By Exercise 2.6 this is equivalent to that £ has endomorphism
ring larger than Z. An elliptic curve with this property is called an elliptic curve with
complex multiplication . Viewing j as a function on the set of isomorphism classes of
elliptic curves, the previous corrollary says that the value of j at the isomorphism class of
an elliptic curve with complex multiplication is an algebraic integer.

Remark 10.3. The classical Kronecker Theorem asserts that any finite abelian extension
of Q with abelian Galois group can be obtained by joining roots of unity to Q. Observe
that a nth root of unity is the value of the function f(z) = €27*/" on Z. Let K be an
imaginary quadratic extension of (Q and let a be an ideal in the ring of integers of K.
Then the set j(a) generates a maximal non-ramified extension of the field K with abelian
Galois group. This is the celebrated “Jiigendtraum” of Leopold Kronecker which was
proven by himself when he had passed his youth age.

Corollary 10.5. A modular function f € C(j,jn) belongs to Q(j, jn) if and only if its
Fourier expansion at oo has all coefficients in Q.

Proof. Since j and jn has rational Fourier coefficients, we only need to prove the suf-
ficiency. Let f = R(j,jn) where R = P(x,y)/Q(z,y) is a rational function with
coefficients in C. Any automorphism o of C acting on C(j, jn) sends R to R’ by re-
placing the coefficients of R with its o-conjugates. This is independent of the choice of
R since the modular equation relating j and jn has coefficients in Q. Let f° denotes the
image of f under the action of ¢. I claim that

o0

o) = olead”,

n=-—r
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where f(7) = >_°7  ¢,q" is the Fourier expansion of f at co. Since

n=-—r
$(N)-1 ‘
C@.in) = Y, CH)ik,
i=0
it suffices to prove the assertion for f € C(j). Write

_aptarj+...tapjg"”
bo +b1j + ...+ byg™

(10.6)

Replacing f with f~! we may assume n > m. Multiplying by some integer power of
J, we may assume that ag, by # 0. Since ag /by is equal to the value of f at oo, it must
be a rational number. The difference (f — Z‘—g) /7 has Fourier coefficients in Q, and has
representation in the form (10.16) with smaller n. Continuing in this way we arrive at the
case n = m = 0 where the assertion is obvious. 0

10.3 Let us explain the meaning of the symmetry property of the modular equation.
Consider the map H — H defined by the formula 7 — —1/N7. It is easy to see that the

matrix F' = ( —\O/N l/gﬁ) belongs to the normalizer of the group I'g (V) in SL(2, R), i.e.

FMF~! € To(N) for any M € T'g(N). This implies that the previous map factors to a
map of the quotient H /T'o(N) — H/T'o(N). It can be shown using some basic algebraic

geometry that it extends uniquely to a holomorphic map
Fr: X()(N) — X()(N)

Observe also that F2 = —1 so that Fr? = identity. It is called the Fricke involution. By
taking the inverse transform of functions, the Fricke involution acts on modular functions
of weight k by

B (f)(r) = f(=1/N7) = (N7)*" f(NT).

In particular,
B (j(r)) = §(N7), B (j(N7)) = j(=1/7) = j(7).

This implies that the Fricke involution acts on the modular equation by switching X and
Y.

Remark 10.4. Let Xo(N)T = Xo(N)/(Fr) be the quotient of the curve Xo(N) by the
cyclic group generated by the Fricke involution. One can find all numbers N such that the
genus of this curve is equal to 0. It was observed by A. Ogg that the list of corresponding
primes is the same as the list of all prime divisors of the order of the Monster group, the
largest simple sporadic finite group. This has been explained now.
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Example 10.3. We know that R = A(27)/A(7) generates the field M(Xy(2)). The
Fricke involution acts on this generator as follows:

vy ACYT) A2 AT,
BB = X 3j2r) ~ denen® ~2aen 2 T

We know that every modular function with respect to the field I'g(N') can be written
as a rational function in j and jy with complex coefficients. In other words, it belongs
to the field C(4, jn). The next theorem characterizes functions which belong to the field

Exercises

10.1 Prove that there exists exactly ¢(V') isomorphism classes of elliptic curves admitting
a cyclic isogeny of order NV onto a fixed elliptic curve.

10.2 Let f : £/ — E be an isogeny between elliptic curves of order N. Show that there
exists an isogeny f’ : £ — E’ of the same order.

10.3 Show that the Fricke involution of #/I'o(/N) sends the point representing the iso-
morphism class of the pair (F, A) (F is an elliptic curve and A is its cyclic subgoup of
orer N) to the pair (E’, A"), where E' = E/A, A’ = NE/A.

10.4 Let f,g be two modular forms of the same weight with respct to I'(1). Show
that, for any A € Ay the function f(A - 7)/g(7) is a modular function with respect
to (AT (1)M) NT(1).

10.5 Show that ®(j(7),j(7)) = 0 for some N > 1 if and only if E; has complex
multiplication.

10.6 Let N = 2,3,5,11 and k = 12/(NN + 1). Show that the space of cuspidal forms
M (Do(N))? is spanned by the function (A(T)A(NT))ﬁ.

10.7 Let N = 2,3,6 and k = 6/N. Show that the space of parabolic forms M (I'(N))°
is spanned by the function A(7)'/N.

1
10.8 Show that M(X((2)) = C( (2(i
27

MH

’) )) [Hint: use that {2 = 7912  /n'? and apply the

six crss-ratia formulas].

10.9 Generalize Example 10.1 by proving that the function ®(7) = ( A(](\g) )N-T N gener-

ates the field M(Xo(N)) for N = 2,3,5,7,13 [Hint: Check that ®~1 has one zero and
one pole of multiplicity N — 1 and use the formula for the genus of Xy(N) to check that
Xo(N) = PH(O)]

10.10 A modular function f € M(X(I")) is called a Hauptfunction for I if it generates
the field M (X (I")) and admits a Fourier expansion at the cusp oo (of index h) of the form
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g Vh 4 ZmZO amq™'", where a,, are integers. An example of a Hauptfunction is the
absolute invarinat j.
(1) ?\?OW that the functions ( AA(](\S) )%1 are Hauptfunctions for the group I'g (V) when
=2,3,5,7.

(i) Show that the function v3, where  is the parameter in the Hesse equation (see
Problem 3.6) is a Hauptfunction for I'g(3).

(iii) Show that the 27\ is a Hauptfunction for I'(2) (see Lecture 10).

D00 (0;7)2+190% (0;7)2

(iv) Show that the function 4 77,02

is a Hauptfunction for I'(4).

10.11 Show that the fundamental domain for I'y(p) where p is prime, can be obtained as
the union of the fundamental domain for I'(1) and its translates by transformations ST*,
where £k =0,...,p.

10.12 Find the expression of the absolute invariant j in terms of the generator ® of the
field of modular functions for I'y(2).

10.13 Prove that the cosets of I'(1) modulo I'g(/N) can be represented by the matrices

<3 ?) where (¢,d) = 1,d|[Nm0 < ¢ < N/d.
10.14 Prove the doubling identities:
219%0(27')2 = 1900(7’)2 — 190%(’7')27

22900(2’7’)2 = ’1900(’7')2 + 190%(7')2.
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Lecture 11

Hecke Operators

11.1 Let S and S’ be two sets. A correspondence between S and S’ is a subset Z C
S x §'. For example, Z could be the graph I'y of amap f : S — S’. One can view Z
as a multi-valued map from S to S’ as follows. Take s € S, and consider the intersection
{s} x S’ N Z. Then take the image Z(s) of this set under the second projection prg: :
S x S — S’. This is called the image of s under Z. We will assume that Z is a
finite correspondence meaning that each set Z(s) is finite (maybe empty). Clearly, Z
is completely determined by its images. When Z = I'y is the graph correspondence
we obtain the usual value of the map on s. The analog of compositions of maps for
correspondences is the following operation. Let Z' C S’ x S” be another correspondence.
Set

Z'oZ =pri3((Z x 8") x (8 x 7)),

where p13 is the projection map S x S’ x §” — S x S”. It is called the composition of
the correspondences Z and Z'. It is easy to see that the value of Z' o Z at s € S is equal
to the union Uy ¢ z(5)Z'(s"). In particular, when Z’ is a function f : " — S” (identified
with its graph), we have f o Z(s) = f(Z(s)).

One can view any finite correspondence as amap f : S — P(S’) fin, Wwhere P(S’) fin
is the finite Boolean of the set S’, i.e. the set of finite subsets of S”. Using the characteristic
function of a set we can identify P(S’) i, with the set of functions with finite support
which take values 0 or 1. Now let K" be any commutative ring. For any set X denote by
KX the ring of functions X — K with finite support. Its basis consists of characteristic
functions x,) and can be identified with elements of X. This allows us to write its
elements as finite linear combinations of elements of X with coefficients in K. We have
encountered this notion when we defined divisors on Riemann surfaces. By including 0, 1
in K we can identify any correspondence Z C S x S’ with a function Z : § — K. We

133
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have

Z 1-5. (11.1)

s'eZ(s)
Now we extend the notion of a correspondence by making the following:

Definition. Let K be a commutative ring and let S, S’ be two sets. A finite K -correspondence
on the set S x S’ is a function Z : S — K5

We have a natural function
deg: K 5 K, ¢— > ¢(s) (11.2)
SES

which is an analog of the degree of a divisor. If 7 is a correspondence as in (11.1), then
deg(Z(s)) = #Z(s), where Z is considered as a multivalued map.

Since K" is an abelian group with respect to the operation of addition of functions,
we see that the set of finite K -correspondences on S x S’ forms an abelian group. In par-
ticular, take S = S’ and denote the set of finite correspondences on S x S by Corr(S) .
It has two operations: an addition and the composition. The latter generalizes the opera-
tion of composition of correspondences from above. For any f : S — K denote by fits
extension to a map K° — K defined uniquely by additivity:

f(z ass) = Zasf(s)
ses seS

For any f, g € Corr(S)k we set
fog(s) = f(g(s)). (11.3)

We leave to the reader to verify that this defines a structure of an associative ring on
Corr(S) k. Itis called ring of finite K-correspondences on the set S with values in K. In
fact, it is obviously an algebra over K (since K is a I -algebra). When K = Z we skip
the subscript in the notation.

Let Z be a finite K -correspondence on S x S’. Any function ¢ : S” — R with values
in a K-algebra R can be extended by additivity to a function qﬁ K% - R using the

formula B
B avs’) =Y asd(s).
s'es’ s'es’
This allows us to define the inverse transform of ¢ under the correspondence Z:

Z*(¢) = o Z.
If Z(s) =) cg ass, then

=) aye(s). (11.4)

s'es’
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Example 11.1. Let f : X — Y be a holomorphic map of compact Riemann surfaces.
Define a function r : X — Z by r(x) = ramification index of f at z. Recall that this
means that, taking a local parameter ¢ at f(x), the function ¢ o f has a zero at x of order
r(x). Consider f~! as a correspondence on Y x X given by the inverse f~!. More
precisely, f~! = {(y,z) € Y x X : f(z) = y}. Then

does not depend on y and is equal to the degree of the map f.

11.2  We will be interested in the following situation. Let S be the set £ of lattices in C.
Define a correspondence on £ as follows

T(n)={(AMAN)eLxL:NCA[A:AN]=n}. (11.5)
We take the natural inclusion of 7'(n) in the product £ x L.

Lemma 11.1. Ler A!, be the set of integral matrices (‘6 Z) withad =nand 0 < b < d.
Fix a basis (wi,w2) of a lattice A. For any A € Al denote by A(A) the sublattice
Z(aws + bwy) 4+ Zdws. Then the map A — A(A) is a bijection from the set Al, onto the
set T'(n)(A).

Proof. Note that the set A/, differs from the set .A,, used in the previous lecture only
by abandoning the primitivity property of the matrix. As in the proof of Lemma 2 in
this lecture, we show that any integral matrix with determinant n can be transformed
to a unique A € A/, by integral row transformations. This shows that any sublattice
A’ € T(n)(A) has a unique basis of the form w| = dwy,w) = bw; + aws, and hence is
equal to a unique A(A) with A € A),. O

Corollary 11.1.
deg T(n)(A) => d. (11.6)

dln

For any nonzero complex number ¢ consider the correspondence R, on £ defined by
the function A — cA.

Lemma 11.2. The correspondences T'(n) and R. form a subring of the ring Corr(L).
They satisfy the following relations:

(i) T(m)oT(n)=T(mn)if (m,n) =1;

(ii) T(p™) o T(p) = T(p"t!) +pT'(p" ') o R, where p is prime;
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(iii) T'(n) o Ry = Ry 0 T'(n);
(iv) Ry o Ry = Ryp.
Proof. The last two properties are obvious. To prove (i) we observe that
T(n)oT(m)={(AAN)YeLXxL:[A:N]=n,[A:N']=m forsomeA'}.

If (m,n) = 1, the finite abelian group A/A” contains a unique subgroup of order m. Its
pre-image in A must be A’. This shows that

T(n)oT(m)={(AAN")eLxL:[A:AN']=mn}="T(mn).
This proves (i). We have

TE)oTEN) = Y and,

[A:A/)=pnt1
where
an = F#{N" A A =p, [N N]=p"}.
Now
T(pn+1)(A) — Z A/,
[A:A]=pnt1
pT(p" ") o Ry(A) =pT(p" )(pA) =p > buh,
[A:A]=pntl
where
1 ifA .
by = if A" C pA (11.7)
0 if A ¢ pA.

Comparing the coefficients at A’ we have to show that
(a) ap = 1if A’ §Z pA;
(b) apnr =p+ 1if A’ C pA.

Recall that a s counts the number of A” of index p in A which contain A’ as a sublat-
tice of index p™. We have pA C A” C A. Thus the image A’ of A” in A /pA is a subgroup
of index p. In case (a) the image of A’ in the same group is a non-trivial group contained
in A’. Since the order of A is equal to p, they must coincide. This shows that A” in A /pA
is defined uniquely, hence there is only one such A”, i.e. ay = 1.

In case (b), A” could be any subgroup of order p in A/pA. The number of subgroups
of order p in (Z/pZ)? is obviously equal to p + 1. O
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Corollary 11.2. The correspondences T'(n) are polynomials in T (p)’s and
R,’s, where p runs through the set of prime numbers. In particular, T(n)’s and R,’s
generate a commutative subring H of Corr.

Definition. The subring H of Corr generated by the correspondences 7'(n) and R,, is
called the Hecke ring of I'(1).

11.3 Consider a function f on £; using definition (11.4) , we have
T(n)*(£)A) = Y fA). (11.8)
[A:A]=n

We apply it to the case when f is defined by a modular form of weight 2k with respect to
I". Choose a basis (wy,w2) of A with 7 = wy/w; € H. Then set

FA) = ()2 (7). (11.9)

This definition is independent of the choice of the basis as above. In fact, if wé = awsy +
fwi, wj = yws+ dw; with some M = (f: g) € SL(2,7Z), we have

awsy + Puwr
Ywa + dwi

) =

()72 f(wh/wh) = (ywz + dwr) T2 £

w7+ 0) (M - 7) = wi (7).
This function satisfies the property

flah) = a 2 f(A). (11.10)

Conversely given a function f on £ satisfying this property we can set f (1) = f (Z+7Zr).
Then

at +
)

at +
YT 40

I )=f(Z+ )= (7 +8) (T + )L + (a1 + B)Z) =

(Y74 0) 2 F(Z + 7Z) = (v + 8) 2 (7).

By property (iii) of Lemma 1, we obtain that T'(n) leave the set of functions f on A
satisfying (11.6) invariant.

Let F}, be the space of functions on £ of the form f where f € M(T'(1))p.
Theorem 11.1. For any positive integer n and any non-negatve integer k,

Tn(fk) C ]'—k-
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Proof. Let f € M(T'(1)) and f € Fi,. We know that

= > fleN)=c F(A).

[A:A]=n [A:A]=n

This shows that T'(n) f = §, where g is a function on 7 satisfying g(( B) T) = (y7 +
8)~2kg(7) for any (’y > . We have to check that ¢ is a holomorphic function
on H and at infinity. Applying Lemma 2, we have

g =T fZ+72)= 3 fllar +H)Z+dz)= Y d 2 f( “T+b)

Ac Al Ac Al
Thus +b
aT
gir) = Y A f(——)= Y flA. (11.11)
AcAl, Ac Al

Clearly, g is holomorphic on  as soon as f is holomorphic. It remains to find its behavior
at infinity. Let
0 .
f _ Z em eQT(’Lm’T
m=0

be the Fourier expansion of f at co. Then

g= Z d72k(§: Cm62m'm(a7—+b)/d)'

Ae Ay, m=0
Observe that
; d ifd|lm,
Z eQﬂ'zmb/d:{ | . (11.12)
0<b<d 0 otherwise.
This gives
= X U ) = Y RIS ™).
ad=n,a>1 m/'€Z ad=n,a>1 m'eZ

Now let m = am’ we have d = n/a, so we can rewrite it as follows:
9= Z qm( Z (n/a)_Qk—H mn/a2 Z bmq (1113)
meZ a|(”7m)aa21 meZL

Since ¢, = 0 for k < 0 we get b,, = 0 for m < 0, so that g is holomorphic at co. Also we
see that, if ¢g = 0, then by = 0, i.e. T'(n) maps a parabolic form to a parabolic form. [J
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From now on we shall identify M (I'(1)); with Fj. So we have linear operators 7'(n)
in each space M (I'(1));, which also leave the subspace M(I'(1))? invariant.

To avoid denominators in the formulas one redefines the action of operators 7'(n) on
the vector space M (I'(1)), by setting

T(n)f =n*"T(n)*(f) =n*" > flsA (11.14)

Ac Al

These operators are called the Hecke operators. Let

T(n)(> emg™) = > bmg™ (11.15)

m=0 m=0
It follows from (11.9) that for prime n = p, we have

m .f )
by = {CP - ifp fm (11.16)

Cmp + P Cmyp if pim.

Also, for any n,
bo = O'gkfl(n)C(), bl = Cp. (11.17)

11.4 We will be interested in common eigenfunctions of operators 7'(n), that is, func-
tions f € My (I'(1) satisfying

T(n)f =Xmn)f foralln.

Lemma 11.3. Suppose f is a non-zero modular form of weight 2k with respect to T'(1)
which is a simultaneous eigenfunction for all the Hecke operators and let c,q" be its
Fourier expansion. Then ¢y # 0 and

Cn

T(n)f = F.

1

Moreover, if ¢y # 0 we have
cn/c1 = ook—1(n).

Conversely, if co # 0 and the coefficients c,, satisfy the previous equality, then f is a
simultaneous eigenfunction of Hecke operators.

Proof. In the notation of (11.11) we have

b, = A(n)cm, VYm,n.
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If c; = 0, then by = A(n)c; = 0. But, by (11.12) we have ¢,, = by. This shows that
¢, = 0 for all n # 0. Thus f is constant, contradicting the assumption. So, ¢; # 0, and
¢n, = b1 = A(n)c; implies

A(n) =cp/e.

If ¢y # 0, we use (11.12) to get by = oax_1(n)co = A(n)cp. This gives
A(n) = o9k—1(n).
]

Corollary 11.3. Keep the notation from the previous lemma. Assume f is normalized so
that c;1 = 1. Then
CmCn = Cmn lf(m,n) =1,

Qkflc

CpCpn = Cpn+1 + P pn—1

where p is prime and n > 1.

Proof. The coefficient ¢, is equal to the eigenvalue of T'(n) on My(I'(1)). Obviously
CmCn 1s the eigenvalue of T'(n)T'(m) on the same space. Now we apply assertion (ii) tak-
ing into account that the correspondence R, acts as multiplication by p~ 2k and remember
that we have introduced the factor n?*~! in the definition of the operator T'(n). O

Example 11.2. Let Ej(7) be the Eisenstein modular form of weight 2k, k& > 2. We have
seen in (6.21) that its Fourier coefficients are equal to

2(2w)k02k_1(n)
k-1

Cp = n>1,

22k717.rk:Bk
co = 2¢(k) = O

Thus ¢,, = ¢109k_1(n), and therefore Ej(7) is a simultaneous eigenvalue of all the Hecke
operators.

Corollary 11.4.
Ook—1(m)oop—1(m) = oop—1(mn) if (m,n) =1,

Oop—1(P)oak_1(P") = ook_1 (P + pHF oy 1 (p" ),

where p is prime and n > 1.
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Example 11.3. Let f = A. Since f spans the space of cusp forms of weight 6 and this
space is T'(n)-invariant for all n, we obtain that f is a simultaneous eigenfunction for all
the Hecke operators. We have

o0 o0
A= H (I1—¢g™)* = Z 7(
m=1 =1
We see that the Ramanujan function n — 7(n) satisfies
7(m)7T(n) = 7(mn) if (m,n) =1, (11.18)
(p)T(p™) = 7(p"™) + p!r(p™~!) if pis prime and n > 1, (11.19)

Recall from Number Theory that a function f : N — C is called multiplicative if
f(mn) = f(m)f(n) if (m,n) = 1. It follows from above that the Fourier coefficients
¢n, of any modular form which is a simultaneous eigenfunction of all the Hecke operators
and normalized with the condition that ¢; = 1 define a multiplicative function. Example
2 provides the function o9 _1(n). Of course, the fact that is multiplicative is well-known
and can be found in any text-book in number theory. The fact that the Ramanujan function
is multiplicative is not easy, and does not follow immediately from its definition.

11.5 One can say more about the Fourier coefficients of a cuspidal modular form which
is a simultaneous eigenfunction of Hecke operators. This is done by introducing an inner
product in the space M (I'(1))%.

Definition. Let f, g be two parabolic modular forms of weight k£ with respect to I'. Let
D C H be the modular figure. The formula

/f g(T)Im ()%~ 2d7d7—/ [z +iy)g(z + iy)y** 2dzdy

defines a Hermitian inner product in the space M (I")°. It is called the Petersson inner
product .

Observe that the integral converges because at the cusps f(7)g(7) behaves like O(e =)
for some ¢ > 0. This is why we have to restrict ourselves to parabolic forms only.

Lemma 11.4. Forany A = (%) € GL(2,R) with det A > 0,
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Proof. We have

(flxA, g|rA) = /f (A1) (et + d)" 2 g(AT) (e + d)=2FIm (1) 2drd7 =
3 /D f(AT)g(AT)|er + d|~*1Im (7)* 2drd7 =
2/Df(A7')g(AT)Im (AT)%_Zd(AT)d(E) =

3' ) g(T)Im (1)**2drdr.
5 [, p, S0 (7 2dra

In particular, when we take A € T" we get that in the definition of the inner product we can
integrate over A(D) which is another fundamental domain for I'. In fact, this computation
shows that for any measurable subset () of 7 and any A € T, we have

/ f(M)g(D)Im (1) 2drdr = / f(T)g(T)Im (1)%*2drd7.

This allows one to view (f, g) as the integral of the differential form

= ¢ F)grIm (1) 2drds

over H/I'. Since for any A € GL(2,R) with det A > 0, the set A(D) is another funda-
mental domain for I', the see that the last integral in (11.14) is also equal to the integral of
w over H/T'. Hence, it is equal to (f, g). O

Theorem 11.2. The Hecke operators are Hermitian operators on the space My (T'(1))°
with respect to the Petersson inner product.

Proof. We have to check that
(T(n)f,9) = (f,T(n)g).

In view of Lemma 2 it is enough to check it when n = p is prime. We have

TWfr9) = 3 i) = 3 (frgha™).

Ac Al AeA,

Note that for any A € A;, we have pA~! is an integral matrix of determinant p. Thus we
can write as M A’ for some M € I'(1) and A € Aj,. This gives us that

(T(0)f.9) = Y (fglMA) = > (f,9leA) = (f. T(p)g).

=y AleA,
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Corollary 11.5. The space of parabolic modular forms My, (T'(1)° admits an orthonor-
mal basis which consists of eigenfunctions of all the Hecke operators T'(n).

Proof. This follows from a well-known fact in linear algebra: a finite-dimensional Hilbert
space admits an orthonormal basis of eigenvalues of any set of commuting normal opera-
tors. O

Corollary 11.6. Let f be a cuspidal modular form which is a simultaneous eigenfunction
for Hecke operators and let c,, be its Fourier coefficients. Then c,/ci are totally real
algebraic numbers.

Proof. The numbers ¢, /c; are eigenvalues of a Hermitian operator. They must be real.
To prove the algebraicity, let us consider the set My(Z) of modular form of weight k
for I'(1) with integral Fourier coefficients. Examples of such forms are the normalized
Eisenstein series £ = %
to Hecke operators (as it follows from the formula for the Fourier coefficients of trans-
formed functions). We can find a basis in this module which is a subset of monomials
(E3)%(E3)%, a+ b = 2k. Thus the egenvalues of T'(n) being the roots of the characteris-

tic polynomial with integer coefficients must be algebraic numbers. O

Ej (7). This set is a Z-module and invariant with respect

Exercises

11.1 Let S be the set of finite-dimensional vector spaces over a finite field F, of g ele-
ments. For each positive integer n consider the correspondence T'(n) = {(V,W) : W C
V,dim V/W = n}. Show that the operators 7'(n) generate a commutative subring of
the ring of correspondences Corr(.S). Show that T'(n)T'(m) = k(n, m)T (n + m), where
k(n,m) = #G(n,n+m)(F,) (G(n,n+m) is the Grassmann variety of linear subspaces
of dimension n in Fy™).

11.2 Show that the Hecke operators 7'(n) together with operators R, generate a commu-
tative algebra H over C which is freely generated by the operators 7'(p) and R,, where p
is prime. The algebra H is called the Hecke algebra of the group T'(1).

11.3 Show that the vector subspace of Corr(L)q spanned by the Hecke operators T'(n) is
a subalgebra of Corr(L)q.

11.4 Consider the formal infinite series y -, T'(n)n~° with coefficients in the Hecke
algebra H of I'(1). Show that

Y T = [[ 1=TwEp*+Rp' 7"
n=1

p prime
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11.5 Show that for any lattice L in C and a complex number s with Re s > 1, we have
Y #T()(L)n~* = ((s)¢(s — 1),
n=1

where ((s) is the Riemann zeta function.

Let T be a subgroup of finite index in I'(1) and A be a subsemigroup of the group
GL(2,Q)" of rational 2 x 2-matrices with positive determinant which contains T' and
satisfies the property that, for any o € A, a - I' - a~! N T is of finite index in I (e.g.
I'=T(1)and A = {0 € M3(Z) : deto > 0}). Let H(I', A) be the free abelian group
with the basis formed by the double cosets [0] = 'ol',0 € A.

(i) Show that, for any o € A, the double coset [o] is equal to a finite union of right
cosets I'o;, where o; € A.

(ii) If [o] = Ul'ie04,[0'] = Ulje 07, let ¢, denote the number of pairs (i,j) €
I x J such that FJZ‘U;» = T« for a fixed o € A. Show that the formula

o] o= Y, colal

a:Tal'Cl'ol'o'T

togeher with the addition law defines a stucture of an associative ring on H (I", A).
This ring is called the Hecke ring of (T', A).

(iii) Let ¢ be the adjugation involution in My(Z) (i.e. t(M)M = det(M)I;).Assume
that A is invariant with respect to ¢. Show that H (I", A) is commutative if and only
if [t(0)] = [o] forany o € A.

11.7 Let S be the set of right cosets I' - 0,0 € A. Forany o0 € A set Z, = {(Ta,T'B) €
Sx8:T-pcTlola}.

(i) Show that Z, depends only on the double coset [o] of o, so we can denote it by
Zig)-

(iii) Show that [0] — Z|,) defines a homomorphism of the Hecke ring H(T', A) to the
ring Corrf(S) of finite correspondences on the set S.

11.8 Forany 0 € AletT, = (¢lo"!)NT. Let 7 : H/Ty, — H/T correspond to
the natural inclusion I', C I' and let 7, : H/I';, — H/T" be the composition of an
isomorphism H /o~ 1T'c = H /T induced by the Moebius transformation 7 — o - 7 and
the natural projection map H /Iy — H /o 'To.

(i) Show that the composition of the correspondences 7 o 7, ! defines a finite corre-
spondence C, on H/T'. Here 7, ! is defined as in Example 1 from the lecture.
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(ii) Show that C;; depends only on the double coset I'oT". Denote it by Clg).

(iii) Show that Zj,) — C|,) defines a homomorphism from the Hecke ring H (", A) to
the ring Corr(H/T).

11.9 Consider the Hecke ring H(T'(1), M3(Z)™"). For any pair of positive integers a, b
with a|b denote by T'(a, b) the double coset of the matrix (8 2). For any positive integer

nsetT(n) =), T(a,b).
(i) Show that T'(a,b)T(a’,b") = T(ad’,bV’) if (b,b') = 1.
(ii) Show that T'(p*,p™) = T'(p,p)T (p*~1,p™ 1), where p is prime.

(iii) Show that there exists an isomorphism of algebras H (T'(1), M»(Z)") ® C and the
Hecke algebra H of I'(1) as defined in Exercise 11.2. Under this isomorphism each
element 7'(n) is mapped to the Hecke operator T'(n), and each element T'(a, a) is
mapped to the operator 2.

11.10 Let A(N) C M»(Z)" be the set of integral matrices with positive determinant
prime to N. Prove that the map I'(N)oI['(N) — T'(1)oI'(1) defines an isomorphism
from H(T'(N), A(N)) onto H(T'(1), Ma(Z)o ™).

11.11 Let N > 1 and A be a fixed subgroup of (Z/NZ)*. Let A be the semigroup
of matrices 0 = (%Y%) € My(Z)" such that (deto, N) = 1, N|c and the image of a
in Z/N7Z belongs to A. Let I" be the group of invertible elements in A. For example,
I' = To(N) or I'; (N). Consider the Hecke ring H(I', A). For any d € (Z/NZ)* let 04
denote any representative of (g d91 ) in SL(2,Z). For any pair of positive integers a, b
such that a|b and (b, N) = 1, denote by T'(a, b) the double coset of the matrix (& 9). For
any positive integer n let T'(n) be the sum of the double cosets Zj), where deto = n.
Show that

(i) any Z, € H(I', A) can be uniquely expressed as the product 7'(m)T'(a, b), where
each prime factor of m divides N (we write it as m|N°);

(i) if (m,n) =1 o0or m|N® or n|N°, then T'(mn) = T'(m)T(n);

(iii) H(T',A) is a polynomial ring over Z in the variables T'(p, p) for all primes p fN
and T'(p) for all prime p;

(iv) H(T',A) ® Q is generated as an algebra over Q by 7'(n) for all n;

(v) the map H(T'(1), Ma(Z)*) — H(T,A) defined by sending T'(p) to T'(p) if p is
any prime, T'(p,p) to T'(p, p) if p is a prime with p /N, and sending T'(p, p) to
zero if p is prime with p| N, is a surjective homomorphism of rings;
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(vi) H(I', A) is a commutative ring.

11.12 Define the action of [0] € H(I',A) on M(T) by f|[o] = det(a)* 1>, flroi
where [0] = U;T'o; and f|ro; is defined as in (6.5) (which applies to not necessary uni-
modular matrices).

(i) Show that, extending by linearity, this defines a linear representation T — T of
the ring H(T', A) in My, (T') and in M, (T)°.

(i) Let (', A) be as in Exercise 11.11. Show that, for any n > 0 and f € M(T),

o= Y fho (g Z) |

ad=n,(a,N)=1,0<b<d

11.13 Let us identify the set of points of Xo(N)" = H/T'o(N) with the set of isomorphism
classes of pairs (F, H), where F is an elliptic curve and H is a cyclic subgroup of order NV
of its group of N-torsion points (see Theorem 8.6). Let p be a prime number not dividing
N and let T'(p) be the Hecke correspondence on Xo(NN)’ (see Exercise 11.7). Show that
T(p)(E,H)) = {(EJA;, Ai + H/A;),i = 0,...,p}, where Ay,..., A, is the set of
cyclic subgroups of order p in E.



Lecture 12

Dirichlet Series

12.1 A Dirichler series is an infinite series of the form

o0
Qnp
D
n=1
where s is a complex number. It absolutely converges for Re s > 1 4+ ¢, where
an = O(n°).
An absolutely convergent Dirichlet series in a domain D is a holomorphic function in D.

The most notorious example of a Dirichlet series is the Riemann zeta function
oo
1
(s) = v

n=1

It converges for Re s > 1. We will be interested in Dirichlet series for which the coeffi-
cients a,, are the Fourier coefficients of a modular form.
Let f € M(T")j and let

f — Zan€27rin7'/h (12.1)

n=0

be its Fourier series at co. For any complex number s we define the formal expression

Zi(s) = i = i ape *18n (12.2)

n=1 n=1

SIE

and call it the Dirichlet series associated to f. Let us first invesigate the convergence of

this series.

147
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Lemma 12.1. Let f € My (T"). Then f is parabolic if and only if
|f(z +iy)| < Cy~* (12.3)
for some constant C' independent of x.

Proof. Let ¢(x + iy) = |f(z + iy)|y*. It is immediately seen that this function is I'-
invariant. Let a be a representative of a cusp with respect to I'. Choose A € I'(1) such
that A - o = co. Then f|, A = ®(e2™7/") for some function ® holomorphic in a domain
Re 7 > c. We also have ¢(A - (z + iy)) = |®(e2™(==¥)/")|yk Assume f vanishes at
. Then & = 2™(@=v)/" P, where limy 00 Po # 0. Thus limy_,00 ¢(A - (z +iy)) =
limy, o0 e~2™yk = 0. This implies that the function ¢(z + iy) converges to zero when
T = x+1y converges to a cusp. Hence it is a continuous function on a compact topological
space H*/T. It must be bounded. Conversely, if the inequality (12.3) holds, then ¢(z+iy)
must be bounded and hence ® must be vanishing at 0. U

Corollary 12.1. Let f € My(T')° and a,, be the coefficient at e2min/h in jts Fourier
expansion at co. Then

|an| = O(n®).
In particular, Z¢(s) converges for Re s > k + 1.

Proof. Let ¢ = e2™(@+w)/h_Fix 4 and let x vary from 0 to h. Then ¢ moves along the
circle C(y) of radius e~27¥/" with center at 0. By Cauchy’s residue formula

1

an = -
2T

1 [h
| s g =g [ pe s ine s
) hJo
By Lemma 12.1, | f(z + iy)| < Cy~* for some constant C. We have
Lot k h
anl < [ 1@t i)lla] "o < Oy,
0

Taking y = 1/n, we get |a,| < Mn*. O

12.2  We shall now find a functional equation for the Dirichlet series Z(s).

Lemma 12.2. Let f € M, (') and Fy = ( fﬁ —1/0 VN ) Assume that T’ = Fy' T Fiy

is a subgroup of finite index in SL(2,Z). Then
W (f) == flFn = f(=1/NT)N~F772 € My (I).

Moreover; if f € My (T)°, then Wi (f) € M (T")°.
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Proof. Forany A € T” we have FiyA = BFy for some B € I'. Hence
WN(HkA = (fleFN) kA = fleFNA =

fleBFn = (f|sB)|xFn = fleFn = WN(f).

We leave the proof of the last assertion to the reader. O
Example 12.1. Let f € My(T'o(n)). Assume that N |n. Then
W (f) = f(=1/NT)N~F772F € M. (To(N)).

To see this we use that

(e ) (2 ) (e %) (e 1) enan
(12.4)

The same equality shows that
f e My(T(n)) = Wn(f) € Mix(I'(n/N) N To(nN)).

Theorem 12.1. (Erich Hecke) Let f € My(T)° and let g = Wy(f). Assume that
Fy~Y-T - Fy is a subgroup of finite index in SL(2,7). Let h be the index of the cusp
oo of I and h' be the same for I". The Dirichlet series Z¢(s) can be extended to a
holomorphic function on the whole complex plane. Setting

R(s, f) = N*(2m) 7T (s) Zs(s),
we have the functional equation
B R(s, ) = (=)' R(2k - s;9),
Here I'(s) is the Gamma-function.

Proof. We shall use the Mellin transform which carries a function ¢(y) defined on the
positive ray of real numbers, and bounded at 0 and oo, to a holomorphic function M ¢(s)
defined by M ¢ = F', where

F(s) = /Ooo o(y)y*'dy.

It is inverted by

y+ioco
P(y) = 1/ F(s)y ®ds, y>0.
y

—100
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Take ¢(y) = f(iy) andlet f = S°°° | a,,e?™"7/h be its Fourier expansion at co. We have

o 9]
_ Z an/6—27rny/hys—1dy _
n=1 0

> an / e I (2D () 24 5).
n=1

(2mn)*

Here we have used the integral formula for the Gamma-function:

I(s)= [ e 't Ldt. (12.5)

We leave to the reader to justify the possibility of the term-by-term integration of the
infinite series (we have to use Lemma 12.2). Now let us do the same for the function
g=Wn(f) € Mp(T")°, where I" = Fx~'T'Fy. We have

A
- /0 Fliy)y*dy / Fliy)y®dy + / Fliy)y*dy,
0

where the first summand converges for Re s > k + 1 and the second one converges
everywhere. The Fricke transformation transforms f(iy) to f(i/Ny) = N*(iy)*g(iy).
So changing the variable y to 1/Ny we obtain

A co o
/f(iy)ys—ldy = /f i/Ny)N—* v ldy = (_1)ka—s /g(iy)ygk_l_sdy.
0 A )
(12.6)
This converges for all s € C. Similarly,

A

/f iy)y*tdy = (—D’“Nk_s/g(iy)y%‘l_sdy-
A

0

This converges for Re s > k + 1. This shows that each summand in (12.6) can be
holomorphically extended to the whole complex plane. After summing up we get

Mo(s) = (h/2m)°T(s)Zy(s) = (=1)*N*"*Mg(iy)(2k — 5) =

(=1)*N*=5(0' /2m) 5T (2k — 5) Z,(2k — s).
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Thus if we set R(s, f) = N*/2(27)~°T'(s) Z;(s) we obtain
h*R(s, f) = (=1)*W'**“*R(2k — s, g)
forRe s > k + 1. O

It follows from Example 1 that the Fricke transformation Fy defines a linear operator
Wy on the space My(T'g(NN)) . It satisfies

Wi =1.
In fact we have
WR(f) = W (N5 7720 f(—1/N7)) = NTE 726N TH(=1/NT) 72 f (1) = f(7).
Thus we can decompose M, (I'g(N)) into the direct sum of two eigensubspaces
M (To(N)) = Mp(To(N))4 & Mr(To(N))-

with eigenvalue +1 or —1. Similarly, we see that Wy acts on the space My (I'(N)) and
we can decompose it in the direct sum of two eigensubspaces:

Mi(T(N)) = My(D(V))4 & My(D(N))-_.
Corollary 12.2. Let f € My(To(N))e, where € = +1. Then
R(s; f) = (=1)"eR(2k — ; f).
Corollary 12.3. Let f € My(I'(N)),, where e = £1. Then
R(s; f) = (=1)"N*"%¢R(2k — s; f).
12.3 If f € Mg(T) is not a parabolic modular form we cannot, in general, attach the
Dirichlet series to it. However, if we assume that f admits a Fourier expansion at co with

coefficients satifying |a,| < n® we can still do it and obtain a holomorphic function Z¢(s)
defined for Re s > c. The next theorem generalizes the previous theorem to this case.

Theorem 12.2. Let f € M(T) and g = Wy (f) € My(T") where T’ = F5' - T - Fiy is
a subgroup of finite index in SL(2,7Z). Let

oo oo
; . ’
f= § :aneQTrzn/h’ g= § :bn€27rzn/h

be the Fourier expansions at f and g at co. Assume that |ay|,|bn,] < O(n€). Let
R(f;s) == N*/2(2n)~°T(s)Z(s). Then Z;(s) is holomorphic for Re s > ¢ + 1 and
R(f;s) + ags™ + (=1)*bg(2k — s)~1 admits a holomorphic extension to the whole
complex plane. Moreover,

th(f; s) = (_1)kh,2k_sR(f|kFN; 2k — s).
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Remark 12.1. Tt is known that the Gamma-function I'(s) is meromorphic and has a simple
pole at s = 0. Thus, in Theorem 12.2, Z;(s) admits a meromorphic extension to the
complex plane with single pole at 2k.

Example 12.2. Take f(7) = Eoy(7). Then
2(2mi) % &
B (1) = 2¢(2k) + (7), > oa-1(n)g",

where

It is easy to see that

for some positive constant A. Thus Z¢(s) is defined and is convergent for Re s > 2k.
Since

Z ook—1(n)n"° = Z k=L (1m) = =
n=1 m,l=1
> mT R = ((5)¢(s — 2k + 1),
m,l=1
we have ok
Zp,,(s) = (22(]{2:711)1)!((5)4“(5 —2k+1). (12.7)

Recall that Eoy(7) € My (I'(1) = My(T'o(1)). Applying Theorem 12.2, we obtain

ok_2s L (2k — 5)

C(s)C(s—2k+1) =(2nm) ()

C(2k — $)(1— 9).
Of course it follows also from the known functional equation for the Riemann zeta func-
tion

s s—=1_ . 1—s

7T_§F(§)C(S)=7r 2 T(——)C =),

Example 12.3. Take f(7) = ©(0; 7)%. We know that these functions are modular forms
of weight k = 2t for I'(2). We have

O =Y csu(m)e™,
n=0

where
cge(n) = #{(r1,...,ret) €Z8 :m=r2 4+ .. 473}
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It is clear that we can bound cg;(n) by the number of integer points inside of the cube
[/, —/n]B. This easily gives

cge(n) < Cn* = Cn?.

Therefore, the Z;(s) is convergent for Re s > 2k + 1. We have

1 1
Zf(T): ns = Z (%++ 2)52 Z Q()\)s’

m=1 (71,-,78¢ ) EZBE\ {0} " "8t AeA\{0}

where Q = 27 + ... + 22, and A = Z% C R®. More generally, for any positive definite
quadratic form @ : R™ — R and a lattice A in R™ we can define the Epstein zeta function

- X aw

AEA\{0}

Although f(7) is not a modular form for I'(1) it satisfies f(—1/7) = f(7)7*. Applying
Corollary 2 to Theorem 1 with N = 2 we get

4ts

2528/2(27r)—sr(3)zf( ) = 2475975 (2m) TS (4t — s)Zy(4t — s)

which gives

7T4t—2s F(S) ( )
s).

22— D4t —s) 7

Zi(4t —s) =

12.4 Now let us look at the Dirichlet series associated to cuspidal forms which are
simultaneous eigenfunctions of Hecke operators.

Theorem 12.3. Let f be a normalized cuspidal modular form of weight k with respect
to T'(1) and Y cnq™ be its Fourier expansion. Assume f is normalized in the sense that
c1 = 1. Assume that f is an eigenfunction for all the Hecke operators. Then the associated
Dirichlet series Z(s) admits the following infinite product expansion:

1
Zf<3>: H (1= cpp- 5 4 p2h—Tp=2s)"

p prime

Proof. We know from Corollary 11.3 that the function n — ¢, is a multiplicative func-
tion. This implies that for any finite set .S of prime numbers

cn 1
Z ns H Z rp ") = H (1= cpp* + p2h-1p25)’

neN(S) T pES m=0 pes p
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where N(.S) denotes the set of natural numbers whose prime decomposition involves only
numbers from S. Here we use Corollary 11.3 which gives us that

o
(1= + 0 1 2) (D emp™™) = 1.
m=0

When S grows, the left-hand side tends to Z¢(s). This implies that the infinite products
converges to Z(s). O

Example 12.4. Take f = A to obtain

B > T(n) B 1
ZA_; ns 1] (1 —7(p)p=s +p'ip=2s)’

p prime

where 7(n) is the Ramanujan function. Applying Corollary 2 with N = 1, we get also
the functional equation for Za (s):

ZA(12 — s) = (2m)'2 728

Remark 12.2. Let

Oy, =1—c,T+p*'T% = (1-q,T)(1 - a,T).

We know that o, and oz; are algebraic integers. The Petersson conjecture suggested that

a; = @y, or, equivalently,
oy = lap| = p*72,
or
epl < 272,
or

len| < nk_%ao(n) foralln > 1.

This was proven by P. Deligne as a special case of his proof of Weil’s conjectures about
the zeta function of algebraic varieties. In particular, when k = 6 we get the Ramanujan’s
Conjecture:

I7(p)| < 2p*/2.
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12.5 In this section we generalize some of the previous results to the case when I'(1)
is replaced with I'; (V). We will be rather sketchy and refer for the details to [Seminar].
We use the definition of the corresponding Hecke ring H (', A) from Exercise 11.11. Let
us denote it by T. It is generated by the elements 7'(p) for all prime p and elements
T (p, p) for all primes p not dividing N. Let T() denote the subring of T generated by
T'(p) and T'(p, p), where p does not divide N. One can extend the proof of Theorem 11.2
to show that T(V) acts in the space M (T';(N))? by Hermitian operators (with respect to
the Petersson inner product). This is not true for the ring T ;. So a cuspidal form could
be a simulateneous eigenfunction for all the Hecke operators coming from T(™) but not
an eigenfunction for some Hecke operator from T .

It is easy to see that I'; (/V) is a normal subgroup of I'g(/N) with the quotient group
isomorphic to (Z/NZ)*. Thue latter group acts naturally on the algebra of modular forms
with respect to I'g(V), and for each & > 0 we have a direct sum decomposition into the
eigensubspaces corresponding to Dirichlet characters y : (Z/NZ)* — C*:

Mi(T1(N)) = @XMk(Fl(N)X, (12.8)
Let

My (Co(N); x) = {f € My(To(N)) : fleg = x'(9)f, Vg € To(N)},

where X’ is the composition of y with the homomorphism I'o(N) — (Z/NZ)* which
sends a matrix to the residue modulo N of its first coefficient. We will also need the
notation
M (To(N); x)° = My(To(N); x) N My (To(N))°.
We have
Mp(T1(N)y = My(To(N); X)-

Clearly the subspace My (I'o(N) C My (I'1 (V) corresponds to the trivial character.

More explicitly, the action of (Z/NZ)* on My (I'1(N)) is defined as follows. For
any n € (Z/NZ)*, let ay, be any element of SL(2,Z) such that a, = (J ngl ) modulo
N. Then the action of n on M (I'1(NN) is given by the formula

<n>p: f = fleon. (12.9)

Notice that the Hecke operator T'(n, n) acts on My (I'1(N)) as n*=2 < n >.
We have the following analogue of Theorem 11.2:

Theorem 12.4. Let T(n) € TN with (n, N) = 1. Forany f,g € My(To(N); x)°,
(T(n)f,9) = x(n){f,T(n)g),

where the inner product is the Petersson inner product. In other words, the adjoint of
T(n)is T,o <nmod N >.
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It is easy to see that the operators T'(m), (m, N) = 1 and < n > form a set of com-
muting normal operators on M, (I'; (IV)). This allows to decompose each M (I'o(N); x)
into an orthogonal sum of T(™)-eigensubspaces.

The condition (n, N) = 1 is important. The operators 7'(n) for which n does not
satisfy this condition are not normal operators. So, it becomes problematic to find a
modular form which is a simultaneous eigenfunction for all the Hecke operators.

Another unfortunate thing is that the operator Wy does not commute with all the
Hecke operators, so that we cannot combine Theorem 12.3 and Corollary 12.3 to ob-
tain Dirichlet series Z¢(s) with the infinite product as in Theorem 12.3 which satisfy the
functional equation as in Corollary 12.3.

We have the following weaker assertion:

Proposition 12.1. Let Wy be the operator on M (T'1(N))° corresponding to the Fricke
transformation Fy defined by f — f|i ( ][\), ’01 ) Let T'(n),  denote the restriction of the
Hecke operator T'(n), (n, N) = 1 to the subspace My (I'o(N); x). Then

T(n)kx o Wn = x(m)Wy o T(n)k.x,
where X denotes the complex conjugate character.
Proof. We refer for the proof to [Shimura]. O

However, one can still find common eigenvalues in M,(T'y(N))? for all the Hecke
operators if we restrict these operators to a certain subspace. Let us explain this.
Let d, M be positive integers such that d M| N. There exists an injective linear map

N+ My(T1(M))? = My (T (M))°. (12.10)

It is defined by sending f(7) to s~ f(dr). One checks that it is a homomorphism
of T(")-modules. Let My (T'1(M))?%,; be the subspace of M, (T'1(M))° spanned by
the images of the maps 14/ . Let My (T'1(M))9.,, be the orthogonal complement of
M (T1(M))?,, with respect to the Petersson inner product. In fact, we have an orthogo-

nal decompositions
My (T1(M))oa = &M (To(M); X)gras
where M. (To(M); x)%; = My (To(M); x)° N My(To(M))Y,,, as well as
Mi(To(M); x)" = My(To(M); x)gra © Mi(To(M): X)pew-
The next result, due to Atkin and Lehler, is called the Multiplicity One Theorem.

Theorem 12.5. Let f € My (T'1(N))2,,,. Suppose that f is an eingefunction for all the

new-

Hecke operators from T(ND ), for some D > 0. If g is another such form with the same
eiegenvalues, then g is a scalar multiple of f.
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Corollary 12.4. Let f € My(I'1(N))Y.... The following assertions are equivalent:

new*

(i) f is an eigenfunction for T(ND) for some D > 0;
(ii) f is an eigenfunction for T™);
(iii) f is an eigenfunction for T .

Proof. Tt follows from the theorem that each T(VP)-eigensubspace in My,(I'1(N))2,,,
is one-dimensional, and hence is T y-invariant because all the Hecke operators commute
(Exercise 11.11 (vi)). This shows that (i) implies (iii). The rest of implications are obvi-

ous. O

Remark 12.3. Let f = > a,q" be the Fourier expansion of a f € M(T'1(N))2,,,
satisfying one of the equivalent conditions of the previous corollary. One can show that
a1 # 0 so we can alaways normalize f to assume a1 = 1. Such a modular form is called

a newform.

So we can extend Theorem 11.2 to newforms. To see when newforms exist we ob-
serve that the maps 247 n send M (Do(M);x)° to My(To(N); x')°, where X is the
composition of x : (Z/NZ) — C* with the natural surjection (Z/NZ) — (Z/MZ). So,
if x is a primitive character of (Z/NZ), we have

M (To(M); x)? = Mi(To(M); X)ew-

We can apply Corollary 12.3 to get a functional equation for newforms. Notice that
the space M (I'1(N))9,,, is invariant with respect to the operator Wy . This follows from

the Wy-invariance of the space M, (I'1 (N)),,. The latter is easy to check. We have, for
any f € My (T1(M))° such that N = dM,

Want Ganrn (F(7)) = War(dz " f(dr)) =
(dM) Rz (1) f(—1/M7) = d Frg e n(War(f)). (12.11)

This checks the claim.
It is also easy to see that

WN(Mk(FO(N)v X)?Lew) = Mk(FO(N)ﬂ X)?Lew'

In particular, we can decompose M (I'o(N))Y,,, into a direct sum of eigensubspaces of

WNZ
Mi(TCo(N))pew = Mi(Lo(N)pew  ® Mr(T1(N)fpew, -

An element of each space will satisfy the functional equation from Corollary 12.3 and
also will admit the infinite product decomposition from Theorem 12.3.
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Exercises

12.1 Show that the Mellin transform of the function f(z) = ¥(0;ix) — 1 is equal to
2r75¢(2s)T(s).

12.2 Show that the Dirichlet series > - ; a,n~®° can be expressed as the Laplace trans-
form [ f(t)e~"'dt for an appropriate function f(t).

12.3 Find the functional equation for Z; where f(7) = A(117)/A(7)'/12 (see Exercise
10.6).

12.4 Show that Ey(7) — pE2(pT) belongs to M1 (I'g(p)), where p is prime.

12.5 Prove Theorem 12.2.

12.6 Apply the proof of Theorem 1 to the function f(7) = ¥yo(0;7) to obtain the func-
tional equation for the Riemann zeta function.

12.7 Prove that for any f = " anq™ € My (I'(1)) one has |a,| < O(n?*~1).
12.8 Show that the discriminant modular form A € Mg(I') € Mg(Ip(2V)) is an eigen-
function for all Hecke operators from T"; but not for all Hecke operators from T ' (unless
N =1).
12.9 Describe the decomposition of M1 (I'1(33))? into the old and new subspaces by
verifying assertions (i)-(iii) below.

(i) dim M;(I'1(33))° = 21,dim M1 (T'1(11))° = 1, and M;(I'1(3))° = 0;

(i) dim M;(I'1(33))%, =2;

(iii) dim M;(T0(33);%)%,,, = 2 for each nontrivial character x.

new

(iv) Show that each M1 (T'o(33; x))2,,, is spanned by T33-eigenfunctions.



Lecture 13

The Shimura-Tanyama-Weil
Conjecture

13.1 In the previous lecture we have attached a Dirichlet series to a cuspidal modular
form with respect to the group I'g(V). In this lecture we will attach a Dirichlet series to
an elliptic curve over Q. The conjecture from the title of the lecture tells that the latter
Dirichlet series always coincides with the former one for an appropriate modular form.

Let E be an elliptic curve. We assume that it can be given by homogeneous equations
with coefficients in Q and the set of points of F(Q) with rational projective coordinates
is not empty. We say in this case that F is an elliptic curve over QQ. One can show that the
set £(Q) is independent of the choice of a system of algebraic equations over Q defining
E.

Lemma 13.1. Let E be an elliptic curve over Q. Then E is isomorphic to a plane cubic

curve with equation
Y2Z - X3 — oXZ% — 323 =0 (13.1)

with integer coefficients ca, 3.

Proof. We use the Riemann-Roch Theorem from Lecture 8. Let D = ) np P be a divisor
which is a linear combination of points from £(Q). Let L(D)g denote the Q-subspace
of L(D) which consists of rational functions on E with coefficients in Q. Once can show
that dimg L(D)g = dim¢ L(D). Fix a point € E(Q) and apply the Riemann-Roch
Theorem to obtain that dimg L(n@Q) = n. Let x be a non-constant function in L(2Q)
and let y € L(3Q) which is not a linear combination of 1 and x. Since the functions
1, 2,22 2%, y,y?, 2y belong to the space L(6(Q) and the latter is of dimension 6 over Q,
we obtain a linear relation

ao + a1z + asx® + azz® + boy + brxy + bey® =0

159
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with coefficients in Q. Replacing x with ax+0b and y with cy+dx+e for some appropriate
coefficients a, b, ¢, d, e € () we may assume that the linear relation has the form

by + box + 2° — y* =0,

where by, by € Q (see Example 6.4). Multiplying = by a2 and 3 by a3 for an appro-
priate integer o, we can change by to by and b3 to bza®. Choosing an appropriate «
this makes we can assume that the coeffients co = boa* and ¢35 = b3ab to be integers.
Using the argument from the second half of the proof of Corollary 8.5 we obtain that the
functions z, y define an isomorphism from £ \ {Q} — C\ {oo}, where C is the plane
cubic given by the equation (13.1), and oo is its point (X,Y, Z) = (0, 1,0). This can be
extended to an isomorphism £ = C. O

Observe that F can be given in many ways by an equation of the form (13.1). We can
make it almost unique if we require some additional property. Let

A = 4¢3 + 27c3 (13.2)

be the discriminant of the polynomial t3 + ¢yt + c3. We call it the discriminant of the
equation (13.1). For every prime p let v/,(A) be the highest power of p which divides A.
We say that the equation (13.1) is a minimal Weierstrass equation of E if for any other
equation of the form (13.1) defining E with discriminat A’ we have, for any prime p,

vp(A) < wp(A)

One can prove that a minimal Weierstrass equationt always exists and is unique (see [Sil-
verman]).

Definition. Let F be an elliptic curve over Q and let (13.1) be its minimal Weierstrass
equation with discriminant A. Let p be a prime number. We say

(a) FE has good reduction (resp. bad reduction) modulo p if p JA (resp. p|A),
(b) E has multiplicative reduction modulo p if p|A butp [ cacs,
(c) E has an additive reduction modulo p if p|cy and p|cs.

Let us explain the terminology. Since the coefficients ¢y and c3 are integers we can
reduce them modulo p to obtain an algebraic curve over the finite field IF,,. This curve is a
singular curve (i.e. the formal partial derivatives of the polynomial defining the equation
has a common zero over the algebraic closure F, of F,) if and only if p|A. If p|cs and
p|cs the equation over F,, becomes Y2Z — X3 = 0. Its singular point is (0, 1, 0), and its
nonsingular solutions (z,y, 1) over F,, are of the form (¢2,¢3),¢ € F,. The addition law
in F,, defines the addition law on the set of nonsingular solutions equipping this set with
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the structure of an abelian group isomorphic to the additive group of F,,. Finally, if E has
multiplicative reduction modulo p, then after reducing the coefficients co and ¢z modulo
p we obtain an algebraic curve over I}, which is isomorphic over F), to the curve

Y2Z - X)X —aZ)=0 (13.3)

with o # 0. The point (0,0, 1) is its singular point. Any nonsingular solution over IF‘p
has the form (to(t] + atd), t1(t3 + atd), to), where (to,t1) € P1(F,) and ¢ + at3 # 0.
The linear transformation ug = tg + /o, u1 = to — \/« allows one to identify the set of
nonsingular solutions with the subset P*(F,) \ {0, 00} = IF‘;. So this set carries a natural
structure of an abelian group isomorphic to the multiplicative group of the field IF,,.

13.2 Now we are ready to define the L-function L(E, s) of an elliptic curve over Q. It
is given as an infinite product

L(E,s)= ][] Ly(E.s), (13.4)
p prime

where

(a) if E has a good reduction modulo p

1
1 —a(p)p=* +p'=2’

Ly(E,s)=

where
a(p) =p+1—#E(F),
and E(F,) = {(z,y,2) € P*(Fp) : 4z = 2° + cou2® + c32°}.
(b) if E has multiplicative reduction modulo p

1

L,(E,s) = ————,
p(E8) = 77 a(p)p=*
where a(p) = 1if a in (13.3) belongs to F), and A(p) = —1 otherwise.

(c) if E has additive reduction modulo p
Ly(s)=1.
The next lemma shows that L(F), s) is a Dirichlet series.

Lemma 13.2. The infinite product [],(1 — cpp®) L with |c,| < p® for some real
defines an absolutely convergent Dirichlet series for Re s > ¢ + 1.
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Proof. Let ¢, be a multiplicative complex-valued function on N with the value at a prime
p equal to c¢,. We have a formal identity

> 1
2~

ARy

n=1

Since |cp| < p®, we have |¢,| < n® for all n. We know from Lecture 12 that this implies
that the Dirichlet series is absolutely convergent for Re s > ¢ + 1. O

Corollary 13.1. The infinite product L(FE, s) converges for Re s > 2 and is given there
by an absolutely convergent Dirichlet series.

Proof. Let a,, be the coefficient from the definition of L(E, s). If p is a prime defining a
bad reduction of E, then |a,| < 1. If p defines a good reduction, then E(IF,) consists of
the infinity point and a points (z,y, 1), where z,y € F, and y? = 23 + cox + c3. This
gives #E(F,) < 2p+ 1 and hence |a,| = |#E(F,) —p—1| < p. We can write the factor
L,(E,s) for “good” primes in the form

1
(L —7rpp=*)(1 = rpp=)’

L,(E,s)=
where
1—apX +pX?=(1-r,X)(1- 7,X).

The roots rp, ], are equal to §(ay, + | /a2 — 4p) and clearly satisfy |r,| < |a,| < p. Thus

we can write down the infinite product L(FE, s) as the product L;(s)Ls(s), where each
factor satisfies the assumption of the previous lemma with ¢ = 1. The assertion follows
from the lemma. U

In fact, we can do better and prove the convergence of the L-series for Re s > % For
this we invoke the following

Theorem 13.1. (H.Hasse) In the above notation
lp+1—#E(F,)| <2yp.

Proof. We refer to [Knapp] for an elementary proof of this theorem due to Yu. Manin.
O
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13.3 Now we are familiar with two Dirichlet functions both absolutely convergent for
Re s > 2. One is the Dirichlet series Z¢(s) associated to a cusp form f of weight 1 with
respect to I'g(IV') and L(E, s). The next conjecture relates these two functions:

Conjecture. (Hasse-Weil) Let E be an elliptic curve over Q. Define the conductor of E
to be
N =]»".
P

where p runs in the set of primes for which E has a bad reduction, and a, = 1 if the
reduction is of multiplicative type, and A, = 2 otherwise. There exists a unique f €
My (To(N))° such that

Zs(s) = L(E,s),Re s > 2.

Moreover, f is an eigenvector of all the Hecke operators and also an eigenvector for the
operator Wy.

Notice that according to Remark 12.3, the form f must be a newform. Applying
Corollary 12.2, we obtain the following:

Corollary 13.2. Assume the above conjecture is true. Then L(E, s) admits a holomorphic
extension to the entire complex plane and satisfies the following functional equation:

Nz2(2m)°I(s)L(E, s) = :I:NQ%S(QW)*JFQF(Q —s)L(E,2 —s).

In fact, the previous conjecture was motivated by this assertion. It turns out that the
latter corollary is almost equivalent to the Hasse-Weil conjecture. One observes first that
Z(s) satisfies the following additional property. Let

x:2Z—C

be a Dirichlet character modulo m. Recall that it means that x(n) = 0 if (n, m) # 1 and
the induced function on (Z/mZ)* is a homomorphism to C*. We say that x is a primitive
character if x is not a Dirichlet character modulo any proper divisor of m. Let us modify
the zeta function Z¢(s) = ) 2 associated to a modular form by setting

o~ X(n)a
Zy(six) =D =
n=1
There is an analog of Corollary 12.2:

Theorem 13.2. Let f € My (T'o(N))? satifying Wy f = ef. For any primitive Dirichlet
character x modulo m, where (m, N) = 1, set

Ry(s;x) = (m*N)*(2m) =T (s) Z (5 X)-
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Then
Ry(s;x) = e(=1)Fm ™ G(x)*x(N) Ry (2k — s; X).

Here  denotes the conjugate Dirichlet character defined by x(n) = x(n) and G(m, x)
is the Gauss sum defined by

m—1

Gx) = ™ mx(s).

s=0

Proof. Let
My(To(N), ) = £ € Mi(To(N)) : fli () = x(@)f}

Clearly, M (To(N), x) € Mg(T'1(N)), where
I'(N) = {(: ?) €Tg(N):a=6=1 modulo N}

We can apply Theorem 12.1 to any cusp form f € My(I'o(N), x). Now we use the
following “shift trick”:

F=Y cng” € MR(To(N);9) = fy = > x(n)enq" € My(To(M); x*9),

n=1 n=1

where v is a primitive Dirichlet character modulo a divisor s of NV,  is a primitive charac-
ter modulo some number m, and M is the least common multiple of N, m?, and ms. The
proof of this fact is a straightforward check using some known properties of the Gauss
sums. Taking 1) = 1, we obtain that

Ry(s;x) = Ry(s),

where g € M(I'(Nm?); x?). Now we apply Theorem 12.1 to Ry(s), previously checking
that

Wime [y = ex(N)G(x)*m ™! f5. (13.5)

O

Theorem 13.3. (Weil’s Converse Theorem) Let L(s) = Y2 | c,n~* be a Dirichlet series

n=1

with |c,| = O(n®) for some a > 0. Let N, k be positive integers and ¢ = +1. Suppose
(i) the function R(s) = N*/?(2r)~T'(s)L(s) extends to a holomorphic function on

the entire complex plane, is bounded in every vertical strip, and satisfies the func-
tional equation

R(s) = e(~1)*R(2k — s);
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(ii) for every integer m coprime with N, and every primitive Dirichlet character x
modulo m, set

Ly(s) = cax(n)n™*
n=1
and assume that the function
Ry(s) = (m*N)*/?(2m) °T'(s) Ly (s)

extends holomorphically to the entire complex plane, is bounded in every vertical
strip, and satisfies

Ry(s) = e(=1)" m™ G(x)*x(IN) Ry (2k — s);

(iii) the series L(s) converges absolutely at s = 2k — § for some § > 0.

Then there exists f € My(To(N))° such that

L(s) = Zy(s).

We are skipping the proof referring to [Ogg] or [Miyake].

13.4 Let us check the Hasse-Weil conjecture in the case when E = X((N). Using the
formula for the genus of a modular curve from Lecture 8, it is not difficult to see that N
must belong to the set

{11,14,15,17,19, 20,21, 24, 32, 36, 49}. (13.6)

We shall use the theory of Hecke operators for I' = I'g(V). In Lecture 11 we considered
only the case I' = I'(1), so we have to rely on Exercises 11.7-11.9 instead. Let 0, =
(g (1)), where p is a prime number. According to Exercise 11.7, the matrix o, defines a
correspondence on H /I'g(/N) which we denote by 7'(p). We can use the same matrix to
define a Hecke operator on the space of modular forms My (T'g(V)) (see Exercise 11.9).
The following is a simple description of the Hecke correspondences 7'(p) in the case
(p, N) = 1. We know that each point of #/I'o(/N) can be interpreted as the isomorphism
class of a pair (E, H), where E is an elliptic curve and H is its subgroup of order N.
Equivalently, the pair (E, H) can be viewed as the pair of numbers (j(E), j(E’)), where
E'=FE/H. Let Sp, S1, ..., S, be the set of subgroups of order p in ,E = (Z/pZ)?. We
have

T()GE), () = {G(E/Si). §(E'/S:))i = 0,...,p}, (13.7)

Assume p is prime of a good reduction for Xo(NV). Let X(p) denote the corresponding
reduction. This is an elliptic curve (= a curve of genus 1) defined over the field IF,. The
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reduction of the affine part H/I'o(N) of X (V) modulo p is an affine curve Vy(IV), over
[F,,. Its points over a field K of characteristic p correspond to isomorphism classes of
pairs (E, H) as above defined over K. There is one important difference between elliptic
curves over a field of characteristic 0 and over a field of characteristic p > 0. In the former
case the group of p-torsion points consists of p? elements. In the latter case, it consists of
p elements or it is trivial (see Exercise 13.2). So, the degree of the correspondence T (p)
obtained from 7'(p) by reduction modulo p must be equal to one.

In characteristic p > 0 there are regular maps of algebraic varieties which are bijective
on the set of point but nevertheless are not isomorphisms. An example of such a map is
the Frobenius map. It is induced by the map of projective space defined by the formula:

Fy: (xo,...,my) = (2h,...,20).
Let X be a projective algebraic subvariety in P” defined by equations with coefficients in
a field K of characteristic p > 0. Let X(P) be the variety whose equations are obtained
from those of X when its coefficients are raised in p-th power. Then F), restricts to a
regular map F, : X — X (®) of algebraic varieties. In the special case when K = [,
we have X = X®) 5o F'is a map of X to itself. Although it is the identity on the set
X (F,) of points with coordinates in F,, it is not the identity on the set X (F,) of points
with coordinates in the algebraic closure of [F,, When X = F is an elliptic curve over

I, the map F' is a homomorphism of groups E(F),) — E(F;). One can show that the

endomorphism [p] : z — P of the group E(IF,) factores through F),. Let [p] = F} o F},.
We have the following:

Theorem 13.4. (Eichler-Shimura) Let p be a prime of good reduction for X (N). Then
we have the following equality in the ring Corr(Vo(N),(F})):

T(p) = F, + F}.

Proof. (following [Milne]). We will only sketch it. Let us show that the two corre-
spondences agree on a certain open subset of points of Vj(/N). Consider a point P €
Vo(N)(F,) and lift it to a point P’ € Xo(N)(Q), where Q is the algebraic closure of
Q. The point P’ can be represented as the isomorphism class of a pair (E, H), where
E is an elliptic curve H is a cyclic subgroup of order N of E(Q). Equivalently, we can
view this point as an isogeny E — E’ with kernel H. The reduction modulo p defines a
homomorphism , £(Q) — ,F(F,) whose kernel is a cyclic group Ay of order p. Here we
assume that F is an ordinary elliptic curve, i.e. pE(IFp) is of order p. Let Ay, ..., A, be
the subgroups of order p of E. Then each A;,7 # 0 is mapped to the subgroup of order p
in E. Let E’i denote the reduction modulo p of the elliptic curve E; = E/A;. Let El’ be
the similar notation for the curve E!. The multiplication map = — px of F factors as

E—E —E.



167

When ¢ = 0, the first map is purely inseparable of degree p, and the second map is
separable of degree p. When ¢ # 0 the first map is separable and the second one is
inseparable, both are of degree p. We have, in both cases,

EW ~Ey  EW®~E >0,

One can show that ~ ~ -
(EW E'®)y = F,(E,E).

Thus F,(P) = (Eo, E}y and F,(E;, E!) = P,i > 0. This implies that T(p) = F, +
F!. O
p

Let E be an elliptic curve defined over a field K of characteristic p > 0. One can show
that for any prime [ # p the group ;» E(K) of points of order dividing [ defined over the
algebraic closure K of K is is isomorphic to (Z/I"Z)?. Of course we know this fact when
K = C. Since for any m > n we have a canonical homomorphism ;n» E(K) — 1n E(K)
defined by multiplication by {"*~". Passing to the projective limit we obtain a rank 2 free
modulle 7;(E) over the ring of [-adic numbers Z;. It is called the Tate module of E.

Let o be an endomorphism « of &/ (= a map of algebraic varieties which induces
a homomorphism of groups F(K) — FE(K)). It defines a homomorphism of groups
mE(K) — nE(K). Passing to the projective limit we obtain an endomomorphism of
the Tate module

pi(@) : Ty(E) = Ti(E).

It is called the [-adic representation of c.

We shall apply this to the case when K = [, and o = F}, is the Frobenius endomor-
phism.
Theorem 13.5. Let ap, = p + 1 — #E(F,) and rp, 1, are the roots of the polynomial
p — a,T + T? Then rp, 'r;, are algebraic integers, and considered as elements of the
algebraic closure of the field Q; of l-adic numbers they coincide with the eigenvalues of
the l-adic representation of F,, on Tj(E).

Proof. We refer to the proof to [Silverman]. ]

Remark 13.1. One should compare this result with the well-known Lefschetz formula
in topology. If one interprets T;(E) as the first cohomology H' group of E, then the
Lefschetz formula says that for any map f the set of fixed points of f (i.e. points x
such that f(z) = z) is equal to the sum >_(—1)T(*| H?). In our situation f is equal
to the Frobenius map, and its fixed points are obviously the points z = (ag,...,ay)
satisfying ¥ = a;, or equivalently z € F(F,). We have Trace(f*|H") is equal to the
sum of eigenvalues of F), in T,(E). Also H° = H? = 7, and Trace(f*|H) = 1,
Trace(f*|H?) = p, the degree of the Frobenius map.
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Now everything is ready to verify the Hasse-Weil conjecture for elliptic modular curve
Xo(N). Consider the characteristic polynomial of p;(F},). It is equal to

P(T) =T? — a,T + det(p,(F)).

We know that det(p;(F})) = rpr,, is an algebraic integer, and by Hasse’s theorem |r;, +
rh| < p/2. This easily implies that r,r/, = p. Thus

P(t) =T? — a,T + p.

Since F}, o F}, = p, we see that p;(F},) + pi(F}) acts on T;(E) as the multiplication
by a,. This implies that F}, + F), is equal to a; as an element of Corr(Vo(N),). By
Eichler-Shimura’s Theorem, the Hecke correspondence T'(p) = a,. From this we obtain
that T'(p) = a, as a correspondence on X7 /I'o(/V). It follows from Corollary 8.4 that
dim M (T (N))? is one-dimensional. Let f be a non-zero parabolic form from this space
normalized in such a way that its Fourier expansion is of the form ¢+ . , ¢,,¢". Clearly,
f is an eigenfunction for all the Hecke operators 7'(n). By Lemma 11.3, T'(p) f = ¢, f.
Comparing with the above, we obtain ¢, = a,. Thus the infinite product expansion for
Z(s) coincides with the infinite product for L(Xo(NN),s), up to a finitely may factors
corresponding to prime p of bad reduction for X (V). Using Weil’s Convese Theorem it
is not hard to deduce from this that the Dirichlet series of f coincides with the L-series of
Xo(N).

13.4 Let E be an elliptic curve over Q and G = Gal(Q/ Q) be the Galois group of the
algebraic closure of Q. It acts naturally on the group of E(Q) of Q-points of E. This
action defines a linear representation of G in the Tate module of E:

pp1: G — GL(TI(E) © Q) = GL(2, Q).

Now for any prime number p the group G contains a distinguished element Frob,,, called
theFrobenius element. It is defined as follows. Let o, € Gal(Q,/Q,) be the pre-image of
the Frobenius automorphism of the residue field IF,,. Choose an embedding Q— @p and
define Frob, as the image of o, under the inclusion Gal(Q/Q) — Gal(Q,/Q,). Assume
FE has a good reduction modulo p and p # [. Then, one proves that

pe,(Frob,) = PE,Z(Fp)>
where E is the reduction of £ modulo p. Thus we have
det(1 — pp (Frob,)T) = det(1 — pp ;(Fp)T).
In particular, if L(s, E) = Z¢(s) for some modular form f € Mj(Io(N))?, then

det(1 — pg(Frob,)T) = p — a,T + T,
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where a,, are the Fourier coefficients of f. Here we assume that f is an eigenvector for
all the Hecke operators and a; = 1. We shall refer to such modular forms as normalized
eigenforms.

Now let f € My, (To(N), x)° be any cuspidal modular form with a Dirichlet character
which has the previous properties. Let K be an extension of Q generated by the Fourier
coefficients of f. We know that K is a finite extension. For any finite place A of K let K,
be the completion of K at . Deligne constructed a representation

pri: G — GL(2,K,)
such that for each prime p we have
pri((Frob,) = p — a,T + T2

This representation is irreducible and is uniquely defined. Conjugating by a matrix from
GL(2, K,) we may assume that the matrices defining this representation have coefficients
in the ring of integers O, of K. Reducing them modulo the maximal ideal, we obtain a
representation

pri: G — GL(2,F),

where F is a finite field.

Definition. Let IF be a finite field. A representation p : Gal(Q/Q) — GL(2,TF) is called
a modular representation if it arises from a normalized eigenform f € My (Tg(N), x)°
for some N, k, and .

Note the modular representation has the property that p(c) = —1, where c is the
complex conjugation automorphism of Q. Representations Gal(Q/Q) — GL(2,F) with
this property are called odd.

Conjecture. (J.-P. Serre) Any odd irreducible representation Gal(Q/Q) — GL(2,F)
is modular unless F' is of characteristic p < 3 and p is induced by a character of

Gal(Q/Q(v/—=1)) if p = 2 and by a character of Gal(Q/Q(v/=3)) if p = 3.

In fact, Serre gives a conjectural recipe for finding an appropriate (N, k,y). For
example, it predicts (IV, k, x) for representations arising by reduction modulo p from the
p-adic representations pg ,, associated to an elliptic curve £ over Q with whose reductions
are all either good or of multiplicative type (we say then that E has stable reductions).
Then N is equal to the product of all primes [ # p such that the discriminant A of F
has order at [ not divisible by p; k = p + 1 if 1,(Ag) is not divisible by p and equals 1
otherwise; y = 1.

Theorem 13.6. Serre’s conjecture implies Fermat’s Last Theorem.
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Proof. Let (a,b, c) be a non-trivial solution of z™ 4 y™ = z". It is known that without
loss of generality we may assume that n = p > 5 is prime and p does not divide a and b.
Also we may assume that ¢ = —1 (mod 4) and that b is even. Consider the elliptic curve
FE given by the Weierstrass equation

y? = x(x — aP)(z + bP).
It can be verified that E has semi-stable reductions and
Ap = —28(abc)??.

In particular p|v,(Ag). Consider the representation pg , and it reduction modulo p. It
can be checked that this representation is irreducible and odd. If Serre’s Conjecture is
true, then pg , is a modular representation and Serre’s recipe gives N = 2,k =1,y = 1.
However, M1 (T0(2))° = {0}. O

13.5 For the following we shall use the notion of the Jacobian variety of a compact
Riemann surface X. It is defined as a complex torus J(X) = C9/A, where g is equal to
the genus of X and A is the lattice in C? spanned by the vectors

Hz:(/ wi,...,/ wi), izl...,g
71 v

2g

for some basis wi,...,w, of the space of holomorphic differentials on X and a basis
Y1, -.-,72g of homology 1-cycles on X. Fixing a point pg € X we obtain a natural
holomorphic map i,, : X — J(X) defined by the formula:

D D
p_>(/ (U]_7...’/ wg) mOdUlOA.

Ppo Ppo

It is an isomorphism when g = 1. This map extends to a map from the group of divisors

Div(X) by the formula
ipo (Z npp) = Z Ty (D)

where the addition in J(X) is the addition in the factor group of the additive group of
C9. By Abel’s theorem this map defines an isomorphism from the group of diviors on X
modulo linear equivalence onto the group J(X).

Let Z be a finite holomorphic correspondence on X, i.e. Z is a subvariety of X x X
defining a finite correspondence on the set of points of X. As we saw in Lecture 11, Z
defines a homomorphism from Div(X) to itself. It is easy to check that it sends principal
diviors to principal divisors, and hence defines an endomorphism of the Jacobian variety
J(X'). We shall apply this to the case when X is a modular curve and a correspondence
is a Hecke correspondence on it.
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Although we defined the Jacobian variety as a complex torus, one can develope a
purely algebraic theory for J(X) valid for nonsingular projective curves X defined over
an arbitrary field K. In this theory J(X) is a projective algebraic variety whose set of
points J(X)(K’) over any extension K’ of K has a natural structure of an abelian group.
Also, for any point pg in X (K) there is a regular map i,, : X — J(X) defined over
the field K. It induces an isomorphism from the group of K -divisors on X modulo linear
equivalence onto the group of K -points of .J(X). There is an analogue of the Tate module
Ty(J(X)) for J(X) and of the [-adic representation of Gal(/K /K) in it.

13.6 We know that the Hasse-Weil conjecture is true for an elliptic curve of the form
Xo(N). Let E be an elliptic curve over Q, assume that, for some N, there exists a
nonconstant regular map defined over Q from Xy(N) to E. We say that F is a modular
elliptic curve or a Weil elliptic curve.

Theorem 13.7. Let E be a Weil curve. Then it satisfies the Hasse-Weil conjecture. Con-
versely, if E is an elliptic curve over Q satisfying the Hasse-Weil conjecture, then E is a
Weil elliptic curve.

Proof. We shall only sketch a proof. Suppose E satisfies the Hasse-Weil conjecture.
Then L(E,s) = Z; for some newform f € M;(To(M)))%,,. For any prime p not
dividing N, the characteristic polynomial of Frob,, coincide with respect to the [/-adic
representations pg; and py;. Using the continuity of the [-adic reprsentation and the
fact that the Frobenius elements form a dense subset in the Galois group G of Q (the
Chebotarev theorem) we obtain that pr; = pyr;. Now let us consider f as a holomorphic
differential form on Xo(M). Since f is an eigenfunction for the the Hecke ring T/, we
have a character 6 : T); — Q defined by the eigenvalues. Let T be the kernel of 6. The
Hecke ring acts on Xo(M) via correspondences, and hence acts on its Jacobian variety
Jo(M) via endomorphisms. Let A = Jo(M)/T Jo(M). This an abelian variety and its
tangent space is naturally isomorphic to Cf. In particular, A is a elliptic curve. Applying
the Eichler-Shimura theorem, we can show that the characteristic polynomial of Frob,, in
the [-adic representation of A is expressed in terms of the Hecke operators:

det(pa (Frob,) — tly) = t2 — (T (p)t + pd(T(p, p)).

This allows us to verify that L(E, s) = L(A, s). By a theorem of G. Faltings, the elliptic
curves F and A are isogeneous over (, and in particular their conductors are equal. This
will imply that Ny = M, and there exists a regular map over Q from Jy(NV) to E.
Composing it with an embedding of X (V) in Jo(IN) we obtain that E is modular.

Now assume that F is a Weil elliptic curve and let Xo(N) — FE be a regular map
over Q. The space of holomorphic differential forms on E is one-dimensional over C.
By constructing a certain “Neron model” of E over Z one produces a certain 1-form,
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whose pre-image on X (V) is a holomorphic differential form such that, after identifying
it with a cusp form f of weight 1, its Fourier coefficients at infinity are rational numbers.
Again by the Eichler-Shimura theorem one can check that f is an TV)-eigenform with
eigenvalues )\, of T'(p) satisfying A, = p + 1 — #E(F,) for all prime p not dividing
N. Projecing it to the subspace of M1 (I'o(N))?,,, we find a newform f. Applying some

results of Deligne-Langlands-Carayol one can show that L(E, s) = Z4(s). O

We now see that the Hasse-Weil conjecture is equivalent to the following:
Conjecture. (Shimura-Taniyama-Weil) an elliptic curve over Q is a Weil elliptic curve.

We have seen already that Serre’s Conjecture implies Fermat’s Last Theorem. It was
shown by K. Ribet and B. Mazur, that the fact that the elliptic curve used for the proof of
Ferma is modular implies the Ferma Theorem. Let us sketch the proof of the following:

Theorem 13.8. The Shimura-Taniyama-Weil conjecture implies Fermat’s Last Theorem.

Proof. We apply the STW-conjecture to the elliptic curve E from the proof of Theorem
13.6. It is easy to compute its conductor Ng: it is equal to the product of primes divisors of
al—%c. Consider, as in the proof of Theorem 13.6, the representation pg , : G — GLo(F,).
If F is a Weil elliptic curve, the representation pj, is an irreducible modular representation
of level N and weight 1 with trivial character y. Let [ be a prime divisor of Ng. We know
that p|v;(Ag) if I # 2. This implies that the representation pg , is finite at [. When [ # p
this means that the restriction of pg , to Gal(Q;/Q;) is unramified (i.e. factors through a
representation of the Galois group of a finite unramified extension of (). When p = [, the
definition is a little more technical, and we omit it. Now we apply a theorem of Mazur-
Ribet which implies that pg , is modular of level N/I. Here we use the assumptions that
I|N but p?,1> JNg and [ # 1 mod p. After applying this theorem several times, we find
that pg ;, is modular of level 2. Now we end as in the proof of Theorem 13.6 by finding
contradiction with absence of parabolic modular form of level 1 for the group I'y(2). [

Theorem 13.9. (A. Wiles) An elliptic curve over Q with semi-stable reductions for each
prime number is a Weil curve.

Corollary 13.3. Fermat’s Last Theorem is true.

Proof. Observe that the elliptic curve E used in the proof of theorem 13.8 has semi-stable
reductions at each prime p. O



173

Exercises

13.1 Let E be an elliptic curve over a field K. Define the group law on the set of E'(K)
of points of I with coordinates in K as follows. View a point P as a divisor of degree
1. Assume that F(K) # (). Fix a point 0 € E(K). For any two points P, () the space
L(P+ @ —0) is of dimension 1 over K (the Riemann-Roch Theorem). Thus there exists
a unique postive divisor of degree 1 linearly equivalent to P + ) — 0. This divisor is
denoted by P & @ and is called the sum of the points P and Q).

(i) Show that the the binary law of composition on F(K) defined by P & Q is a
commutative group.

(i1) Show that, when K = C, the group law agrees with the group law on the complex

torus E(C).
13.2 Let E be an elliptic curve over an algebraically closed field K with the group law
defined in the previous exercise. Let fo, ..., fn,—1 be a basis of the space L(nQO). Show
that

(i) themap ¢ : E\ {O} = P 1 P — (fo(P),..., f,—1(P), has the image an
algebraic curve C of degree n.

(i) Let C be the closure of C in the projective space. Show that for any n-torsion point
P there exists a hyperplane in P"~! which intersects C at one point equal to ¢(P).

(iii) Let n = 3. Fix a line L in P? which is not a tangent to C' and consider the map
from C to L which assigns to a point x € C the intersection point of the tangent of
C at x with L. Use the Hurwitz formula to show that C' has exactly nine 3-torsion
points if K is of characteristic 0.

(iv) Assuming that n = 3 and E has at least 3 torsion points of order 3, show that the
equation of C' can be chosen in the Hesse form x3 + 33 + 23 4+ Azyz = 0.

(v) Show that in the case K is of characteristic 3, there are at most 3 points of order 3
on F.

13.3 Let x be a Dirichlet character modulo m. Define the Dirichlet series L,,(s;x) =
Yol x(n)n=°. Show that

(i) L. (s;x) is absolutely convergent for res > 0 and admits an infinite product ex-
pansion
L(s;x) = [J(1 = x(@p~) ",
plin
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(ii) Show that L, (s; x) admits a holomorphic extension to the entire complex plane
which satisfies the functional equation

Lin(1 = 8;%) = Lin (s, X) (m/27)*T(s)(e™/2 + x(~1)e~™/2G (x) ",

where G(x) is the Gauss sum of x.
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