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Lecture 1

Binary Quadratic Forms

1.1 The theory of modular form originates from the work of Carl Friedrich
Gauss of 1831 in which he gave a geometrical interpretation of some basic no-
tions of number theory.

Let us start with choosing two non-proportional vectors v = (v1, v2) and w =
(w1, w2) in R2

The set of vectors

Λ = Zv + Zw := {m1v +m2w ∈ R2| m1,m2 ∈ Z}

forms a lattice in R2, i.e., a free subgroup of rank 2 of the additive group of the
vector space R2. We picture it as follows:
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Figure 1.1: Lattice in R2
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2 LECTURE 1. BINARY QUADRATIC FORMS

Let

B(v,w) =

(
v1 v2

w1 w2

)
and

G(v,w) =

(
v · v v ·w
v ·w w ·w

)
= B(v,w) · tB(v,w).

be the Gram matrix of (v,w). The area A(v,w) of the parallelogram formed by
the vectors v and w is given by the formula

A(v,w)2 = detG(v,w) = (detB(v,w))2 = det

(
v · v v ·w
v ·w w ·w

)
.

Let x = mv + nw ∈ Λ. The length of x is given by the formula

‖x||2 = ||mv + nw||2 = (m,n)

(
v · v v ·w
v ·w w ·w

)(
m
n

)
= am2 + 2bmn+ cn2,

where
a = v · v, b = v ·w, c = w ·w. (1.1)

Let us consider the (binary) quadratic form (the distance quadratic form of Λ)

f = ax2 + 2bxy + cy2.

Notice that its discriminant satisfies

D = 4(b2 − ac) = −4A(v,w)2 < 0. (1.2)

Thus f is positive definite. Given a positive integer N , one may ask about integral
solutions of the equation

f(x, y) = N.

If there is an integral solution (m,n) of this equation, we say that the binary form
f represents the number N . Geometrically, this means that the circle of radius√
N centered at the origin contains one of the points x = mv + nw of the lattice

Λ. Notice that the solution of this problem depends only on the lattice Λ but not
on the form f . In other words, if we choose another basis (v′,w′) of the lattice Λ,
then the corresponding quadratic form

f ′ = a′x2 + 2b′xy + c′y2,
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where a′ = v′ · v′, b′ = v′ · w′, c′ = w′ · w′ has the same set of integral
solutions for the equation

f ′(x, y) = N.

Let
v′ = αv + γw, v′ = βv + δw.

for some α, β, γ, δ ∈ Z. Since the matrix

M =

(
α β
γ δ

)
is invertible in the ring of integral matrices, we must have

detM = αδ − βγ = ±1.

It is easy to see that(
v′ · v′ v′ ·w′
v′ ·w′ w′ ·w′

)
= M t

(
v · v v ·w
v ·w w ·w

)
M

and hence (
a′ b′

c′ d′

)
=

(
α γ
β δ

)(
a b
c d

)(
α β
γ δ

)
.

This can be also expressed by saying that the form f ′ is obtained from the form f
by using the change of variables

x→ αx+ βy, y → γx+ δy.

We write this in the form
f ′ = Mf.

Following Lagrange, we say f and f ′ are equivalent. An equivalence class is
called a class of quadratic forms. Obviously, for any positive integer N , the set
of integral solutions of the equations f(x, y) = N depends only on the class of
forms to which f belongs. Also it is clear that two equivalent forms have the same
discriminant.
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1.2 As we saw before any lattice Λ determines a class of forms expressing the
distance from a point in Λ to the origin. Conversely, given a positive definite
binary form f = ax2 + 2bxy + cy2, we can find a lattice Λ corresponding to this
form. To do this we choose any vector v of length

√
a and let w be the vector

of length
√
c which forms the positive angle with v defined by cosφ = b/

√
ac.

Obviously we use here that f is positive definite. Of course, Λ is defined uniquely
up to an orthogonal transformation of R2.

In this way we obtain the following:

Theorem 1.1. There is a natural bijection between the set of lattices in R2 modulo
an orthogonal transformation and the set of classes of positive definite quadratic
forms.

Let us describe the set of classes of forms in a more explicit way.

Theorem 1.2. Let f be a positive definite binary form. Then there exists a form
g = Ax2 + 2Bxy + Cy2 equivalent to f which satisfies the conditions:

{0 ≤ 2B ≤ A ≤ C}.

Proof. Let f = ax2 +2bxy+ cy2 and Λ be a lattice associated to it. Let us change
a basis of Λ in such way that the corresponding form

g = ‖v′‖2x2 + 2v′ ·w′xy + ‖w′‖2y2

satisfies the assertion of the theorem. We take v′ to be a vector from Λ of smallest
length

√
a. Then we take w′ to be a vector of smallest length in Λ which is not

equal to ±v′. I claim that the pair (v′,w′) forms a basis of Λ. Assume it is false.
Then there exists a vector x ∈ Λ such that x = av′ + bw′, where one of the
coefficients a, b is a real number but not an integer. After adding some integral
linear combination of v′,w′ we can assume that |a|, |b| ≤ 1

2
. If a, b 6= 0, this gives

‖x‖2 = |a|2‖v′‖2 + |b|2‖w′‖2 + 2abv′ ·w′ < (|a|‖v′‖+ |b|‖w′‖)2 ≤ 1

2
‖w′‖2

that contradicts the choice of w′. Here we have used the Cauchy-Schwarz in-
equality together with the fact that the vectors v′ and w′ are not proportional. If a
or b is zero, we get ‖x‖ = 1

2
‖v′‖ or ‖x‖ = 1

2
‖w′‖, again a contradiction.
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Now let us look at g. The projection of v′ + mw′ to w′ is equal to (m +
v′·w′
‖v′‖2 )w′. We can choose m so that the length of the projection is less than or
equal than 1

2
. However, the shortest projection corresponds to the shortest vector.

By our choice if w′, we must have −1
2
≤ b = v′·w′

‖v′‖ ≤
1
2
. It remains to change v′

to −v′, if needed, to assume that b = v ·w′ ≥ 0, hence 0 ≤ 2b ≤ a.

Definition. A positive definite binary quadratic form ax2 + 2bxy + cy2 is called
reduced if

0 ≤ 2b ≤ a ≤ c.

The previous theorem says that each positive definite binary quadratic form is
equivalent to a reduced form.

Let
Ω = {(a, b, c) ∈ R3 : 0 ≤ 2b ≤ a ≤ c, a > 0, ac > b2}. (1.3)

By Theorem 1.2, any positive definite binary quadratic form is equivalent to a
form ax2 + 2bxy + cy2, where (a, b, c) ∈ Ω.

1.3 Let us find when two reduced forms are equivalent. To do this we should
look at the domain Ω from a different angle. Each positive definite quadratic form
f = ax2 + 2bxy + cy2 can be factored over C into product of linear forms:

f = ax2 + 2bxy + cy2 = a(x− zy)(x− z̄y),

where

z =
−b
a

+ i

√
ac− b2

a
. (1.4)

It is clear that f is completely determined by the coefficient a and the root z.
Observe that Im z > 0. We have a bijective correspondence

f = ax2 + 2bxy + cy2 → (a, z)

from the set of positive definite binary quadratic forms to the set R+ ×H, where

H = {z ∈ C : Im z > 0}

is the upper half-plane. Let us see how the group GL(2,Z) acts on the both sets.
We have
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Mf = a((αx+ βy)− z(γx+ δy))((αx+ βy)− z̄(γx+ δy)) =

a(x(α− γz1)− y(−β + δz))(x(α− γz̄)− y(−β + δz̄)) =

a|α− zγ|2(x− −β + δz

α− γz
y)(x− −β + δz̄

α− γz̄
y).

Let us consider the action of GL(2,Z) on C \ R by fractional-linear transforma-
tions (also called Moebius transformations) defined by the formula(

α β
γ δ

)
· z =

αz + β

γz + δ
. (1.5)

Notice that

Im M · z = Im
αz + β

γz + δ
= Im

(αz + β)(γz̄ + δ)

|γz + δ|2
=
αδ − βγ
|γz + δ|2

Im z. (1.6)

This explains why the transformation is well-defined on C \ R. Also notice that

M−1 = detM

(
β −β
−γ α

)
.

Thus the root z is transformed to the root z′ = M−1 · z and we obtain, for any
M ∈ GL(2,Z),

M−1 · f = a|γz + δ|2(x−M · z)(x−M · z̄).

1.4 Until now we considered binary forms up to the equivalence defined by an
invertible integral substitution of the variables. We say that two binary forms are
properly equivalent if they differ by a substitution with determinant equal to 1. In
other words, we restrict ourselves with the subgroup SL(2,Z) of GL(2,Z).

Since

GL(2,Z) = SL(2,Z) ∪
(

1 0
0 −1

)
SL(2,Z)

and
(

1 0
0 −1

)
(ax2 + 2bxy + cy2) = ax2 − 2bxy + cy2 we obtain that each f is

properly equivalent to a form ax2 + 2bxy + cy2, where (a, b, c) ∈ Ω̄ and

Ω̄ = {(a, b, c) ∈ R3 : |2b| ≤ c ≤ a, a, ac− b2 > 0}.
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Definition. We shall say that f = ax2 + 2bxy + cy2 is properly reduced if
(a, b, c) ∈ Ω̄.

Since

GL(2,Z) = SL(2,Z) ∪
(

0 1
1 0

)
SL(2,Z)

and ( 0 1
1 0 ) corresponds to the switch of the basis vectors v,w of the lattice, we

obtain

Theorem 1.3. There is a natural bijective correspondence between proper
equivalence classes of positive definite binary forms and lattices in R2 modulo
rotation transformation.

Let Q+
2 be the set of positive definite binary quadratic forms on R2. The

group SL(2,Z) of integral unimodular invertible matrices acts naturally onQ+
2 by

f →M−1f . The map Q+
2 → R+ ×H defined in above is SL(2,Z)-equivariant if

we let SL(2,Z) act on the target by

(a, z)→ (a|γz + δ|2,M · z).

Note that we have restricted ourselves to the subgroup SL(2,Z) in order to have
Im M · z > 0.

Using (1.1) we see that the conditions 0 ≤ |2b| ≤ a ≤ c correspond to the
conditions

−1

2
≤ Re z ≤ 1

2
, |z| ≥ 1, Im z > 0.

Let D be the subset of the upper-half planes described by the above inequalities.
It is called the modular figure and looks as follows:

So we have a bijective correspondence between Ω̄ and R+ ×D.
Note that, if the modular figure is the closure of a fundamental domain of the

group SL(2,Z) acting on the upper-half plane. This means that it is a closed subset
ofH such that its interior contains a unique point in each orbit of the group. If we
start applying elements of the group to D, we obtain infinitely many fundamental
domains pictured in the following figure.

Now suppose f, f ′ ∈ Ω̄ and M−1 · f = f ′ for some M ∈ SL(2,Z). Replacing
(f,M) with (M · f,M−1), if needed, we may assume that Im M · z ≥ Im z.

The formula (1.3) implies that |γz + δ| ≤ 1, where M =

(
α β
γ δ

)
. This gives

γ ∈ {0, 1,−1}.
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D

01
2
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2−1 1

Fig. 2

Figure 1.2: Modular Figure

Assume γ = 0. Then the Moebius transformation defined by M−1 is the
translation z → z+ β

δ
and hence takes z out of the domain−1

2
≤ Re z ≤ 1

2
unless

β = 0 or β = ±1 and Re z = ±1
2
. In the first case M = ±I and f = f ′. In the

second case M = ±
(

1 ±1
0 1

)
, f = ax2 ± axy + cy2 and f ′ = ax2 ∓ axy + cy2.

Assume γ = ±1. If γ = 1, then |z + δ| ≤ 1 implies

(i) δ = 0, |z| = 1, or

(ii) z = ρ := −1+
√
−3

2
and δ = 1.

In case (i) we have M = ±
(
α −1
1 0

)
and M · z = α − 1

z
. This easily implies

α = 0 or (α, z) = (−1, ρ), (1,−ρ2). So, in the first case, M =

(
0 1
−1 0

)
and

M · f = cx2 − 2bxy + ay2. Since (c, b, a) ∈ Ω̄, we get a = c. Again f is of the
form ax2 + 2bxy + ay2 and is properly equivalent to ax2 − 2bxy + ay2.

In the second case f = a(x2 + xy + y2) and Mf = a(x2 − xy + y2).

Now, in case (ii), we get M =

(
α α− 1
1 1

)
and M ·ρ = (αρ+ (α− 1))/(ρ+

1) = α + ρ. This implies α = 0, f = a(x2 + xy + y2),Mf = f .
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Figure 1.3: Modular figure

Finally, the case γ = −1 is reduced to the case γ = 1 by replacing M with
−M .

This analysis proves the following:

Theorem 1.4. Let f = ax2 + 2bxy + cy2 and f ′ = a′x2 + 2b′xy + c′y2 be two
properly reduced positive definite binary forms. Then f is properly equivalent to
f ′ if and only if f = f ′ or f = ax2 ± axy + cy2, f ′ = ax2 ∓ axy + cy2, or
f = ax2 + 2bxy + ay2, f ′ = ax2 − 2bxy + ay2. Moreover, Mf = f for some
M 6= ±I if and only if one of the following cases occurs:

(i) f = a(x2 + y2) and M = ±
(

0 −1
1 0

)
;

(ii) f = a(x2 ± xy + y2) and M = ±
(
∓1 −1
1 0

)
,±
(

0 −1
1 1

)
.

The proof of Theorem 1.4 shows this enlarged set Ω̄ contains a representative
of each orbit of SL(2,Z). Moreover, two points (a, b, c) and (a′, b′, c′) in Ω̄ belong
to the same orbit of SL(2,Z) if and only if either a = c = a′ = c′, b = −b′ or
a′ = a, b′ = −b = a/2. Clearly

Ω̄ = R+ ×D.

To get the fundamental domain for the action of SL(2,Z) on Q+
2 we have to con-

sider the subset Ω̄′ of Ω̄ defined by the following inequalities:

Ω̄′ = {(a, b, c) ∈ Ω : |2b| < a < c or a = c ≥ 2b > 0 or a = 2b > 0}.
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The corresponding subset of the modular figure is obtained by deleting from it the
vertical line Re z = 1/2 and the part of the unit circle where the argument is less
than π/2.

Since we do not need we leave it to the reader to state an analog of Theorem
1.3 for reduced (but not properly reduced) forms and find a fundmanetal domain
for action of GL(2,Z) on Q+

2 .

1.5 Theorem 1.4 has a nice application to number theory.

Definition. A binary quadratic form ax2 + 2bxy+ cy2 is called integral if a, 2b, c
are integers. It is called primitive if (a, 2b, c) = 1.

Corollary 1.1. The set of reduced integral positive definite binary forms with fixed
discriminant D = 4d is finite.

Proof. If we fix the discriminantD = 4d = 4(b2−ac), then there are only finitely
many points in the domain Ω whose coordinates are integers.

Definition. We say that two integral positive definite binary forms are in the same
class if they are properly equivalent.

Corollary 1.2. The set of classes of primitive integral positive definite binary
forms with the same discriminant is finite.

Exercises

1.1 Let Λ be a lattice in R2. Show that the number of vertices of shortest distance
from the origin can be equal only to 2, 4 or 6. Find the lattices with 4 and 6 shortest
distance points.
1.2 Show that any subgroup of R2 which is a discrete set (i.e. each ball in R2

contains only finitely many elements of the set) is a free abelian subgroup of rank
at most 2.
1.3 We say that two lattices Λ and Λ′ are similar if Λ = αΛ′ for some nonzero
complex number α.

(i) Show that any lattice is similar to a lattice with a basis (1, τ), where τ =
a+ bi, b > 0. We say that such a lattice is reduced and denote it by Λτ .
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(ii) Show that the distance quadratic form of the lattice Λτ is equal to x2 +
2<(τ)xy + |τ |2y2 and its proper equivalence class is equal to the orbit of τ
with respect to SL(2,Z).

1.4 Let Λ be a lattice in R2. Let us identify R2 with C in the usual way. Consider
the set OΛ of complex numbers z such that z · Λ ⊂ Λ.

(i) Show that OΛ is a subring of C and Λ is a module over OΛ;

(ii) Show that OΛ = Z unless there exists c ∈ C such that cΛ is contained in
some imaginary quadratic extension of Q.

(iii) Show that the ring OΛ depends only on the similarity class of Λ.

1.5 We say that a lattice Λ admits a complex multiplication if the ring OΛ defined
in the previous exercise is different from Z. Assume that Λ satisfies this property.
Prove the following assertions:

(i Λ admits a complex multiplication if and only if it is similar to a reduced
lattice Λτ such that K = Q(τ) is a quadratic extension of Q.

(ii) the filed K coincides with the field of fractions of OΛ.

(iii) the integer multiple of the distance quadratic form of Λτ is an integral
quadratic form.

(iv) Let K = Q(
√
−d), where d is square-free. Let (1, ω) be a basis of the

ring of integers OK of K (where ω =
√
−d if d 6≡ 1 mod 4 and ω =

1
2
(1 +
√
−dotherwise). Show that the ringOΛ has a basis (1, fω) for some

integer f .

1.6 Let K = Q(
√
−d) be an imaginary quadratic field (where we continue to

assume that d is square-free).

(i) Find a natural bijective correspondence between the similarity classes of
lattices contained in K and the proper equivalence classes of primitive inte-
gral positive definite binary forms ax2 + 2bxy+ cy2 which decompose into
the product of linear forms over K and whose discriminant D = 4(ac− b2)
is equal to the square of the volume of the fundamental parallelogram of the
corresponding lattice.
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(ii) Let ax2 +2bxy+cy2 represents a class of primitive integral positive definite
binary forms corresponding to the lattice Λ with complex multiplication
defined by the ring OΛ. Show that a and −b +

√
b2 − ac generate an ideal

in OΛ not equal to the whole ring.

1.7 Let Λ and Λ′ be two lattices admitting complex multiplication with OΛ = OΛ′ = O.
Define Λ · Λ′ as the subgroup of C generated by the products γγ′, γ ∈ Λ, γ′ ∈ Λ′.

(i) Show that Λ · Λ′ is a lattice Λ′′ with OΛ′′ = O;

(ii) Show that the operation of product of lattices defined in part (i) is compatible with
the similarity relation and defines the structure of a finite abelian group on the set
of similarity classes of lattices Λ with the same ring OΛ.

1.7 Using the previous exercises define the structure of an abelian group on the set C(D)
of proper equivalence classes of primitive integral positive definite binary forms of given
discriminant D.

(i) Compute the product of two forms ax2 + cy2 and a′x2 + c′y2 with ac = a′c′.

(ii) Show that the class of the form x2 + ny2 (resp. x2 + xy + ny2) is the unit of the
group C(D) if D = 4n (resp. if D = 1 + 4n).

(iii) Show that the class of ax2−bxy+cy2 is the opposite of the class of ax2+bxy+cy2.

1.8 Using Exercise 1.5 (ii) show that there is a natural isomorphism between the group
of similarity classes of lattices with complex multiplication defined by a ring O and the
group C(O) of ideal classes of O.

1.9 Find all reduced primitive integral positive definite quadratic binary forms with dis-
criminant D = −4,−8,−12,−20,−56. Compute the number h(D) of classes of primi-
tive integral positive definite quadratic binary forms for these values of D.

1.10 Show that h(−4n) > 1 if n is not a prime number different from 4.



Lecture 2

Complex Tori

2.1 As we saw in the previous lecture there is a natural bijection between the set Ω̄
of proper equivalence classes of positive definite binary quadratic forms and the product
R+ × D′, where D′ is the subset of the modular figure D whose complement consists of
points 1

2 +iy and eiφ, 0 < φ < π/2. The factor R+ corresponds to the first coefficient a of
the form f = ax2 + 2bxy+ cy2. Now recall that the set of equivalence classes of positive
definite binary quadratic formis also bijective to the set of lattices in R2 modulo orthog-
onal transformation. The set of proper equivalence classes of positive definite binary
quadratic forms corresponds to the set of lattices modulo rotation transformations. Now
to get rid of the factor R let us consider lattices equivalent if one is obtained from another
by multiplying with a nonzero complex number γ, i.e. Λ ∼ Λ′ if Λ′ = {γv|v ∈ Λ}. Since
each complex number can be written in the form reiφ we see that we allow, additionally
to rotations, positive scalar dilations of lattices. If v,w is a basis of Λ, then γv, γw is
a basis of γΛ. In particular, if γ = r is real positive, the corresponding quadratic form
f = ||v||2x2 + 2v · wxy + ||w||2y2 is multiplied by r2. Thus, we may always assume
that ||v||2 = 1, hence the equivalence class of Λ is determined by one root z ∈ H of the
quadratic form f modulo Moebius transformations. Thus we obtain

Theorem 2.1. There is a natural bijection between the set of equivalence classes of lat-
tices in R2 and the subset D′ of the modular figure D.

Now let us find another interpretation of elements from D, this time as isomorphism
classes of elliptic curves.

Let Λ be a lattice in R2. Consider the orbit space

E = R2/Λ.

One can choose a representative of each orbit in the fundamental parallelogram

Π = {xv + yw|0 ≤ x, y ≤ 1},

13



14 LECTURE 2. COMPLEX TORI

where v,w is a basis of Λ. In this parallelogram two points belong to the same orbit if and
only if they differ by v or w. So, if we identify the opposite sides of Π, we get a bijective
map from Π onto E. Topologically, E is homeomorphic to the torus, or the product of
two circles. In fact, as a topological group,

R2/Λ ∼= R2/Z2 ∼= (R/Z)× (R/Z) ∼= S1 × S1.

However, we can do more; we put a structure of a complex manifold on E which will
depend only on the equivalence class of Λ.

Before we do it let me recall some basics about complex manifolds. Let X be a
topological space. A geometric structure on X is defined by assigning to any open subset
U of X a certain ring O(U). Its elements will be interpreted as functions on U . This
assignment satisfies the following property:

(i) if V ⊂ U then there is a unique homomorphism of rings rU/V : O(U) → O(V )
such that rW/U ◦ rU/V = rW/V whenever V ⊂ U ⊂W .

We would like to interpret elements of O(U) as functions on U and the homomor-
phism rU/V is as the restriction of functions on U to the subset V . In order to do this,
we shall require an additional property. Let x be a point of X . Consider the following
equivalence relation on the union of rings O(U) where U runs through the set of open
neighborhoods of x. Let f ∈ O(U), g ∈ O(V ). We say that f ∼ g if there exists an open
neighborhood W of x contained in U ∩ V such that rU/W (f) = rV/W (g). Denote the
set of equivalence classes by Ox. There is a natural structure of a ring on Ox such that
for any U containing x the canonical map O(U)→ Ox is a homomorphism of rings. We
require

(ii) For each x ∈ X the ring Ox is a local ring, i.e. contains a unique maximal ideal.

Let mx denotes the unique maximal ideal of Ox and κ(x) = Ox/mx. This is a
field. For any open neighborhood U of x there is a canonical homomorphism of rings
O(U) → Ox → κ(x) the image of f ∈ O(U) in κ(x) is called the value of f at x and
is denoted by f(x). In this way each f ∈ O(U) can be considered as a function on U ,
although at each point x of U the value of f at xmay belong to a different field. Of course,
we can consider the common set of values by taking the union of all fields κ(x). In many
special cases, each ring O(U) is equipped with a structure of an algebra over a field k
and the restriction homomorphisms are k-algebra homomorphisms. In this case we may
consider k as a subring of O(U); its elements are called constant functions. If are lucky
the residue homomorphisms O(U) → κ(x) induce an isomorphism of fields k → κ(x).
In this case we may consider the value of any function on U as an element of the same
field k.
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A topological space X together with a collection OX of the rings OX(U) satisfying
the previous conditions (i) and (ii) is called a geometric space. The collection OX is
called the structure sheaf of the geometric space.

An example of a geometric structure on X is obtained by taking OX(U) the ring of
continuous real functions on U .

Obviously, a geometric structure OX on X equips each open subset U ⊂ X with the
restricted geometric structure. We shall denote it by OU . A continuous map f : X → Y
of geometric spaces is called a morphism of geometric spaces if for any open subset
U ⊂ Y there is a homomorphism of rings f#

U : OY (U) → OX(f−1(U)) satisfying the
following properties:

(i) for any V ⊂ U the following diagram is commutative:

OY (U)
f#
U−−−−→ OX(f−1(U))

rU/V

y yrf−1(U)/f−1(V )

OY (V )
f#
V−−−−→ OX(f−1(V ))

(ii) Let f(x) = y and let f#
y,x : (OY )y → (OX)x be defined as follows. Take a

representative φ ∈ OY (U) of φ̄ ∈ (OY )y and define f#
y,x(φ̄) to be the equivalence

class of f#
U (φ) in (OY )x. It is easy to see that this is wel-defined. We require that

f#
y,x maps my to my.

One interprets the homomorphism f#
U as the composition of a function on U with the

map f : f−1(U) → U . In fact, for each x ∈ X with f(x) = y the homomorphism f#
y,x

induces a homomorphism of fields f̄#
y,x : κ(y)→ κ(x) such that, for any φ ∈ OY (U), y ∈

U ,
f#(U)(φ)(x) = f̄#

y,x(φ(f(x)))

So, a morphism of geometric spaces is a continuous map f : X → Y which transforms
functions on Y to functions on X .

We leave to the reader to define compositions of morphisms of geometric space and
to show that the identity map X → X is a morphism of geometric spaces. This will
define a category of geometric spaces. The notion of isomorphism of geometric spaces is
immediate: it is a morphism of geometric spaces which admits the inverse.

To define a geometric structure onX one need not to defineO(U) for all U ; it suffices
to do it only for an open set in a base {Ui}i∈I of the topology. Then for any open U we
set

O(U) = lim←−
Ui⊂U

O(Ui)
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Here we use the definition of the projective limit: the subset of the product
∏
i∈I O(Ui)

which consists of strings (. . . , ai, . . . , aj , . . .) such that rUi/Uk(ai) = rUj/Uk(aj) when-
ever Uk ⊂ Ui ∩ Uj .

We will be mainly concern with an example of a complex structure. Let us define
it. Let X = Cn be equipped with its standard topology defined by the Euclidean metric
||z|| = (|z1|2 + · · · + |zn|2)1/2. We define a complex structure on X by assigning to
each open ball Ur(a) with center at a and radius r the ring O(Ur(a)) of complex valued
functions on Ur(a) which admit an expansion

f(z) =
∑

i1,...,in≥0

αi1,...,in(z1 − a1)i1 . . . (zn − an)in

absolutely convergent in Ur(a). A complex valued function on an open set U belongs to
O(U) if and only if for any point a ∈ U there exists a ball Ur(a) contained in U such that
the restriction of f to it belongs to O(Ur(a)). Such functions are called complex analytic
or holomorphic functions on U . A non-trivial result from complex analysis says that a
function f = u + iv : U → C is holomorphic in U if and only if it admits continuous
partial derivatives with respect to the real and imaginary coordinates xi, yi in Cn and
satisfies the Cauchy-Riemann differential equations in U

∂

∂z̄i
f(z) =

1

2
(
∂u

∂xi
− ∂v

∂yi
) +

i

2
(
∂u

∂yi
+
∂v

∂xi
) = 0.

We shall denote the ring of holomorphic function on U byOhol(U). The sheaf defined by
the rings Ohol(U) defines a structure of a geometric space on Cn. It is called the complex
affine n-dimensional space. Clearly the field C can be identified with constant functions
and all residue fields κ(x) can be identified with C.

Definition. A geometric space (X,O) with Hausdorff X is called a complex manifold of
dimension n if for each x ∈ X there exists an open neighborhood U such that the geo-
metric space (U,OU ) is isomorphic to an open ball in Cn with the restricted geometric
structure of the complex affine n-dimensional space Cn. A complex manifold of dimen-
sion 1 is called a Riemann surface. A morphism of complex manifolds (not necessary of
the same dimension) is called a holomorphic map.

A complex manifold is an example of a geometric space (X,OX) where the following
additional property of OX is satisfied:

(ii) Let U = ∪i∈IUi be an open covering. Suppose that a collection of functions
fi ∈ O(Ui) satisfies

rUi/Ui∩Uj (fi) = rUj/Ui∩Uj (fj), ∀i, j ∈ I.

Then there exists a unique f ∈ O(U) such that, for any i ∈ I , rU/Ui(f) = fi.
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Example 2.1. Each non-empty open subset of Cn with the restricted structure of the geo-
metric space is a complex manifold of dimension n. A map f : U → V of an open subset
of Cm to an open subset of Cn is given by n functions fi(z) (defining the composition
U → V ↪→ Cn). It is holomorphic if and only if each fi(z) is a holomorphic function on
U . More generally, let f : X → Y be a holomorphic map of complex manifolds. Take an
open neighborhood V of a point y ∈ f(X) isomorphic to an open subset V ′ of Cn and let
x ∈ X be mapped to y. Then f−1(V ) contains an open neighborhood U of x isomorphic
to an open subset U ′ of Cm. The map f : U → V defines a map f ′ : U ′ → V ′ of open
subsets of the corresponding complex affine spaces. Then f is holomorphic if and only if
f ′ is holomorphic (for all x ∈ X).

Example 2.2. Let X = C ∪ {∞}. Define the topology on X by extending a base of the
standard topology on C by adding open neighborhoods of∞ of the form

Ur(∞) = {z ∈ C : |z| > r} ∪ {∞}

Now extend the structure sheaf Ohol on C by adding the rings O(Ur(∞)), each equal to
the ring of complex valued functions f(z) on Ur(∞) such that f(1/z) ∈ O(U1/r(0)). We
have X = U0 ∪ U1, where U0 = U0(∞) = X \ {0} and U1 = U∞(0) = X \ {∞} = C.
The homeomorphism τ : U0 → U1 defined by the formula z → 1/z is an isomorphism of
the geometric spaces. In fact f is holomorphic on an open U ⊂ U1 if and only if f(1/z)
is holomorphic on τ−1(U). Since U0 is obviously isomorphic to C, we obtain that X
is a geometric space. It is called the Riemann sphere or complex projective line and is
denoted by CP1. Using the stereographic projection, we see that CP1 is homeomorphic
to a two-dimensional sphere.

Remark 2.1. A more traditional way to define a structure of a complex manifold is by
using local charts. A collection of {(Uα, φα)} of open subsets Uα of X together with
homeomorphisms φα fromUα to an open subset of Cn is called a local chart ifX = ∪αUα
and, if Uα ∩ Uβ 6= ∅, the map φβ ◦ φ−1

α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ) is holomorphic.
Two local charts are called equivalent if their union is a local chart. A structure of a
complex manifold of dimension n on X is an equivalence class of local charts. We leave
it as an exercise to check that the two definitions are equivalent.

Let G be a group which acts holomorphically on a complex manifold X . This means
that for each g ∈ G the map µ(g) : x→ g ·x is holomorphic. It follows from the definition
of an action of a group on a set that µ(g−1) is the holomorphic inverse of µ(g). Thus each
µ(g) is an automorphism of the complex manifold X . We would like to equip the set
of orbits X/G of G with a structure of a complex manifold. We restrict ourselves with
the case when G acts properly discontinuously on X . This means that for any compact
subsets A,B of X the set {g ∈ G : g(A) ∩B 6= ∅} is finite. In particular, for any x ∈ X
the stabilizer subgroup Gx = {g ∈ G : g · x = x} is finite.
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Theorem 2.2. LetG be a group which acts holomorphically and properly discontinuously
on a Riemann surface X . Then the orbit space X/G admits a structure of a Riemann
surface such that the canonical map p : X → X/G is holomorphic. This structure is
unique up to isomorphism.

Proof. First we define the topology on X/G. This is standard. By definition a subset of
X/G is open if its pre-image p−1(U) is an open subset ofX . Now we define the structure
sheaf. By definition

OX/G(U) = OX(p−1(U))G :=

{f ∈ OX(p−1(U)) : f(g · x) = f(x),∀g ∈ G, x ∈ p−1(U)}

It is immediately verified that this defines a structure of a geometric space on Y = X/G.
Let us show that it is isomorphic to a Riemann surface. Let y = G · x be an orbit,
considered as a point of Y . Since X is locally homeomorphic to R2, it is locally compact.
Thus x contains an open neighborhood U whose closure Ū is compact. Let U = U1 ⊃
U2 ⊃ . . . be a sequence of strictly decreasing open neighborhoods of x with ∩nUn =
{x}. Since each U is relatively compact and G acts properly discontinuously, the set
G(n) = {g ∈ G : Un ∩ g(Un) 6= ∅} is finite. Clearly G(n) ⊂ G(m) for m < n. Thus
there exists some N such that G(m) = G(N) for all m ≥ N . I claim that G(N) ⊂ Gx.
In fact, if this is false g · x = x′ 6= x for some g ∈ G(N). The map g : X → X
matches the filter of open neighborhoods Un of x with the filter of open neighborhoods
g(Un) of x′. Since our topology is separated, we can find an open subset Un with large
enough n such that g(Un) ∩ Un = ∅. However this contradicts the definition of G(N).
So G(N) ⊂ Gx. Obviously, Gx ⊂ G(N). Thus G(N) = Gx, and in particular is finite.
Therefore the set ∩g∈Gxg(UN ) is an open neighborhood of x. It is invariant with respect
to Gx. Moreover, for any x′, x′ ∈ UN we have x′′ = g · x′ for some g ∈ G implies
g ∈ Gx. In particular g(UN ) ∩ g′(UN ) 6= ∅ if and only if g, g′ belong to the same coset
of G modulo the subgroup Gx. Thus

p−1(p(UN )) = ∪g∈Gg(UN ) =
∐

gGx∈G/H

g(UN )

is the disjoint union of open subsets homeomorphic to UN , and hence is open. This
implies that V = p(UN ) is an open neighborhood of y = Gx in Y . Since each G-
invariant function on p−1(V ) is determined uniquely by its values on UN we obtain

OY (V ) ∼= O(UN )Gx

If we replace V by a smaller open subset V ′ and replace UN with U ′N = UN ∩ p−1(V ′)
we similarly get

OY (V ′) ∼= O(U ′N )Gx
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This shows that V is isomorphic, as a geometric space, to the orbit space UN/Gx. In fact
the isomorphism is induced by the restriction of the morphism p : X → X/G of geomet-
ric spaces to UN . Its fibres are Gx-orbits in Ux. Thus we have reduced our assertion to
the case when the group G is finite and also fixes a point x ∈ X . Now we have to use the
assumption that X is of dimension 1. Without loss of generality we may assume that X
is an open ball of finite radius r in C with center at the origin. For each g ∈ G the map
µ(g) : X → X is given by a holomorphic function f(z) with f ′(z) 6= 0 at each point in
X and f(0) = 0. An elementary theorem from the theory of functions in one complex
variable says that f(z) = zeiθ, i.e. g defines a rotation of the ball. SinceGx is of finite or-
der, we obtain that eidθ = 1 for some d ≥ 1. We also see thatGx is a cyclic group of order
d. Now any function φ(z) invariant with respect to the transformations z → zη, ηd = 1
must be a holomorphic function in t = zd. This easily follows by considering the Taylor
expansion of φ(z) at 0. Now it is easy to see that the map z → zd defines an isomorphism
of geometric spaces Ur(0)/G→ Urd(0). This proves the assertion.

Remark 2.2. It follows from the proof that the assertion of the theorem remains true in any
dimension if we additionally assume that G acts freely on X , i.e., the stabilizer subgroup
Gx of any point x ∈ X is trivial. In general case X/G is not a complex manifold but an
analytic space with quotient singularities (also called a complex orbifold).

Corollary 2.1. Let us identify R2 with C in the natural way. Then E = R2/Λ admits a
structure of a compact complex manifold of dimension 1 for which the factor map C→ E
is a holomorphic map of complex manifolds.

Proof. The group Λ acts on the complex manifold C by translations z → z + γ, γ ∈
Λ. This action is obviously properly discontinuous. In fact any compact set B in C is
contained in a finite union of γ-translates of the fundamental paralellogram

Π = {z ∈ C : z = aω1 + bω2, 0 ≤ a, b ≤ 1},

where ω1, ω2 is a basis of Λ. Thus for any compact set A, we have (m1ω1 +m2ω2 +A)∩
B = ∅ if |m1|, |m2| are sufficiently large. This leaves us only with finitely many γ such
that (γ +A) ∩B 6= ∅.

Definition. A Riemann surface X is called a complex torus of dimension 1 or an elliptic
curve if it is isomorphic to C/Λ for some lattice Λ.

Theorem 2.3. Two elliptic curves C/Λ and C/Λ′ are isomorphic if and only if Λ′ = aΛ
for some a ∈ C \ {0}.

Proof. We shall use the simple observation that the geometric spaces C andE = C/Λ are
locally isomorphic. This means that for any point z ∈ C has a neighborhood isomorphic
to an open neighborhood of z + Λ ∈ E. This follows immediately from the proof of
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Theorem 2.2. Assume Λ′ = aΛ for some non-zero complex number a. Consider the map
C → C defined by the formula z → az. It is an automorphism of the complex manifold
C which maps Λ onto Λ′. It induces a bijective map of the orbit spaces C/Λ→ C/Λ′. It
follows from the previous remark that this map is holomorphic.

Conversely, assume that there is a holomorphic isomorphism f : E = C/Λ → E′ =
C/Λ′. Let f(0 + Λ) = z0 + Λ′. Consider the map tz0 : E → E′ defined by the formula
z+Λ→ (z+z0)+Λ′. It is easy to see that it is a holomorphic automorphism. Composing
f with t−z0 = t−1

z0 we may assume that f(0 + Λ) = 0 + Λ′. Now we use that the
projection maps p : C→ C/Λ and p′ : C→ C/Λ′ are universal covers of the topological
spaces. The composition C→ C/Λ→ C/Λ′ is a continuous map of a simply-connected
topological space C to the torus C/Λ′. It has a unique lift to a homeomorphism f̃ : C→ C
of the universal covers. It is also a holomorphic map satisfying f̃(0) ∈ Λ′. In fact, the
composition p′ ◦ f̃ is equal to f ◦ p and hence is holomorphic. This easily implies that f̃
is holomorphic. Now for any γ ∈ Λ and z ∈ C we have f̃(z + γ)− f̃(z) ∈ Λ′. Thus the
continuous map z → f̃(z+γ)− f̃(z) ∈ Λ′ is constant and hence f̃(z+γ) = f̃(z)+ f̃(γ).
This shows that the partial derivatives of f̃ are periodic with respect to Λ. By Liouville’s
theorem, they must be constant. Hence f̃ is a linear map of C which maps Λ to Λ′.

Corollary 2.2. There exists a natural bijection between the set of isomorphism classes of
elliptic curves and the modular figure D.

The group law on C defines a group law of the quotient group C/Λ. It follows from the
previous theorem that any holomorphic isomorphism of elliptic curves which sends 0 to
0 is a homomorphism of groups. The group of holomorphic group automorphisms of the
elliptic curve C/Λ is isomorphic to the group {a ∈ C∗ : aΛ = Λ}. Let ω1, ω2 be a basis
of Λ. Replacing Λ with zΛ for some z ∈ C∗ we may assume that ω1 = 1, ω2 = ω ∈ H.
Then

aω = αω + β, a · 1 = γω + δ,

for some integral invertible (over Z) matrix M =

(
α β
γ δ

)
. This shows that the vector

(ω, 1) ∈ C2 is a complex eigenvector of M with eigenvalue a. The eigenvalue a = x+ iy
satifies the characteristic equation

t2 − (α+ δ)t+ detM = 0.

We have a + ā = 2x = −(α + δ) ∈ Z and |a| = x2 + y2 = detM = 1. The only
solutions are

(x, y) = (0,±1), (±1, 0), (±1

2
,±
√

3/2).

This gives
a = ±i,±1,±e2π/3,±e4π/3.



21

Thus there are the following possibilities for the group G of holomorphic group automor-
phisms of elliptic curve:

G ∼= Z/2,Z/4,Z/6.

The first case is realized for any lattice Λ. The second case is realized by the lattice Z+Zi.
The third case is realized by the lattice Z + Ze2π/3.

Let us show that any elliptic curve with G 6= {±} is isomorphic to either Ei =
C/Z + Zi or Eρ = C/Z + Ze2πi/3. By Corollary 2.3, we may assume that ω belongs
to the modular figure. Thus |Re ω| ≤ 1/2 and |ω| ≥ 1. We already noticed in Lecture
1 that the derivative of the Moebius transformation z → αz+β

γz+δ at the point z0 is equal to
(cz0 + d)−2. Since ad = 1 for some d > 0, the matrix M is of finite order. This implies
that the derivative of the corresponding Moebius transformation is a complex root of 1. In
particular, we have |γω + δ| = 1. This implies

|ω| =
∣∣∣∣αω + β

γω + δ

∣∣∣∣ =
|(αω + β)(γω̄ + δ)|

|γω + δ|2
= |(αω + β)(γω̄ + δ)|.

Since |ω| ≥ 1,and αδ − βγ = 1 this gives |αω + β|, |γω̄ + δ| ≥ 1. Thus

|ω| ≥ |αω + β| ≥ |α||ω|, |ω| ≥ |γω̄ + δ| ≥ |γ||ω|.

Assume α 6= 0. Then we must have |α| = 1, β = 0, |ω| = 1. Assume γ 6= 0. Then
we must have |γ| = 1, δ = 0, |ω| = 1. Thus we have the following possibilities for the
matrix M :

M = ±
(

1 0
0 1

)
,±
(

0 1
−1 1

)
,±
(

0 1
−1 −1

)
,±
(

0 1
−1 0

)
.

This gives the following possibilities for ω:

ω = i,M = ±
(

1 0
0 1

)
,±
(

0 1
−1 0

)
, G ∼= Z/4.

ω = e2πi/3,M = ±
(

1 0
0 1

)
,±
(

0 1
−1 1

)
,±
(

0 1
−1 −1

)
, G ∼= Z/6.

This proves the assertion.

Moreover we have shown that the group PSL(2,Z) = SL(2,Z)/±1 acts on the upper
half-plane H freely except at the orbits of the points ω = i, e2πi/3. The stabilizer group
PSL(2,Z)i ∼= Z/2,PSL(2,Z)e2πi/3 = Z/3. The elliptic curves corresponding to these
two exceptional orbits are called harmonic (resp. anharmonic).
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Exercises
2.1 Let X be the set of prime numbers in Z together with 0. Define a topology on X
by declaring that sets of the form V (n) = {p ∈ X : p|n}, n ∈ Z are closed. For each
open set D(n) = X \ V (n) take O(D(n)) to be the ring of rational numbers whose
denominators are products of powers of prime divisors of n. Show that this defines a
geometric structure on X . Show that κ(x) = Fp, the prime field of p elements, if x = p
is prime and the field of rational numbers Q otherwise. Show that for any f = a/b ∈
O(D(n)) the value of f at x is equal to itself if x = 0 and is equal to a mod p

b mod p if x = p is
prime.
2.2 Using the notion of a geometric structure give a definition of a differentiable manifold
of class Ck.
2.3 Show that the projective space Pn(C) (defined as the set of one-dimensional linear
subspaces in Cn+1) has a structure of a complex manifold of dimension n. Show that the
natural map Cn+1 \ {0} → Pn(C) defined by sending z = (z0, . . . , zn) to the line Cz is
a holomorphic map.
2.4. Let (X,OX) be a geometric space. Assume that the value of f ∈ O(U) at a point
x ∈ U is not equal to zero. Prove that the restriction of f to some open neighborhood V
of x is an invertible element of O(V ).
2.5 Prove that any holomorphic function f : X → C defined on a connected compact
Riemann surface must be a constant function.
2.6 Let Λ be a lattice with complex multiplication (see Exercise 1.4). Show that the ring
OΛ is isomorphic to the ring of holomorphic group endomorphisms of the elliptic curve
C/Λ.
2.7 Let A be a cyclic subgroup of the multiplicative group C∗ of the field C generated by
a complex number q with |q| 6= 1. Show that the factor group C∗/A has a structure of a
complex manifold of dimension 1 isomorphic to an elliptic curve.
2.8 Generalize the construction of an elliptic curve by showing that a quotient group
Cn modulo the subgroup Λ generated by 2n vectors linearly independent over R has a
structure of a compact complex manifold of dimension n. It is called a complex torus of
dimension n.
2.9 Consider the action of the group G = {±1} on C2 defined by sending (z1, z2) to
(−z1,−z2). Show that C2/G does not admit a structure of a complex manifold such
that the canonical map C2 → C2/G is holomorphic. However C2 \ {0}/G is a complex
manifold of dimension 2.
2.10 Let P (z1, . . . , zn) : Cn → C be a complex polynomial in n variables. Assume
∂P
∂z1

(a1, . . . , an) 6= 0, where P (a1, . . . , an) = 0. Show that there exists an open neigh-
borhood U of the point (a1, . . . , an) such that U ∩ P−1(0) is a complex manifold of
dimension n− 1. Generalize this to the case of a polynomial map Cn → Ck.
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2.11 Let P (z0, . . . , zn) : Cn → C be a complex homogeneous polynomial in n + 1
variables. Assume that the equations ∂P

∂zi
= 0, i = 0, . . . , n, have no common solutions

in Cn+1 \{0}. Show that the set of zeroes of P , considered as a subset of projective space
Pn(C) is a complex manifold of dimension n− 1. Generalize this to the case of the set of
zeroes in Pn(C) of a finite set of homogeneous polynomials.
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Lecture 3

Theta Functions

3.1 It is known that a compact smooth manifold of dimension n can be always embed-
ded in R2n+1. For example, a real torus R2/Λ can be embedded in R3 as follows. Choose
a basis (v,w) of Λ and two positive numbers r ≤ R. Then use the familiar formula from
Calculus

xv + yw 7→ ((R+ r cos 2πx) cos 2πy, (R+ r cos 2πx) sin 2πy, r sin 2πx).

It is clear that changing xv + yw to xv + yw + γ, γ ∈ Λ does affect the result, so the
map factors through R2/Λ. It is easy to check that it defines an embedding of smooth
manifolds. The image is equal to a 2-dimensional torus.

Figure 3.1: 2-torus

This theorem does not have its analog in the complex case. A compact complex
manifold cannot be embedded in CN for any N . This follows from the fact that any holo-
morphic function on a connected compact complex manifold must be a constant function.
However, it is often possible to embed a complex manifold into projective space Pn(C).
Recall that the complex projective space P(V ) associated with a vector space of dimen-
sion n + 1 over a field k is defined to be the set of one-dimensional subspaces (lines)

25
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of V . Choosing a basis in a line shows that P(V ) can be also defined as the orbit space
V \ {0} with respect to the multiplicative group k∗ of k that acts by scalar multiplication.
Choosing a basis in V we can identify V with kn+1 and denote a line spanned by a vector
(z0, . . . , zn) by (z0 : . . . : zn). The projective space associated with the vector space kn+1

is denoted by Pn(k). The set Pn(C) is a complex manifold of dimension n. It is covered
by n+ 1 subsets Ui = {(z0, . . . , zn) : zi 6= 0} each isomorphic to Cn (see Exercise 2.3).

A theorem of Chow says that in a compact complex manifold embedded in a projec-
tive space is isomorphic to a projective algebraic complex manifold. The latter is defined
as the set of solutions in Pn(C) of a system of homogeneous algebraic equations

f1(x0, . . . , xn) = . . . = fN (x0, . . . , xn) = 0. (3.1)

This system must satisfy the following smoothness conditions:

(i) the polynomials f1, . . . , fN generate a prime ideal IX in the ring of polynomials
C[x0, . . . , xn];

(ii) the rank r of the matrix

J =


∂f1

∂x0
. . . ∂f1

∂xn
...

...
...

∂fN
∂x0

. . . ∂fN
∂xn

 (a0, . . . , an) (3.2)

does not depend on the point (a0, . . . , an) satisfying the equations (3.1).

The number d = n−r is equal to the dimension of the complex manifold defined by (3.1)
(see Exercise (2.11)). Not every complex manifold X can be given in this way. A neces-
sary (but not sufficient) condition is that the fieldM(X) of meromorphic functions on X
has the transcendence degree over C equal to the dimension of X . A meromorphic func-
tion is defined by choosing a covering of X by open connected subsets Ui and assigning
to each Ui an element fi of the fieldM(Ui) of quotients of O(U)hol with the compatibil-
ity condition fi = fj inM(Ui ∩ Uj). Here we use the fact that O(Ui)

hol does not have
zero divisors. The transcendence degree of the fieldM(X) over C is always less or equal
to the dimension of X (see [Shafarevich], vol. 2, Chapter 8, §2). If X is a projective
algebraic complex manifold, then its field of meromorphic functions coincides with the
field of rational functions. A rational function is an element of the field R(X) generated
by fractions Pk(x0,...,xn)

Qk(x0,...,xn) formed by homogeneous polynomials of the same degree consid-
ered modulo the ideal IX . The transcendence degree of this field is always equal to n− r.
Dropping the condition (ii), we obtain the definition of an irreducible complex projective
algebraic variety. Its dimension is equal to n − r, where r is the maximal value of the
rank of the Jacobian matrix.
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We shall prove later that any compact complex manifold of dimension 1 is isomorphic
to a projective algebraic complex manifold (a smooth projective curve). In this lecture we
shall find such an isomorphism explicitly for complex tori X = C/Λ. Let us try to find
a non-constant map f : X → Pn(C). A holomorphic map f : X → Pn(C), after
composing with the natural map C → C/Λ, is defined by n + 1 holomorphic functions
f0, . . . , fn on C which need not be periodic with respect to Λ but must satisfy the weaker
property:

fi(z + γ) = eγ(z)fi(z), i = 0, . . . , n, γ ∈ Λ,

where eγ(z) is a holomorphic invertible function on C. Let us try to find such functions.

Definition. A holomorphic function f(z) on C is called a theta function with respect to a
lattice Λ if, for any γ ∈ Λ, there exists an invertible holomorphic function eγ(z) such that

f(z + γ) = eγ(z)f(z), ∀z ∈ C.

The set of functions e = {eγ(z)} is called the theta factor of f(z).

Given a linearly independent ordered set (f0, . . . , fn) of theta functions with the same
theta factor e we can define a map

φ : C→ Pn, z 7→ (f0(z) : . . . : fn(z)). (3.3)

If z is replaced with z + γ, γ ∈ Λ, then the vector (f0(z), . . . , fn(z) is replaced with a
vector eγ(z)(f0(z), . . . , fn(z)). This shows that the values of the map depend only on the
coset z + Λ, formula (3.3) defines a map

φ′ : T = C/Λ→ Pn(C).

Of course, we have also assume that the functions fi(z) do not have a common zero since
(0 : 0 : . . . : 0) does not exist in Pn(C). If this condition is not satisfied we sat that the
map is a rational map. It follows from the definition of a complex structure on T that the
map φ′ is also holomorphic.

Example 3.1. Let Λ = Z + Zτ , where τ ∈ H. We know that each lattice can be reduced
to this form by means of a homothety transformation. Set

Θ(z; τ) =
∑
r∈Z

eπi(r
2τ+2rz).

This function is holomorphic on C. In fact, we shall show that the series converges uni-
formly on any bounded set in C. Then we can differentiate the series and see that the
derivative with respect to z̄ is zero. Thus the series represents a holomorphic function on
C. Assume that |Im z| < c on a bounded set. Then∑

r∈Z
|eπi(r2τ+2rz)| ≤

∑
r∈Z

e−πr
2Im (τ)e2πcr.
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Choose N such that e−πr
2Im (τ)e4πrc < 1 for r ≥ N . Then∑

r≥N
e−πr

2Im (τ)e2πcr <
∑
r≥N

e−πr
2Im (τ)/2.

The latter series is obviously converges.
Now let us check that Θ(z; τ) is a theta function. Obviously it is periodic with respect

to z → z +m,m ∈ Z. We also have

Θ(z + nτ ; τ) =
∑
r∈Z

eπi(r
2τ+2rz+2rnτ) =

∑
r∈Z

eπi((r+n)2τ+2z(r+n)−n2τ−2nz)

= eπi(−n
2τ−2nz)

∑
r∈Z

eπi((r+n)2τ+2z(r+n)) = eπi(−n
2τ−2nz)Θ(z; τ).

This shows that Θ(z; τ) is a theta function with the theta factor

em+nτ (z) = e−πi(n
2τ+2nz). (3.4)

This theta function is called the Riemann theta function.

3.2 How to find a general form of a theta function? First notice that the theta factor
satisfies the following condition:

eγ+γ′(z) = eγ(z + γ′)eγ′(z). (3.5)

This follows from comparing the equalities:

f(z + γ + γ′) = eγ+γ′(z)f(z),

f(z + γ + γ′) = eγ(z + γ′)f(z + γ′) = eγ(z + γ′)eγ′(z)f(z).

Let φ(z) ∈ O(C)∗ be a holomorphic invertible function on C. For any theta function
f(z) with theta factor eγ(z) the function f(z)φ(z) is also a theta function with the theta
factor

eγ(z)′ = eγ(z)φ(z + γ)φ(z)−1. (3.6)

Definition. A set of holomorphic invertible functions {eγ}γ∈Λ satisfying the functional
equation (3.5) is called a theta factor with respect to the lattice Λ. Two theta factors
{eγ}γ∈Λ and {eγ}′γ∈Λ are called equivalent if they are either related by (3.6) for some
invertible holomorphic function φ(z) or obtained from each other by translation of the
argument z → z + a.
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Let Th({eγ}; Λ) denote the set of theta functions with theta factor {eγ}. Obviously
it is a subspace of the space O(C) of holomorphic functions on C. Notice that for any
f, g ∈ Th({eγ}; Λ) the meromorphic function f/g is periodic with respect to Λ. So, it
defines a meromorphic function on C/Λ. Such functions are called elliptic functions.

We have
Th({eγ}; Λ) ∼= Th({e′γ}; Λ)

if {eγ} is equivalent to {e′γ}. The isomorphism is defined by composition of multipli-
cation with a function defined by (3.6) and the inverse image under the translation map
z → z + a.

Remark 3.1. Let e = {eγ}γ∈Λ be a theta factor. It defines an action of Λ on C×C defined
by the formula:

γ : (z, t) 7→ (z + γ, eγ(z)t).

The fact that this formula satisfies the axions of an action of a group in a set follows from
equation (3.5). Let p : C × C → C, (z, t) 7→ z, be the first projection. Its section is a
holomorphic map s : C → C × C satisfying p ◦ s is the identity map. It is clear that it
must be of the form sf : z 7→ (z, f(z)), where f is a holomorphic function on C. A theta
function f(z) defines a section satisfying the following property

γ(sf (z)) = (z + γ, eγ(z)f(z)) = (z + γ, f(z + γ)) = sf (z + γ).

In other words, for any γ ∈ Λ and a holomorphic section s, let γs denote the section
defined by z 7→ γ(s(z− γ)), we can characterize theta functions as holomorphic sections
s satisfying γs = s, for any γ ∈ Λ.

A holomorphic map L→ M of connected complex manifolds is called a line bundle
if there exists a cover of M by open subsets Ui such that there exists an isomorphism
of complex manifolds φi : Ui × C → LUi := p−1(Ui). A collection consisting of an
open cover U = (Ui) of V and isomorphisms φi as above is called a trivialization of L.
Let gij = φi ◦ φ−1

j , where all maps are restricted to Ui ∩ Uj . It defines an invertible
holomorphic map of (Ui × Uj) × C to itself of the form z 7→ (z, φij(z), where φij is an
invertible holomorphic function on Ui ∩ Uj . We can identify gij with this function and
call the collection of functions gij transition functions of L with respect to a covering U.
Changing the set of isomorphisms (φi) with the set (φi ◦ gi, where gi : Ui × C is a map
to its self defined by an invertible function gi on Ui, we obtain another trivialization with
new transition functions g′ij = gijgig

−1
j . We say that two trivializations obtained in this

way are equivalent. An isomorphism of line bundles f : L → L′ is an isomorphism of
complex manifolds that commutes with the projections to M . One can find an open cover
over which both line bundles are trivialized with transition functions (gij) and (g′ij). Then
an isomorphism will define an equivalence between the two trivializations.
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By definition, a line bundle is trivial if it is globally isomorphic to V × C. A line
bundle is trivial if and only one can find an open cover with transition functions gij and a
collection of invertible functions gi on each Ui such that gij = gig

−1
j on Ui ∩ Uj .

Returning to theta functions, we consider the action of Λ on the trivial line bundle
C × C defined by a theta factor e = (eγ(z)) and let L be the orbit space C × C/Λ with
the projection L → T induced by the first projection of the trivial line bundle. One can
show that L → T has a structure of a line bundle and, conversely, any line bundle on T
is obtained from a theta factor. A theta function with respect to the theta factor becomes
a holomorphic section of the corresponding line bundle: Thus we see that there is an
isomorphism of vector spaces

Th(e; Λ) = Γ(T, Le).

Two line bundles are isomorphic if and only if the theta factors are equivalent. Thus
we obtain that the set of equivalence classes of theta functors is bijective to the set of
isomorphism classes of line bundles over the torus T . The multiplication of theta factors
as holomorphic functions on C corresponds to the multiplication law on the latter set
defined by multiplying of the transition functions on a common open trivializing cover
and taking the inverses. The set of isomorphism classes of line bundles on a complex
manifold M equipped with such structure of an abelian group is denoted by Pic(M) and
is called the Picard group of M . Thus, we obtain

{theta factors on Λ}/equivalence↔ Pic(C/Λ).

One can show, although we don’t really need it, that it is possible to find φ(z) such
that log(eγ(z)φ(z+γ)φ(z)−1) depends linearly on z. Thus we may assume that the theta
factor eγ(z)′ looks like

eγ(z) = e−2πi(aγz+bγ).

Suppose two such theta factors are equivalent. Then there exists a holomorphic function
φ(z) such that

(aγ − a′γ)z + bγ − b′γ = φ(z + γ)− φ(z) mod Z

Then after differentiating twice we obtain that (φ(z + γ) − φ(z))′′ = 0. Thus φ(z)′′ is
periodic and holomorphic, this implies that it is constant. Hence φ(z) is a function of the
form αz2 + βz + δ. Thus the only change allowed in a theta factor is a change

aγz + bγ 7→ (aγ + 2αγ)z + (bγ + γ2). (3.7)

In particular, we may always replace a theta factor to an equivalent one to assume that
eγ1(z) = 1, where (γ1, γ2) is a basis of Λ. The corresponding theta function f(z) satisfies

f(z +mγ1) = f(z), f(z + nγ2) = e−2πi(naγz+nbγ+(n2)aγγ). (3.8)
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For example, if f(z) is a Riemann theta function, we get aτ = 1
2τ + z and anτz + bnτ =

n(1
2τ + z) +

(
n
2

)
τ = 1

2n
2τ + nz that agrees with formula (3.4).

Formula (3.5) shows that

aγ+γ′ = aγ + aγ′ ,

bγ+γ′ = aγγ
′ + bγ + bγ′ mod Z.

The first equality implies that the function (γ, z) 7→ aγz is a Z-linear function in the
first variable and C-linear function in the second variable. Since Λ spans C over R, the
function extends to a R-bilinear function a on C× C.

Lemma 3.1. The alternate R-linear form ω(x, y) = a(x, y)−a(y, x) : C×C→ C takes
values in R and satisfies ω(ix, iy) = ω(x, y). Its restriction to Λ× Λ takes values in Z.

Proof. Plugging in z = γ′ in the definition of a theta function, we obtain that aγγ′ −
aγ′γ ∈ Z. Thus the bilinear form ω takes integer values on Λ × Λ, and hence takes real
values on C× C. Since ω is C-linear in the second argument, we have

ω(ix, iy)− ω(x, y) = a(ix, iy)− a(iy, ix)− a(x, y) + a(y, x)

= ia(ix, y)− ia(iy, x) + ia(x, iy)− ia(y, ix) = i(ω(ix, y) + ω(x, iy)).

Now the left-hand side is real, but the right-hand side is purely imaginary. This proves
that the left-hand side is zero.

Remark 3.2. If we view C as the tangent space of C at ant point z ∈ C, then the alternating
form ω defines a symplectic structure on C that descends to a symplectic structure on T .
The condition ω(ix, iy) = ω(x, y) says that this structure is compatible with the complex
structure of T .

Let γ1, γ2 be a basis, then

k = ω(γ2, γ1) = −ω(γ1, γ2)

depends only on the orientation of Λ, i.e. a choice of an order of basis vectors. We choose
it to be a non-negative integer. It is called the degree of the theta factor and also the order
of a theta function with theta factor eγ(z) = exp(aγz + bγ). Formula (3.7) shows that it
does not change if we replace theta factor with equivalent one.

Proposition 3.1. The order of a theta function f(z) is equal to the number of its zeros z
modulo Λ (i.e. zeros satisfying z = aγ1 + bγ2, 0 ≤ a, b ≤ 1) counting with multiplicities.



32 LECTURE 3. THETA FUNCTIONS

Proof. We use a well-known formula from the theory of functions in one complex vari-
able: the number of zeroes (counted with multiplicities) of a holomorphic function f(z)
on an open subset D of C inside of a compact set K contained in D together with its
oriented boundary Γ is equal to

Z =
1

2πi

∫
Γ
d log f(z)dz.

Here we also assume that f(z) has no zeroes on Γ. Let us take for K a small translate
z0 + Π of the fundamental parallelogram

Π = {z = aγ1 + bγ2 ∈ C, 0 ≤ a, b ≤ 1}

of the lattice Λ such that its boundary Γ does not contain zeros of f(z).

It is easy to achieve since a holomorphic function in one variable has a discrete set of
zeroes. We obtain

2πiZ =

∫
Γ
d log f(z) =

∫ z0+γ1

z0

d log f(z) +

∫ z0+γ1+γ2

z0+γ1

d log f(z)

−
∫ z0+γ1+γ2

z0+γ2

d log f(z)−
∫ z0+γ2

z0

d log f(z)

= −
∫ z0+γ1

z0

d(e−2πi(aγ2z+bγ2 ))+

∫ z0+γ2

z0

d(e−2πi(aγ1z+bγ1 )) = 2πi(aγ2γ1−aγ1γ2) = 2πik.

Remark 3.3. We can identify C with the universal cover of a complex torus T = C/Λ
and the lattice Λ with the fundamental group π1(T ) that coincides, because it is abelian,
with the first homology group H1(T,Z). The second homology group H2(T,Z) of T is
isomorphic to

∧2H1(T,Z) ∼= Z. The second cohomology group H2(T,Z) is equal to
HomZ(H2(T,Z),Z) and hence coincides with the abelian group of alternating Z-values
bilinear forms on Λ × Λ. Thus our bilinear form ω can be viewed as an element of
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H2(T,Z). Let Le be the line bundle on T defined by a theta factor of a theta function
f(z). Then the form ω can be identified with the first Chern class of the line bundle, and
the degree of f(z) becomes the degree of the line bundle. The Riemann-Roch Theorem
which we will be discussing in a later Lecture implies that the number of zeros of any
holomorphic section of Le is equal to its degree. It is clear that zeros of the section sf
defined by f(z) on T is equal to the union of orbits of zeros of f(z) on C. This explains
Proposition 3.1.

3.3 Let us modify a little the definition of the Riemann theta function Θ(z; τ) introduc-
ing the theta functions with rational characteristics

ϑab(z; τ) =
∑
r∈Z

eπi[(a+r)2τ+2(z+b)(a+r)], a, b ∈ Q.

We leave the proof of the next Proposition to the reader. It is similar to the proof of the
property of the Riemann theta function.

Proposition 3.2. The following properties hold

• ϑab(z; τ) = e2πia(b−b′)ϑa′b′(z; τ) if a′ − a, b′ − b ∈ Z;

• ϑab(z + 1; τ) = e2πiaϑab(z; τ);

• ϑab(z + τ ; τ) = e−2πibeπi(−τ−2z)ϑab(z; τ).

• ϑa,b(z; τ) = eπi(a
2τ+2(z+b)a)Θ(z + b+ aτ ; τ).

Corollary 3.1. Suppose a, b ∈ 1
kZ. Then ϑab(z; τ)k depends only on the fractional parts

of a, b and it is a theta function of degree k with theta factor equal to the kth power of the
theta factor of the Riemann theta function Θ(z; τ).

Example 3.2. The functions

θ1(z|τ) := ϑ 1
2

1
2
(z; τ) = i

∑
r∈ 1

2
+Z

(−1)r−
1
2 vrq

r2

2 , (3.9)

θ2(z|τ) := ϑ 1
2

0(z; τ) =
∑

r∈ 1
2

+Z

vrq
r2

2 , (3.10)

θ3(z|τ) := ϑ00(z; τ) =
∑
n∈Z

vnq
n2

2 , (3.11)

θ4(z|τ) := ϑ0 1
2
(z; τ) =

∑
n∈Z

(−1)nvnq
n2

2 , (3.12)
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where v = e2πiz, q = e2πiτ , are called the Jacobi theta functions.
Let us find the zeros of the Jacobi theta functions. We know that they form one orbit

in C with respect to Λ. Let us show that the function ϑ1(z|τ) is odd, this would imply that
it vanishes on the orbit of the origin. We have

ϑab(−z; τ) =
∑
r∈Z

eπi[(a+r)2τ+2(−z+b)(a+r)] =

∑
r∈Z

eπi[(−a−r)
2τ+2(z−b)(−a−r)] = ϑ−a,−b(z; τ).

By the first property from Proposition 3.2, ϑ 1
2

1
2
(z; τ) = −ϑ− 1

2
− 1

2
(z; τ). This proves the

assertion. As soon as we know the zeroes of ϑ 1
2

1
2
(z; τ), the last property from Proposition

3.2 gives the zeros of the Riemann function ϑ3(z|τ). They form the orbit of 1
2 + 1

2τ . Using
this property again, we obtain that the zeros of ϑ2(z|τ) is the orbit of 1

2 and the zeros of
ϑ4(z|τ) is the orbit of 1

2τ .

We know that the theta factor of Θ(z; τ)k satisfies e1(z) = 1, eτ (z) = e−πik(τ+2z).
We call it the Riemann theta factor of order k.

Proposition 3.3. A theta factor of degree k is equivalent to the Riemann theta factor of
degree k.

Proof. Let f(z) be a theta function of order k with some theta factor e. Let Z = {z1 +
Λ, . . . , zk + Λ} be its set of zeros counted with multtiplicities. We know that the set of
zeros of f1(z) = ϑ 1

2
1
2
(z − zi; τ) is equal to zi + Λ. Thus the set of zeros of the product

f1(z) · · · fk(z) coincides with the set of zeros of f(z). This implies that the meromorphic
function f/f1 · · · fk has no zeros and poles, hence must be a theta function of degree 0.
Its theta factor is equal to e/rk(−z1 − · · · − zk), where rk is the Riemann theta factor of
degree k. A theta function of degree 0 corresponds to the trivial theta factor of the form
eaz

2+bz+c. This shows that e is equivalent to rk.

Obviously, the linear spaces of of theta functions with equivalent theta factors are iso-
morphic. So, to find its dimension it is enough to consider theta functions with Riemann
theta factor of degree k.

Theorem 3.1. The linear space of theta functions with Riemann theta factor of degree k
is equal to k. One can choose a basis formed by the functions

Θs(z; τ) := ϑ s
k
,0(kz, kτ), s = 0, . . . , k − 1.
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Proof. Let f(z) be a theta function from this linear space. Since, for any m ∈ Z, f(z +
m) = f(z), we can expand f(z) into a Fourier series

f(z) =
∑
n∈Z

cne
2πinz, cn ∈ C.

Replacing z with z + τ , we obtain

f(z + τ) =
∑
n∈Z

cne
2πinτe2πinz = e−πik(2z+τ)f(z) =

∑
n∈Z

cne
−kπiτe2πi(n−k)z =

∑
n∈Z

cn+ke
−kπiτe2πinz.

Comparing the coefficients at e2πinz , we get

cn+k = cne
πi(2n−k)τ . (3.13)

If k = 0 we must have cn = 0, n 6= 0, hence f(z) = c0 is a constant. If k 6= 0 we get a
recursion for the coefficients. In this case all coefficients are determined by k coefficients
c0, . . . , ck−1. Let s ∈ {0, . . . , k − 1}. Then it is easy to check that

cs+rk = eπi[(s+rk)2τ/k]cs (3.14)

is the explicit solution of the reccurency 3.13. This shows that f(z) can be written in the
form

f(z) =
k−1∑
s=0

csΘs(z; τ)k,

where

Θs(z; τ)k =
∑
r∈Z

eπi[(s+rk)2τ/k]e2πiz(s+rk) =
∑
r∈Z

eπi[(
s
k

+r)2kτ+2kz( s
k

+r)] = θ s
k
,0(kz; kτ).

The uniqueness of Fourier coefficients for a holomorphic function implies that the func-
tions Θs(z; τ)k are linearly independent and hence form a basis of the space of theta
functions with the Riemann theta factor of degree k.

3.4 Now we are ready to use theta functions to embed T = C/Λ in a projective space.

Lemma 3.2. The set of zeroes of Θs(z; τ)k consists of the points

(
s

k
+

1

2
)τ +

1

2k
+
j

k
+ Λ, j = 0, . . . , k − 1.
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Proof. As in Example 3.2 we show that the zeros of ϑab(z; τ) are (a+ 1
2)τ + (b+ 1

2) +
Z + Zτ . If z is a zero of Θs(z; τ)k then kz is the zero of ϑ s

k
0(z; kτ). Thus

kz = (
s

k
+

1

2
)kτ +

1

2
+ Z + Zkτ.

This gives

z = (
s

k
+

1

2
)τ +

1

2k
+

1

k
Z + Zτ.

Theorem 3.2. Let Tτ = C/Z + τZ. For each k ≥ 1 the formula

z 7→ (Θ0(z; τ)k, . . . ,Θk−1(z; τ)k)

defines a holomorphic map φk : Tτ = C/(Z + Zτ) → Pk−1(C). If k ≥ 3, this map is a
holomorphic embedding (i.e. injective and the derivative at each point is nonzero).

Proof. Since the functions Θ0(z; τ)k have the same theta factor and, by the previous
lemma, they vanish on disjoint sets of points, the map is well-defined. The map is holo-
morphic since the theta functions are holomorphic functions. Let us show that it is injec-
tive when k ≥ 3. Suppose φk(z1) = φk(z

′
1). Using Proposition 3.2, we see that, for any

integers m,n,

Θs(z +
m

k
+
nτ

k
; τ)k = ϑ s

k
0(kz +m+ nτ ; kτ) =

e
2πims
k einπ(nτ+2kz)ϑ s

k
0(kz; kτ) = e

2πims
k einπ(nτ+2kz)Θs(z; τ)k.

This shows that
φ(z1 +

m

k
+
nτ

k
) = φ(z′1 +

m

k
+
nτ

k
).

Note that, if k ≥ 2 we can always choose m and n such that the four points z1, z
′
1, z2 =

z1 + m
k + nτ

k , z
′
2 = z′1 + m

k + nτ
k are distinct. The linear space generated by the functions

Θs(z; τ)k is of dimension k. So, if k ≥ 3, we can find a nontrivial linear combination f
of these functions such that it vanishes at z1, z2 and some other k− 3 points z3, . . . , zk−1

which are distinct modulo Λ. But then f also vanishes at z′1 and z′2. Thus we have k + 1
zeroes of f counting with multiplicities. This contradicts Proposition 3.1 and proves the
assertion.

It remains to show that φk is an embedding, i.e. the map does not have critical points,
the points the differentail of the map is equal to the zero map. Suppose z0 is a critical
point. This means that the derivative f(z)′ vanishes at z0. As above, we obtain that
f ′(z0) = f ′(z0 + m

k + nτ
k ) = 0. But the we can find a nontrivial linear combination

of the functions Θs(z; τ)k such that vanishes together with its derivative at z0 and also
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vanishes at some k − 3 points z1, . . . , zk−3 (because this poses k − 1 = 2 + k − 3 linear
conditions on the coefficients of the linear combination). Thus, the set of zeros of this
linear combination consists of z0 + Λ, z0 + m

k + nτ
k + Λ and zi+ Λ, i = 1, . . . , k−3. The

first two points come with multiplicities ≥ 2. Altogether we get k + 1 points counting
with multiplicities. This contradiction proves finishes the proof of the theorem.

After we have proved that a complex torus T = C/Λ is isomorphic, as a complex
manifold, to a nonsingular algebraic curve, we equip it with the structure of a nonsingular
projective algebraic variety of dimension 1, a nonsingular projective curve. We call it an
elliptic curve and redenote it by E instead of T . To indicate that the lattice Λ is equal to
Z + Zτ , we denote this elliptic curve by Eτ .

Remark 3.4. For any compact complex one-dimensional manifold M and a line bundle L
of sufficiently large degree k, the dimension dim Γ(M,L) is equal to k + 1− g, where g
is the genus of M . Our theorem shows that a one-dimensional complex torus has genus
equal to 1.

Remark 3.5. Let us consider the group 1
kΛ/Λ. If we consider it as a subgroup of C/Λ we

see that
1

k
Λ/Λ = {a ∈ C/Λ : ka = 0}

is the subgroup kE of k-torsion points on the elliptic curve E = C/Λ. The group kE acts
by translations on E and on the space of functions Vk generated by Θs(z; τ)k. In fact, we
have

Θs(z +
1

k
; τ)k = e

2πis
k Θs(z; τ)k;

as we have already noticed in the proof of Theorem 3.2. Also

Θs(z +
τ

k
; τ)k = ϑ s

k
0(kz + τ ; kτ) =

∑
r∈Z

eπi[(kr+s)
2 τ
k

+2(z+ τ
k

)(kr+s)] =∑
r∈Z

eπi[(kr+s+1)2 τ
k

+2z(kr+s+1)−2z− τ
k

)] = e−πi(2z+
τ
k

)Θs+1(z; τ)k,
(3.15)

where Θk(z; τ)k = Θ0(z; τ)k.

Example 3.3. Let us take k = 3 and find the image of the map

φ3 : Eτ → P2(C).

Consider the action of the group G = 1
3Λ/Λ on P2(C) by projective transformations

defined on generators by the formula:

(1/3) · (x0, x1, x2) = (x0, e
2πi/3x1, e

4πi/3x2);

(τ/3) · (x0, x1, x2) = (x1, x2, x0).
(3.16)
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Then it follows from the previous remark that the map φ3 is G-equivariant if we make G
act on E by translations. This implies that the image of Eτ must be invariant with respect
to the action ofG as above. It is clear that for any homogeneous polynomial F (T0, T1, T2)
of degree 3 the theta function F (Θ0(z; τ)3,Θ1(z; τ)3,Θ2(z; τ)3) has Riemann theta fac-
tor of degree 9, hence belongs to the space of theta functions of dimension 9. On the other
hand the space of cubic homogeneous polynomials in three variables is of dimension 10.
This implies that there exists a cubic polynomial F such that

F (Θ0(z; τ)3,Θ1(z; τ)3,Θ2(z; τ)3) ≡ 0,

so that the image C of φ3 is contained in the set of zeroes of the homogeneous poly-
nomial F (x0, x1, x2) in CP2. As we already noticed any compact closed subvariety of
Pn(C) must be the set of zeroes of a system of homogeneous equations. Some elementary
algebraic geometry (or better commutative algebra) tells us that C is the set of zeroes of
one polynomial. The degree of this polynomial cannot be less than 3. In fact any polyno-
mial of degree 1 defines a a complex manifold isomorphic to P1(C) hence homeomorphic
to a two-dimensional sphere. But C is homeomorphic to a torus. Similarly, a polyno-
mial of degree 2 defining a complex manifold can be reduced by a linear homogeneous
transformation to the form x2

0 + x1x2. Hence it defines a complex manifold isomorphic
to P1(C) (use the projection map (x0, x1, x2) → (x0, x1)). So we see that C is the set
of zeroes of F . The polynomial F must be a common eigenvector for the action of the
group 1

3Λ/Λ ∼= (Z/3Z)3 on the spaceW of homogeneous cubic polynomials given by the
formula (3.16). Also it satisfies the condition that its partial derivatives have no common
zeroes. Exercise 3.1 asks to check that this is possible only if F = x3

0+x3
1+x3

2+ax0x1x2

for some scalar a. This implies that the image of φ3 is a plane projective curve defined by
equation

x3
0 + x3

1 + x3
2 + ax0x1x2 = 0. (3.17)

Since Eτ is a compact complex manifold of dimension 1, it is easy to see that it must
be equal to the whole curve. Also since it is a manifold the partial derivatives of the
polynomial in (3.17) do not have a common solutions in P2(C) (see Exercise 3.2). This
easily implies that

a3 + 27 6= 0.

The equation (3.17) is called the Hesse equation of an elliptic curve. So we have proved
that any elliptic curve is isomorphic to a complex submanifold of the complex projective
plane given by the Hesse equation.

The parameter a is of course depends on τ . As we will see later it is a modular
form with respect to the subgroup Γ(3) of the modular group Γ = SL(2,Z) of matrices
A =

(
α β
γ δ

)
such that α, δ ≡ 1 mod 3, β, γ ≡ 0 mod 3.
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Remark 3.6. Consider the affine part of the Hesse cubic where x0 6= 0. It is isomorphic
to the curve C ′ in C2 given by the equation

1 + x3 + y3 + γxy = 0. (3.18)

It follows that the functions

Φ1(z) =
Θ1(z; τ)3

Θ0(z; τ)3
, Φ2(z) =

Θ2(z; τ)3

Θ0(z; τ)3

define a surjective holomorphic map C2 \ Z → C ′ whose fibres are equal to the cosets
z + Z + τZ. Here Z is the set of zeroes of Θ0(z; τ)3. Observe that the functions Φ1(z)
and Φ2(z) are elliptic functions with respect to Λ, i.e. meromorphic functions with the set
of periods Λ. In other words we have succeeded in parametrizing the cubic curve (3.18)
by double-periodic functions. For comparison let us consider a homogeneous equation
of degree 2. Applying a homogeneous linear transformation we can reduce it to the form
x2

0 − x2
1 + x2

3 = 0 (if it defines a complex submanifold). Dehomogenizing, we get the
equation of a (complex) circle

S : x2 + y2 = 1.

In this case its parametrization C → S is defined by one-periodic holomorphic functions
cos 2πz, sin 2πz . Its fibres are cosets z+Z. One of the deepest results of mathematics is
the Uniformization Theorem of Klein-Poincaré which says that any equation f(x, y) = 0
defining a Riemann surface in C2 admits a parametrization by automorphic functions.

Exercises

3.1 Let Φ(z, u) = euz−1
ez−1 . Show that Φ(z, u) =

∑
s=0 φs(u) z

s

s! , where

φs(u) =
1

s+ 1

s∑
i=0

(
s+1
i

)
Biu

s−i+1

are Bernoulli polynomials and the coefficientsBi are Bernoulli numbers satisfying φs(u+
1)− φ(u) = us. Using these Bernoulli polynomials prove that any theta factor is equiva-
lent to a theta factor for the form eγ(z) = e2πaγz+bγ .

3.2 Using Exercise 2.11 show that the equation x3+y3+z3+γxyz = 0 defines a complex
manifold of dimension 1 in P2(C) if and only if γ3 + 27 6= 0.

3.3 Show that the image of a 3-torsion point of C/Λ under the map φ3 is an inflection
point of the Hesse cubic (a unique point at which some line intersects the curve with
multiplicity 3). Find the projective coordinates of these points.
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3.4 Show that the image of 2-torsion points in Eτ on the Hesse cubic are the four points
(0, 1,−1), (1, a, a), where a is a root of the cubic equation 2t3 + γt2 + 1 = 0.

3.5* Show that the parameter γ in the Hesse equation (3.17) is equal to the following
function in τ :

γ = −ϑ00(0; 3τ)3 + q1/2ϑ00(τ ; 3τ)3 + q2ϑ00(2τ ; 3τ)3

q5/6ϑ00(0; 3τ)ϑ00(τ ; 3τ)ϑ00(2τ ; 3τ)
.

3.6 Analyze the proof of Theorem 3.2 in the case k = 2. Show that φ2 defines a holo-
morphic map Eτ → P1(C) such that for all points x ∈ P1(C) except four, the pre-image
consists of 2 points and over the four points the pre-image consists of one point. Find
these points in Eτ .

3.7 Show that the functions ϑ(z; kτ) are theta functions of degree k2.

3.8 Show that the map C→ P4(C) given by the formulas

z → (ϑ00(z), ϑ 1
2

0(z), ϑ0 1
2
(z), ϑ 1

2
1
2
(z))

defines an isomorphism from C/2Λ ∼= C/Λ onto a complex submanifold of P4(C) given
by two homogeneous polynomials of degree 2.

3.9 Show that each ϑab(z; τ) considered as a function of two variables z, τ satisfies the
differential equation (the Heat equation):

∂2f(z, τ)

∂z2
− 4πi

∂f(z, τ)

∂τ
= 0.

3.10 Check the following equalities:

ϑ00(0; τ) = ϑ0 1
2
(
1

2
; τ) = −eπiτ/4ϑ 1

2
1
2
(
τ + 1

2
; τ) = eπiτ/4ϑ 1

2
0(
τ

2
; τ);

ϑ0 1
2
(0; τ) = ϑ00(

1

2
; τ) = ieπiτ/4ϑ 1

2
0(
τ + 1

2
; τ) = ieπiτ/4ϑ 1

2
1
2
(
τ

2
; τ);

ϑ 1
2

0(0; τ) = −ϑ 1
2

1
2
(
1

2
; τ) = eπiτ/4ϑ0 1

2
(
τ + 1

2
; τ) = eπiτ/4ϑ00(

τ

2
; τ).

3.11 Prove that, for anyw ∈ C, the product ϑab(z+w; τ)ϑa′b′(z−w; τ) is a theta function
of order 2 with theta characteristic (a+a′, b+b′). Deduce from this the addition formulae:

ϑ0 1
2
(0)2ϑ0 1

2
(z + w)ϑ0 1

2
(z − w) = ϑ0 1

2
(z)2ϑ0 1

2
(w)2 − ϑ 1

2
1
2
(z)2ϑ 1

2
1
2
(w)2,

ϑ 1
2

0(0)2ϑ 1
2

0(z + w)ϑ 1
2

0(z − w) = ϑ 1
2

0(z)2ϑ 1
2

0(w)2 − ϑ 1
2

1
2
(z)2ϑ 1

2
1
2
(w)2,

ϑ0 1
2
(0)2ϑ 1

2
1
2
(z + w)ϑ 1

2
1
2
(z − w) = ϑ 1

2
1
2
(z)2ϑ0 1

2
(w)2 − ϑ0 1

2
(z)2ϑ 1

2
1
2
(w)2.
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3.12 Show that cubic homogeneous polynomial F defining Hesse equation with parameter
a satisfying a3 + 27 = 0 is the product of three linear factors and it vanishes at three non-
collinear lines in P2(C). Show that all curves defined by the Hesse equation intersect at
9 points. Together with the the three lines x0 = 0, x1 = 0, x2 = 0, we have 12 lines and
9 points. Prove that each point lies on four lines, and each line contains 3 points. This is
the famous Hesse configuration (123, 94) of lines and points in projective plane.
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Lecture 4

Theta Constants

4.1 In this lecture we shall study the functions of τ equal to ϑ(0, τ) where ϑ(z, τ) is a
theta function. To show that they are worth of studying we shall start with the Riemann
theta function Θ(z; τ). We have

Θ(0; τ) =
∑
r∈Z

eπir
2τ =

∑
r∈Z

qr
2
, q = eπiτ . (4.1)

We have

Θ(0; τ)k =
∑
r1∈Z

. . .
∑
rk∈Z

qr
2
1+...+r2

k =
∞∑
n=0

ck(n)qn,

where
ck(n) = #{(r1, . . . , rk) ∈ Zk : n = r2

1 + . . .+ r2
k}.

So Θ(0; τ)k is the generating function for counting the number of representations of an
integer as a sum of k squares. For example c3(6) = 24 since all representations of 6 as a
sum of 3 squares are obtained from 6 = 22 + 1 + 1 by changing the order and signs.

Let us show that ϑ(τ) = Θ(0; τ)k satisfies the following functional equation:

ϑ(−1/τ) = (−iτ)k/2ϑ(τ), ϑ(τ + 2) = ϑ(τ). (4.2)

Here in the first equation we take the branch of the square root which is positive on the
purely imaginary ray iR>0. The second equation follows immediately from the Fourier
expansion. To prove the first one we use the Poisson formula in the theory of Fourier
transforms. Recall that for any rapidly decreasing at infinity smooth function f on Rn one
defines its Fourier transform f̂ by the formula:

f̂(x) =

∫
Rn
e2πix·tf(t)dt.

43
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Let Λ be a lattice in Rn and A be the volume of its fundamental parallelopiped. Let
Λ′ = {x ∈ Rn : x · v ∈ Z,∀v ∈ Λ}. Then the Poisson formula says that∑

x∈Λ

f(x) = A−1
∑
y∈Λ′

f̂(y). (4.3)

We apply this formula to our case. Take n = 1 and Λ = Z and f(x) = e−πx
2y considered

as a function of x ∈ R. Then the left-hand side of (4.3) is equal to Θ(0, iy). Now the
Fourier transform of f(x) is easy to compute. We have

f̂(x) =

∫ ∞
−∞

e2πixte−πt
2ydt =

∫ ∞
−∞

e
−πy(t−x

y
)2

eπx
2/ydt =

eπx
2/y

∫ ∞
−∞

e−πyt
2
dt = eπx

2/y√y = f(−1/y)/
√
y.

This verifies (4.2) when we restrict τ to the imaginary axis τ = iy. Since the set of zeroes
of a holomorphic function is discrete this suffices.

Note that if k = 8n, (4.2) gives

ϑ(
−1

τ
) = τk/2ϑ. (4.4)

We shall interpet this later by saying that Θ(0; τ)k is a modular form of weight k/2 with
respect to the principal congruence subgroup Γ(2).

To give you an idea why the functional equation of type (4.2) is useful, let me give
one numerical application. Take τ = ix purely imaginary with x > 0. Then (4.2) gives∑

r∈Z
e−πxr

2
=

1√
x

∑
r∈Z

e−πr
2/x =

1√
x

(1 + 2
∞∑
r=1

e−πr
2/x)

Suppose we want to compute the value of the left-hand side at small x. For x = .001 we
need fifty terms to reach the accuracy of order 10−10. But now, if we use the right-hand
side we have ∑

r∈Z
e−π.001r2

= 10(1 + 2e−100π + . . .).

Since e−100π ∼ 10−434 we need only two terms to reach the accuracy of order 10−400.

4.2 We know that the zeroes z of Θ(z; τ) = ϑ00(z; τ) satisfy

2z = (1 + 2m)τ + (1 + 2n).

Then
e±2πiz = −eπiτ(2m−1),
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where we consider only positive m. Let q = e2πiτ be as before, and consider the infinite
product

P (z; q) =
∞∏
m=1

(1 + q
2m−1

2 e2πiz)(1 + q
2m−1

2 e−2πiz). (4.5)

Recall that an infinite product
∏∞
n=1 fn of holomorphic functions on an open subset U

of C represents a holomorphic function equal to limN→∞
∏N
n=1 fn if for any compact

subset K of U the series
∑∞

n=1(1− fn) is uniformly convergent.
Since |q| < 1, the infinite series

∞∑
m=1

q
2m−1

2 (e2πiz + e−2πiz)

is absolutely convergent for any z and the infinite series (4.5) is a holomorphic function
on C. Its zeroes are the same as the zeroes of Θ(z; τ). This implies that

Θ(z; τ) = ϑ00(z; τ) = Q(q)
∞∏
m=1

(1 + q
2m−1

2 e2πiz)(1 + q
2m−1

2 e−2πiz)

for some function Q(q). Using formula from Example 3.2 from Lecture 3, we obtain

ϑ0 1
2
(z; τ) = Q

∞∏
m=1

(1− q
2m−1

2 e2πiz)(1− q
2m−1

2 e−2πiz); (4.6)

ϑ 1
2

0(z; τ) = Qq
1
8 (eπiz + e−πiz)

∞∏
m=1

(1 + qme2πiz)(1 + qme−2πiz); (4.7)

ϑ 1
2

1
2
(z; τ) = iQq

1
8 (eπiz − e−πiz)

∞∏
m=1

(1− qme2πiz)(1− qme−2πiz). (4.8)

Plugging in z = 0 we get

ϑ00(0; τ) = Q
∞∏
m=1

(1 + q
2m−1

2 )2;

ϑ0 1
2
(0; τ) = Q

∞∏
m=1

(1− q
2m−1

2 )2;

ϑ 1
2

0(0; τ) = 2Qq
1
8

∞∏
m=1

(1 + qm)2;

ϑ 1
2

1
2
(0; τ) = 0.

(4.9)
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Differentiating ϑ 1
2

1
2
(z; τ) in z, we find

ϑ 1
2

1
2
(0; τ)′ = −2πQq

1
8

∞∏
m=1

(1− qm)3. (4.10)

To compute the factor Q we use the following:

Theorem 4.1 (C. Jacobi).
ϑ′1

2
1
2

= −πϑ00ϑ 1
2

0ϑ0 1
2
.

Here, following the classic notation, we set

ϑab(0; τ) = ϑab,

dϑab(z; τ)

dz
(0) = ϑ′ab.

Also notice that when (a, b) = (ε/2, η/2) where ε, η = 0, 1 the classic notation is really

ϑ ε
2
η
2
(z; τ) = ϑεη(z; τ).

However we keep our old notation.

Proof. Consider the space Th(2; Λ)ab with a, b = ε/2, ε = 0, 1. Its dimension is 2. If
(a, b) = (1/2, 0), the functions ϑ 1

2
0(z; τ)ϑ00(z; τ) and ϑ 1

2
1
2
(z; τ)ϑ0 1

2
(z; τ) belong to this

space. It follows from (3.12) and (3.7) that

ϑ 1
2

0(z; τ), ϑ00(z; τ), ϑ0 1
2
(z; τ) are even functions in z,

ϑ 1
2

1
2
(z; τ) is an odd function in z.

Thus ϑ 1
2

0(z; τ)ϑ00(z; τ) is even and ϑ 1
2

1
2
(z; τ)ϑ0 1

2
(z; τ) is odd. Now consider the func-

tion
F (z) = ϑab(z; τ)ϑa′b′(z; τ)′ − ϑab(z; τ)′ϑa′b′(z; τ).

Observe that F (z) = ϑab(z; τ)2(ϑa′b′(z; τ)/ϑab(z; τ))′. The function ϑa′b′ (z;τ)
ϑab(z;τ) is almost

periodic with respect to Λ, that is

ϑa′b′(z +m+ nτ ; τ)

ϑab(z +m+ nτ ; τ)
= e2πi[m(a′−a)−n(b′−b)]ϑa′b′(z; τ)

ϑab(z; τ)
.

This implies that F (z) ∈ Th(2; Λ)2a+a′−a,2b+b′−b = Th(2; Λ)a+a′,b+b′ . In particular,

ϑ 1
2

1
2
(z; τ)′ϑ0 1

2
(z; τ)− ϑ0 1

2
(z; τ)′ϑ 1

2
1
2
(z; τ) ∈ Th(2; Λ) 1

2
0.
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Since this function is even (the derivative of an odd function is even, and the derivative of
an even function is odd) we must have

ϑ 1
2

1
2
(z; τ)′ϑ0 1

2
(z; τ)− ϑ0 1

2
(z; τ)′ϑ 1

2
1
2
(z; τ) = cϑ 1

2
0(z; τ)ϑ00(z; τ), (4.11)

for some constant c. Since ϑ 1
2

1
2
(0; τ) = 0, we get

c =
ϑ′1

2
1
2

ϑ0 1
2

ϑ 1
2

0ϑ00
.

Differentiating (4.11) twice in z and plugging in z = 0, we obtain

ϑ′′′1
2

1
2

ϑ0 1
2
− ϑ′′

0 1
2

ϑ′1
2

1
2

= ϑ′1
2

1
2

ϑ0 1
2
ϑ 1

2
0ϑ00(ϑ′′1

2
0
ϑ00 + ϑ 1

2
0ϑ
′′
00).

This gives
ϑ′′′1

2
1
2

ϑ′1
2

1
2

=
ϑ′′

0 1
2

ϑ0 1
2

+
ϑ′′1

2
0

ϑ 1
2

0

+
ϑ′′00

ϑ00
.

Now we use the Heat equation

∂2ϑab(z; τ)(z, τ)

∂z2
− 4πi

∂ϑab(z; τ)(z, τ)

∂τ
= 0 (4.12)

(see Exericse 3.10). This allows us to rewrite the previous equality in terms of derivatives
in τ . We get

d log ϑ′1
2

1
2

dτ
=
d log ϑ0 1

2
ϑ 1

2
0ϑ00

dτ
.

Integrating, we get
ϑ′1

2
1
2

= αϑ0 1
2
ϑ 1

2
0ϑ00,

for some constant α. To compute α we use (4.14) when q = 0 (i.e. taking Im τ go to
infinity). This gives α = −π. The theorem is proven.

4.3 Now we are in business. Multiplying the equalities in (4.9) and comparing it with
the equality (4.10), we obtain from the Jacobi theorem 4.1

−2πQq
1
8

∞∏
m=1

(1− qm)2 = ϑ′1
2

1
2

= −πϑ00ϑ0 1
2
ϑ 1

2
0 =

−2πQ3q
1
8

∞∏
m=1

(1− qm−
1
2 )2

∞∏
m=1

(1 + qm−
1
2 )2

∞∏
m=1

(1 + qm)2.
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This gives

Q =
∞∏
m=1

1− qm

(1 + qm)(1 + qm−
1
2 )(1− qm+ 1

2 )
.

Here again we fix the sign in front of Q by looking at the value of both sides at q = 0.
Replaing q with t2 and using the obvious equalities

∞∏
m=1

(1 + t2m)(1 + t2m−1) =

∞∏
m=1

(1 + tm);

∞∏
m=1

(1− t2m) =

∞∏
m=1

(1− tm)

∞∏
m=1

(1 + t2m−1)(1 + t2m),

we finally obtain

Q =

∞∏
m=1

(1− t2m) =

∞∏
m=1

(1− qm). (4.13)

Now substituting Q in (4.9) we get

ϑ′1
2

1
2

= −2πq1/8
∞∏
m=1

(1− qm)3 (4.14)

Here comes our first encounter with one of the most notorious functions in mathematics:

Definition. The Dedekind η-function is the holomorphic function on the upper-half plane
defined by

η(τ) = q
1
24

∞∏
m=1

(1− qm), q = e2πiτ . (4.15)

Thus Q = q−1/12η(τ) and we can rewrite (4.5) in the form

ϑ00 = η(τ)f(τ)2,

ϑ0 1
2

= η(τ)f1(τ)2

ϑ 1
2

0 = η(τ)f2(τ)2

ϑ′1
2

1
2

= −2πη(τ)3,

(4.16)
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where

f(τ) = q−1/48
∞∏
m=1

(1 + q
2m−1

2 ); (4.17)

f1(τ) = q−1/48
∞∏
m=1

(1− q
2m−1

2 ); (4.18)

f2(τ) =
√

2q1/24
∞∏
m=1

(1 + qm). (4.19)

They are called the Weber functions.

4.4 Let us give some applications.
We have

ϑ00(z; τ) =
∑
r∈Z

eπ(2rz+ir2τ) =
∑
r∈Z

q
r2

2 vr,

where q = e2πiτ , v = e2πiz. It follows from (4.4) and (4.9) that

ϑ00(z; τ) =

∞∏
m=1

(1− qm)(1 + q
2m−1

2 v)(1 + q
2m−1

2 v−1).

Comparing the two expressions we get the identity

∑
r∈Z

q
r2

2 vr =
∞∏
m=1

(1− qm)(1 + q
2m+1

2 v)(1 + q
2m+1

2 v−1). (4.20)

Here are some special cases corresponding to v = 1 and v = −1:

∑
r∈Z

q
r2

2 =
∞∏
m=1

(1− qm)(1 + q
2m+1

2 )2, (4.21)

∑
r∈Z

(−1)rq
r2

2 =

∞∏
m=1

(1− qm)(1− q
2m−1

2 )2. (4.22)

To get more of this beautiful stuff, let us consider the function ϑ 1
6

1
2
(0, 3τ). By (??), we

have
ϑ 1

6
1
2
(0, 3τ) = eπi/6eπiτ/12ϑ(

1

2
+
τ

2
; 3τ)00 =

eπi/6eπiτ/12
∞∏
m=1

((1− e6πimτ )
∞∏
m=1

(1− eπi(6m+4)τ )(1− eπi(6m+2)τ ) =
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eπi/6eπiτ/12
∞∏
m=1

(1− qm).

On the other hand, we have

ϑ 1
6

1
2
(0, 3τ) =

∑
m∈Z

eπi[(m+ 1
6

)23τ+2(m+ 1
6

) 1
2

] =

eπi/6eπiτ/12
∞∑
m=0

(−1)meπ(3m2+m)τ = eπi/6eπiτ/12
∑
m∈Z

(−1)mqm(3m+1)/2.

This gives the Euler identity

∑
r∈Z

(−1)rqr(3r+1)/2 =
∞∏
m=1

(1− qm). (4.23)

In particular, we get the following Fourier expansion for the Dedekind’s function η(τ):

η(τ) = q
1
24

∑
r∈Z

(−1)rqr(3r+1)/2.

The positive integers of the form n + (k − 2)n(n−1)
2 , n = 1, 2, . . . are called k-gonal

numbers. The number of beads arranged in the form of a regular k-polygon is expressed
by k-gonal numbers. In the Euler identity we are dealing with pentagonal numbers. They
correspond to the powers of q when r is negative.

The Euler identity (4.23) is one of the series of MacDonald’s identities associated to
a simple Lie algebra: ∑

r∈Z
ar,kq

r =

∞∏
m=0

(1− qm)k.

The Euler identity is the special case corresponding to the algebra sl(2).

Exercises
4.1 Let p(n) denote the number of partitions of a positive integer n as a sum of positive
integers. Using the Euler identity prove that

p(n)− p(n− 1)− p(n− 2) + p(n− 5) + . . .+ (−1)kp(n− 1

2
k(3k − 1))+

(−1)kp(n− 1

2
k(3k + 1)) + . . . = 0.
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Using this identity compute the values of p(n) for n ≤ 20.

4.2 Prove the Gauss identity:

2

∞∏
n=0

(1− x2n+2)

( ∞∏
n=0

(1− x2n+1)

)−1

=

∞∑
r=0

xr(r+1)/2.

4.3 Prove the Jacobi identity:

∞∏
n=1

(1− xn)3 =
∞∑
r=0

(−1)r(2r + 1)xr(r+1)/2.

4.4 Using (4.2) prove the following identity about Gaussian sums:

1
√
q

q−1∑
r=0

e−πr
2p/q =

1
√
p

p−1∑
r=0

e−πr
2q/p.

Here p, q are two coprime natural numbers.[Hint: Consider the assymptotic of the function
f(x) = Θ(0; ix+ p

q ) when x goes to zero.]

4.5 Prove the Jacobi triple product identity:

∞∏
n=1

(1− qn)(1 + qn−
1
2 t)(1 + qn−

1
2 t−1) =

∑
r∈Z

q
r2

2 tn.

4.6 Prove a doubling identity for theta constants:

ϑ0 1
2
(2τ)2 = ϑ00(τ)ϑ0 1

2
(τ).

(see other doubling identities in Exercise 10.10).

4.7 Prove the following formulas expressing the Weber functions in terms of the η-
function:

f(τ) = e−2πi/48η(
τ + 1

2
)η(τ), f1(τ) = η(

τ

2
)η(τ), f2(τ) =

√
2η(2τ)η(τ).

4.8 Prove the following identities connecting the Weber functions:

f(τ)f1(τ)f2(τ) = f1(2τ)f2(τ) =
√

2.
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Lecture 5

Transformations of Theta Functions

5.1 Let us see now that the theta constants ϑab and their derivatives ϑ′ab satisfy the
functional equation similar to (4.2). This will imply that certain powers of theta constants
are modular forms. For brevity we denote the lattice Z + τZ by Λτ . We also set, for any
rational a, b ∈ Q,

Th(k,Λτ )ab = {f ∈ O(C) : f(z +m+ nτ) = e2πi(−ma−nb)eπik(n2τ+nz)f(z)}.

This is the space of theta functions with theta factor obtained from the Riemann theta
factor of degree k by multiplying it by a root of unity {e2πi(−ma−nb)}. It follows from
Proposition ?? that this space is spanned by theta functions θab(z; τ)k. Also, it follows
from Theorem 3.1 that

dim Th(k,Λτ )ab = k.

Theorem 5.1. Let ϑ(z; τ) ∈ Th(k; Λτ )ab and M =
(
α β
γ δ

)
∈ SL(2,Z). Then

e
−πi( kγz

2

γτ+δ
)
ϑ(

z

γτ + δ
;
ατ + β

γτ + δ
) ∈ Th(k; Λτ )a′b′ ,

where

(a′, b′) = (αa+ γb− kγα

2
, βa+ δb+

kβδ

2
).

Proof. First observe that for any f(z) ∈ Th({eγ}; Λ) and t ∈ C∗,

φ(z) = f(
z

t
) ∈ Th({e′γ′}; tΛ),

where
e′γ′(z) = e γ′

t

(
z

t
).

53
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In fact, for any γ′ = tγ ∈ tΛ,

φ(z + tγ′) = f(
z + tγ

t
) = f(

z

t
+ γ) = eγ(

z

t
)f(

z

t
) = e γ′

t

(
z

t
)φ(z).

We have
Th(k; Λτ )ab = Th({eγ};Z + τZ),

where
em+nτ (z) = e2πi(ma−nb)e−πik(2nz+n2τ). (5.1)

For any M =

(
α β
γ δ

)
∈ SL(2,Z) we have

(γτ + δ)Z + (ατ + β)Z = Z + τZ.

Thus for any ϑ ∈ Th(k; Λτ )ab, we have

ϑ(z(γτ + δ)) ∈ Th(e′γ′ ;Z + τ ′Z),

where
τ ′ =

ατ + β

γτ + δ
,

e′m+nτ ′(z) = e(m+nτ ′)(γτ+δ)(z(γτ + δ)).

We have, using (5.1),

e′1(z) = eγτ+δ(z(γτ + δ)) = e2πi(aδ−bγ)e−πik(2γz(γτ+δ)+γ2τ) =

e−πikγ((γτ+δ)(z+1)2−(γτ+δ)z2)eπikγδe2πi(aδ−bγ).

This shows that

eπikγ(γτ+δ)z2
Th({e′γ′(z)};Z + τ ′Z) = Th({e′′γ′(z)};Z + τ ′Z),

where
e′′1(z) = eπi[kγδ+2(aδ−bγ)]. (5.2)

Now comes a miracle! Let us compute e′′τ ′(z). We have

e′′τ ′(z) = eπikγ(γτ+δ)((z+τ ′)2−z2)eτ ′(γτ+δ)(z(γτ + δ)) =

eπikγ(γτ+δ)(2zτ ′+τ ′2)eβ+ατ (z(γτ + δ)) =

eπik[γ(γτ+δ)(2zτ ′+τ ′2)−(2αz(γτ+δ)+α2τ)e2πi(−bα+βa)] = eπiikGe2πi(−bα+βa),

(5.3)

where
G = γ(γτ + δ)(2zτ ′ + τ ′2)− 2αz(γτ + δ)− α2τ =
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γ(γτ + δ)(2z(
ατ + β

γτ + δ
) + (

ατ + β

γτ + δ
)2)− 2αz(γτ + δ)− α2τ =

2zγ(ατ + β) +
γ(ατ + β)2

γτ + δ
− 2αz(γτ + δ)− α2τ =

−2z +
γ(ατ + β)2 − α2τ(γτ + δ)

γτ + δ
.

Here we used that αδ − βγ = 1. Now

γ(ατ + β)2 − α2τ(γτ + δ) = 2γαβτ + γβ2 − δα2τ =

−α(αδ − βγ)τ + αβ(γτ + δ)− β(αδ − βγ) = −(ατ + β) + αβ(γτ + δ).

This allows us to rewrite G in the form

G = −2z − ατ + β

γτ + δ
+ αβ = −2z − τ ′ + αβ.

Putting G back in the expression (5.3) we get

e′′τ ′(z) = e−πik(2z+τ ′)eπi[kαβ−2(βa−αb)].

Together with (5.2) this shows that

Th({e′′τ ′(z)},Λτ ′) = Th(k,Λτ ′)a′b′ ,

where
(a′, b′) = (δa− γb+

kγδ

2
,−βa+ αb− kαβ

2
). (5.4)

Summarizing we obtain that, for any ϑ(z, τ) ∈ Th(k; Λτ )ab,

eπikγ(γτ+δ)z2
ϑ((γτ + δ)z; τ) ∈ Th(k,Λτ ′)a′b′ . (5.5)

Now let us replace
(
α β
γ δ

)
with its inverse

(
−δ −β
−γ α

)
. We rewrite (5.13) and (5.14) as

e−πikγ(−γτ+α)z2
ϑ((−γτ + α)z; τ) ∈ Th(k,Λτ ′)a′b′ , (5.6)

where
(a′, b′) = (αa+ γb− kγα

2
, βa+ δb+

kδβ

2
).

It remains to replace τ with ατ+β
γτ+δ in (5.15) to obtain the assertion of the theorem.

Substituting z = 0 we get
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Corollary 5.1. Let ϑ1(z, τ), . . . , ϑk(z; τ) be a basis of the space Th(k; Λτ )ab and
ϑ′1(z, τ), . . . , ϑ′k(z; τ) be a basis of Th(k; Λτ )a′b′ , where (a′, b′) are defined in the Theo-

rem. Then, for any M =
(
α β
γ δ

)
∈ SL(2,Z) there exists a matrix A = (cij) ∈ GL(k,C)

depending on M and τ only such that

ϑi(0,
ατ + β

γτ + δ
) =

k∑
j=1

cijϑ
′
j(0, τ).

5.2 Let us take k = 1 and (a, b) = (ε/2, η/2), ε, η = 0, 1. Applying the previous
Theorem, we get

ϑab(z; τ + 1) = Cϑa,b+a+ 1
2
(z; τ)

for some C depending only on τ and (a, b). In particular,

ϑ 1
2

1
2
(z; τ + 1) = Cϑ 1

2
3
2
(z; τ) = −Cϑ 1

2
1
2
(z; τ).

Taking derivative in z at z = 0 we obtain

ϑ(0; τ + 1)′1
2

1
2

= −Cϑ 1
2

1
2
(0; τ)′.

Recall now from (4.14) that

ϑ 1
2

1
2
(0; τ)′ = −2πq

1
8

∞∏
m=1

(1− qm)3.

Since the substitution τ → τ + 1 changes qa into e2πia(τ+1) = qae2πia we obtain

C = eπi/4.

Similarly, using the formulas (4.16) and (4.17) which give the infinite product expansions
for other theta constants, we find

ϑ00(z; τ + 1) = ϑ0 1
2
(z; τ), (5.7)

ϑ0 1
2
(z; τ + 1) = ϑ00(z; τ), (5.8)

ϑ 1
2

0(z; τ + 1) = −eπi/4ϑ 1
2

0(z; τ). (5.9)

Now take M =
(

0 −1
1 0

)
. We have

e−πiz
2/τϑ00(z/τ ;−1/τ) = Bϑ00(z; τ)
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for some B depending only on τ . Plugging in z = 0 and applying (4.2), we get

B =
√
−iτ , (5.10)

where the square root takes positive values on τ ∈ iR.
In particular,

ϑ00(0;−1/τ) =
√
−iτϑ00(0; τ). (5.11)

Applying the formula (??) we have

e−πiz
2/τϑ0 1

2
(
z

τ
;−1

τ
) = e−πiz

2/τϑ00(
z

τ
+

1

2
;−1

τ
) =

e−πiz
2/τϑ00(

z + τ
2

τ
;−1

τ
) = Be−πiz

2/τeπi(z+
τ
2

)2/τϑ00(z +
τ

2
; τ) =

Beπi(τ/4+z)ϑ00(z +
τ

2
; τ) = Bϑ 1

2
0(z; τ).

(5.12)

In particular,
ϑ(0;−1/τ)0 1

2
=
√
−iτϑ(0; τ) 1

2
0. (5.13)

Replacing here τ with −1/τ , we obtain

ϑ(0;−1/τ) 1
2

0 =
√
iτϑ(0; τ)0 1

2
. (5.14)

This shows that
e−πiz

2/τϑ(z/τ ;−1/τ) 1
2

0 =
√
iτϑ(z; τ)0 1

2
. (5.15)

Finally, using (5.13), (5.14) and (5.15) and applying the Jacobi theorem, we obtain

ϑ(0;−1/τ)′1
2

1
2

= −τ
√
−iτϑ 1

2
1
2
(0; τ)′. (5.16)

We know from Theorem 5.1 that

e−πiz
2/τϑ(z/τ ;−1/τ) 1

2
1
2

= B′ϑ(z; τ) 1
2
− 1

2
= −B′ϑ(z; τ) 1

2
1
2
.

for some constant B′ depending only on τ . Differentiating in z and setting z = 0 we
obtain

1

τ
ϑ(0;−1/τ)′1

2
1
2

= B′ϑ 1
2

1
2
(0; τ)′.

Comparing with (5.16), we get B′ = B and hence

ϑ(0;−1/τ) 1
2

1
2

= τ
√
−iτϑ(0;−1/τ) 1

2
1
2
. (5.17)
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5.3 We shall interpret the previous computations later by saying that powers of theta
constants are modular forms with respect to certain subgroups of the modular group. Right
now we only observe the following

Corollary 5.2. Let f(τ) = ϑ′1
2

1
2

. Then, for any M =
(
α β
γ δ

)
∈ SL(2,Z), we have

f(
ατ + β

γτ + δ
) = ζ(M)(γτ + δ)

3
2 f(τ),

where ζ(M)8 = 1.

Proof. We shall prove in the next lecture that it is enough to check this for generators
of the group SL(2,Z). Also we shall show that the group SL(2,Z) is generated by the
matrices M1 = ( 1 1

0 1 ) ,M2 =
(

0 −1
1 0

)
,−I. We have from (4.14) and (4.15)

f(τ + 1)8 = f(τ)8, f(−1/τ)8 = τ12f(τ)8.

This proves the assertion.

Corollary 5.3. Let η(τ) be the Dedekind η-function. Then

η(τ)24 = q

∞∏
m=1

(1− qm)24, q = e2πiτ

satisfies

η(
ατ + β

γτ + δ
)24 = (γτ + δ)12η(τ)24.

Proof. Use (4.10)
ϑ′1

2
1
2

= −2πη(τ)3.

Corollary 5.4. Let M =

(
α β
γ δ

)
∈ SL(2,Z). Assume that the products αβ, γδ are

even. Then

Θ(
z

γτ + δ
;
ατ + β

γτ + δ
) = ζ(γτ + δ)

1
2 eπiγz

2/(γτ+δ)Θ(z; τ), (5.18)

where ζ8 = 1 and the branch of the square root is chosen to have non-negative real part.
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Proof. Recall that Θ(z; τ) = ϑ00(z; τ), so Theorem 5.1 gives immediately that

Θ(
z

γτ + δ
;
ατ + β

γτ + δ
) = c(M, τ)eπiγz

2/(γτ+δ)Θ(z; τ)

for some constant c(M, τ) depending only on M and τ . Take M =
(

0 1
−1 0

)
. Then

formula (5.13) checks the assertion in this case. Take M =
(

1 ±2
0 1

)
. Then the assertion

follows from (5.10). Now we argue by induction on |γ| + |δ|. If |δ| > |γ|, using that
Θ(z, τ + 2) = θ(z; τ), we substitute τ ± 2 in (5.16) to obtain that the assertion is true for
M ′ =

(
α β±2α
γ δ±2γ

)
. Since we can decrease |δ ± 2γ| in this way, the assertion will follow

by induction. Note that we used that |δ ± 2γ| is not equal to |δ| or |γ| because (γ, δ) = 1
and γδ is even. Now, if |δ| < |γ|, we use the substitution τ → −1/τ . Using (5.13) we
see that the asssertion for M follows from the assertion fo M ′ =

(
β −α
δ −γ

)
. This reduces

again to the case |δ| > |γ|.

Exercises

5.1 Show that the constant ζ(M) in (5.16) is equal to i
δ−1

2 ( γ|δ|) when γ is even and δ is

odd. If γ is odd and δ is even, it is equal to e−πiγ/4( δγ ). Here (xy ) is the Jacobi-Legendre
symbol, where we also set (0

1) = 1.

5.2 Extend the transformation law for theta functons by considering transformations de-
fined by matrices

(
α β
γ δ

)
with determinant n not necessary equal to 1:

e
−πinkγz

2

γτ+δ ϑ(
nz

γτ + δ
;
ατ + β

γτ + δ
) ∈ Th(nk,Λτ )a′b′ ,

where ϑ(z; τ) ∈ Th(k,Λτ )ab and

(a′, b′) = (αa+ γb− kγα

2
, βa+ δb+

kδβ

2
).

5.3 Using the previous exercise show that

(i) Aϑ 1
2

1
2
(z; τ/2) = ϑ0 1

2
(z; τ)ϑ 1

2
1
2
(z; τ) for some constant A;

(ii) A′ϑ 1
2

0(z; τ/2) = ϑ00(z; τ)ϑ 1
2

0(z; τ) for some constant A′;
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(iii) (Gauss’ transformation formulas

ϑ 1
2

0(0; τ/2)ϑ 1
2

1
2
(z; τ/2) = 2ϑ 1

2
0(z; τ)ϑ 1

2
1
2
(z; τ),

ϑ0 1
2
(0; τ/2)ϑ 1

2
0(z; τ/2) = 2ϑ00(z; τ)ϑ 1

2
0(z; τ),

[Hint: Apply (??) to get A = A′, then differentiate (i) and use the Jacobi theorem].

5.4 (Landen’s transformation formulas) Using Exercise 5.2 show

ϑ0 1
2
(0; 2τ)ϑ 1

2
1
2
(2z; 2τ) = ϑ 1

2
0(z; τ)ϑ 1

2
1
2
(z; τ),

ϑ0 1
2
(0; 2τ)ϑ0 1

2
(2z; 2τ) = ϑ00(z; τ)ϑ0 1

2
(z; τ),

5.5 Let n be an odd integer.

(i) Show that, for any integer ν, ϑ0 1
2
( νn ; τ) depends only on the residue of ν modulo

n.

(ii) Show that
n−1∏
ν=1

ϑ0 1
2
(
ν

n
; τ) =

n−1∏
ν=1

ϑ0 1
2
(
2ν

n
; τ).

(iii) Using Exercises 5.3 and 5.4 show that

ϑ00(z; 2τ)ϑ 1
2

0(z; 2τ)ϑ0 1
2
(2z; 2τ)

ϑ00(0; 2τ)ϑ 1
2

0(0; 2τ)ϑ0 1
2
(0; 2τ)

=
ϑ00(z; τ)ϑ 1

2
0(z; τ)ϑ0 1

2
(z; τ)

ϑ00(0; τ)ϑ 1
2

0(0; τ)ϑ0 1
2
(0; τ)

.

(iv) Show that the expression∏n−1
ν=1 ϑ00( νn ; τ)ϑ 1

2
0( νn ; τ)ϑ0 1

2
( νn ; τ)

ϑ00(0; τ)n−1ϑ 1
2

0(0; τ)n−1ϑ0 1
2
(0; τ)n−1

.

does not change when τ is replaced with 2τ .

(v) Show that ∏n−1
ν=1 ϑ00( νn ; τ)ϑ 1

2
0( νn ; τ)ϑ0 1

2
( νn ; τ)

ϑ00(0; τ)n−1ϑ 1
2

0(0; τ)n−1ϑ0 1
2
(0; τ)n−1

=

(−1)
n−1

2
( ∏n−1

2
ν=1 ϑ00( νn ; τ)ϑ 1

2
0( νn ; τ)ϑ0 1

2
( νn ; τ)

ϑ00(0; τ)n−1ϑ 1
2

0(0; τ)n−1ϑ0 1
2
(0; τ)n−1

)2
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(vi) Prove the formula

∏n−1
2

ν=1 ϑ00( νn ; τ)ϑ 1
2

0( νn ; τ)ϑ0 1
2
( νn ; τ)

ϑ00(0; τ)n−1ϑ 1
2

0(0; τ)n−1ϑ0 1
2
(0; τ)n−1

= 2
1−n

2 .

5.6 Let Λ = Zω1 + Zω2. Set t(z;ω1, ω2) = ϑ 1
2

1
2
( z
ω1

; ω2
ω1

).

(i) Show that
t(z + ω1;ω1, ω2) = −t(z;ω1, ω2),

t(z + ω2;ω1, ω2) = −e−πi
2z+ω2
ω1 t(z;ω1, ω2).

(ii) Let ω′1, ω
′
2 be another basis of Λ. Show that

t(z;ω′1, ω
′
2) = Ceaz

2+bzt(z;ω1, ω2)

for some constants C, a, b.

(iii) By taking the logarithmic derivative of both sides in (ii) show that

a = − t
′′′

(0;ω1, ω2)

6t′(0;ω1, ω2)
+
t
′′′

(0;ω′1, ω
′
2)

6t′(0;ω′1, ω
′
2)
, b =

t
′′
(0;ω1, ω2)

2t′(0;ω1, ω2)
,

and

C =
t′(0;ω′1, ω

′
2)

t′(0;ω1, ω2)
;

(iv) using (iii) show that

a = −
ϑ′′′1

2
1
2

(0)

6ϑ′1
2

1
2

(0)ω2
1

+
ϑ′′′1

2
1
2

(0)

6ϑ′1
2

1
2

(0)ω′1
2

and b = 0;

(v) using the Heat equation (see Exercise 3.8) show that

ϑ′′′1
2

1
2

(0)

ϑ′1
2

1
2

(0)
= 12πi

d log η(τ)

dτ
,

where τ = ω2
ω1

.
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5.7 Define the Weierstrass σ-function by

σ(z;ω1, ω2) = ω1e
−z2(ϑ′′′1

2
1
2

/6ω2
1ϑ
′
1
2

1
2

)ϑ 1
2

1
2
( z
ω1

; ω2
ω1

)

ϑ′1
2

1
2

(0)
.

Show that

(i) σ(z;ω1, ω2) does not depend on the basis ω1, ω2 of the lattice Λ;

(ii) σ(−z) = −σ(z);

(iii)
σ(z + ω1) = −eη1(z+ω12)σ(z), σ(z + ω2) = −eη2(z+ω22)σ(z),

where η1 = σ′(ω12)/σ(ω12); η2 = σ′(ω22)/σ(ω22).

(iv) (Legendre-Weierstrass relation)

η1ω2 − η2ω1 = 2πi.

[Hint: integrate the function σ along the fundamental parallelogram using (iii)];

(v)

η1 = − πi
ω2

1

d log η(τ)

dτ
, η2 = −πiω2

ω2
1

d log η(τ)

dτ
− π

2ω1
,

where τ = ω2/ω1.

5.8 Using formulas from Lecture 4 prove the following infinite product expansion of
σ(z;ω1, ω2):

σ(z;ω1, ω2) =
ω1

2πi
e
η1z

2

2ω1 (v − v−1)

∞∏
m=1

(1− qmv−2)(1− qmv2)

(1− qm)2
,

where q = e
2πi

ω2
ω1 , v = eπiz/ω1 .



Lecture 6

Modular Forms

6.1 We have seen already in Lecture 5 (5.2) and Corollary 5.3 that the functions θ(τ)4k =
ϑ00(0; τ)4k (resp. η(τ)24) satisfy the functional equation

f(τ + 2) = f(τ), f(−1/τ) = τ2f(τ),

(resp.
f(τ + 1) = f(τ), f(−1/τ) = τ12f(τ)).

In fact, they satisfy a more general equation

f(
ατ + β

γτ + δ
) = (γτ + δ)2kf(τ), ∀

(
α β
γ δ

)
∈ Γ, (6.1)

where Γ is the subgroup of SL(2,Z) generated by the matrices ±
(

0 −1
1 0

)
,± ( 1 2

0 1 ) (resp.
±
(

0 −1
1 0

)
,± ( 1 1

0 1 )).

To see this we first rewrite (6.1) in the form

f(g · τ)jg(τ)k = f(τ), (6.2)

where

jg(τ) =
d

dτ

ατ + β

γτ + δ
= (γτ + δ)−2. (6.3)

By the chain rule
jgg′(τ) = jg(g

′ · τ)jg′(τ). (6.4)

Thus replacing τ with g′ · τ in (6.2), we get

(f(g · (g′ · τ))jkg (g′ · τ))jkg′(τ) = f(gg′ · τ)jkgg′(τ) = f(τ).

63
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This shows that
f(τ)|kg := f(g · τ)jg(τ)k (6.5)

satisfies
f(τ)|k(gg′) = (f(τ)|kg)|kg′, ∀g, g′ ∈ Γ.

In other words (6.5) defines a linear representation

ρ : Γ→ GL(O(H)hol)

of Γ in the space of holomorphic functions onH defined by

ρ(g)(φ(z)) = φ|kg−1. (6.6)

Note that we switched here to g−1 in order to get

ρ(gg′) = ρ(g) ◦ ρ(g′).

It follows from the above that to check (6.1) for some subgroup Γ it is enough to
verify it only for generators of Γ. Now we use the following:

Lemma 6.1. The group G = PSL(2,Z) = SL(2,Z)/{±} is generated by the matrices

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
.

These matrices satisfy the relations

S2 = 1, (ST )3 = 1.

Proof. We know that the modular figure D (more exactly its subset D′) is a fundamental
domain for the action of G in the upper half-plane H by Moebius transformations. Take
some interior point z0 ∈ D and any g ∈ G. Let G′ be the subgroup of G generated by
S and T . If we find an element g′ ∈ G such that g′g · z0 belongs to D, then g′g = 1
and hence g ∈ G′. Let us do it. First find g′ ∈ G′ such that Im (g′ · (g · z0)) is maximal

possible. We have, for any g =

(
α β
γ δ

)
,

Im g · z =
Im z

|γτ + δ|
≤ Im z

|γ||z|+ |δ|
< CIm z,

whereC is a positive constant independent of g. So the set {Im g′ ·z : g′ ∈ G′} is bounded
and discrete and hence we can find a maximal element. Take z = g · z0. Let g′ realize
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this maximum. Applying transformations Tn we may assume that |Re Tng′g · z0| ≤ 1
2 . If

|Tng′g · z0| ≥ 1 we are done since z′ = Tng′g · z0 ∈ D. If not, we apply S. Then

Im S · z′ = Im
−1

z′
= Im

z′

|z′|2
< Im z′,

contradicting the choice of g′. This proves the first assertion. The second one is checked
by direct matrix multiplication.

This explains why (6.1) is satisfied for the functions θk00 and η(τ)24.

Definition. Let Γ be a subgroup of finite index of SL(2,Z). A holomorphic
(resp. meromorphic) function f : H → C satisfying

f(
ατ + β

γτ + δ
) = (γτ + δ)2kf(τ) = j−kg (τ)f(τ), ∀g =

(
α β
γ δ

)
∈ Γ,

is called a weak modular form (resp. a weak meromorphic modular form) of weight k
with respect to Γ.

We shall later add one more condition to get rid of the adjective ”weak”.

Remark 6.1. . Some authors prefer to call 2k the weight of a weak modular form admitting
k to be equal 1/2. Since jg has a meaning for any group Γ acting discretely on a complex
manifold M , our definition can be easily extended to a more general situation leading to
the notion of an automorphic form of weight k.

6.2 Suppose we have n + 1 linearly independent functions f0, . . . , fn satisfying (6.1)
(with the same number k). Then we can consider the map

f : H → CPn, τ → (f0(τ), . . . , fn(τ). (6.7)

When we replace τ with ατ+β
γτ+δ , the coordinates of the image will all multiply by the same

number, and hence define the same point in the projective space. This shows that the map
f factors through the map

f̄ : H/SL(2,Z)→ CPn.

Now recall that the points of H/SL(2,Z) are in a natural bijective correspondence with
the isomorphism classes of elliptic curves. This allows us (under certain conditions) to
view the set of elliptic curves as a subset of a projective space and study it by means
of algebraic geometry. Other problems on elliptic curves lead us to consider the sets of
elliptic curves with additional structure. These sets are parametrized by the quotientH/Γ
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where Γ is a subgroup of SL(2,Z) of finite index. To embed these quotients we need to
consider functions satisfying property (6.1) but only restriced to matrices from Γ.

Many examples of such functions are obtained from powers of theta constants.
We will need one more property to define a modular form. It is related to the behaviour

of f(z) when Im z goes to infinity. Because of this property the image of the map (6.7) is
an algebraic variety.

Let Γ be a subgroup of SL(2,Z) of finite index. We can extend the Moebius action of
Γ onH to the set

H∗ = H ∪Q ∪ {∞} = H ∪ P1(Q)

by requiring that the subset P1(Q) is preserved under this action and the group Γ acts
naturally on it with respect to its natural linear action on Q2:(

α β
γ δ

)
· (p, q) = (αp+ βq, γp+ δq).

In particular, if we identify rational numbers x with points (x : 1) ∈ P1(Q) and the
infinity∞ with the point (1, 0) we have(

α β
γ δ

)
· x =

{
αx+β
γx+δ if γx+ δ 6= 0:

∞ if γx+ δ = 0.
(6.8)

(
α β
γ δ

)
· − δ

γ
=∞,

(
α β
γ δ

)
· ∞ =

{
α
γ if γ 6= 0

∞ if γ = 0.
(6.9)

Note that SL(2,Z) acts transitively on the set Q ∪ {∞}. In fact for any rational number
x = p

q with (p, q) = 1 we can find a pair of integers u, v such that up− vq = 1 so that(
u −v
−q p

)
· p
q

=∞.

Thus any subgroup of finite index Γ of SL(2,Z) has only finitely many orbits on Q∪{∞}.
Each such orbit is called a cusp of Γ. For each cusp c = Γ·x of Γ represented by a rational
number x or∞ the stabilizer group Γx is conjugate to a subgroup of SL(2,Z)∞. In fact,
if g · x =∞ for some g ∈ SL(2,Z), then

g · Γx · g−1 · ∞ =∞.

Since
ατ + β

γτ + δ
· ∞ =∞⇔ γ = 0,
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we have

g · Γx · g−1 ⊂ {±
(

1 β
0 1

)
, β ∈ Z}

Let h be the smallest positive β occured in this way. Then it is immediately seen that
g · Γx · g−1 is generated by the matrices

T h = ±
(

1 h
0 1

)
, −I =

(
−1 0
0 −1

)
.

The number h is also equal to the index of the subgroup g · Γx · g−1 in SL(2,Z)∞ =
(T,−I). In particular, all x from the same cusp of Γ define the same number h. We shall
call it the index of the cusp. Let f(τ) be a holomorphic function satisfying (6.1). For
each x ∈ Q ∪ {∞} consider the function φ(τ) = f(τ)|kg−1, where g · x = ∞ for some
g ∈ SL(2,Z). We have

φ(τ)|kgΓxg
−1 = f(τ)|kg−1gΓxg

−1 = f(τ)|kΓxg−1 = f(τ)|kg−1 = φ(τ).

This implies that φ(τ) satisfies (6.1) with respect to the group gΓxg
−1. Since the latter

contains the transformation T h we have

φ(T h · τ) = φ(τ + h) = φ(τ).

Thus we can consider the Laurent expansion of φ(τ)

φ(τ) =
∑
r∈Z

crq
r, q = e2πiτ/h. (6.10)

This converges for all q 6= 0. We say that f(τ) is holomorphic at a cusp (resp. meromor-
phic) if ar = 0 for r < 0 (resp. ar = 0 for r < −N for some positive N ). It is easy to
see that this definition is independent of the choice of a representative x of the cusp. Now
we are ready to give our main definition:

Definition. A holomorphic (resp. meromorphic) function f(τ) on the the upper half-
plane H is called a modular form (resp. meromorphic modular form) of weight k with
respect to a subgroup Γ of SL(2,Z) of finite index if it is holomorphic (resp. meromor-
phic) at each cusp and satisfies

f(g · τ) = jg(τ)kf(τ), ∀g ∈ Γ.

A modular form is called a cusp form or a parabolic form if its Fourier expansion at each
cusp has no constant term. A meromorphic modular form of weight 0 is called a modular
function with respect to Γ.
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6.3 Let us give some examples.

Example 6.1. Let
∆(τ) = η(τ)24.

It is called the discriminant function. We know that ∆(τ) satisfies (6.1) with k = 6 with
respect to the group Γ = SL(2,Z). By (4.9)

∆(τ) =
1

(2π)8
ϑ′1

2
1
2

8.

Since

∆(τ) = q

∞∏
m=1

(1− qm)24

we see that the Fourier expansion of ∆(τ) contains only positive powers of q. This shows
that ∆(τ) is a cusp form of weight 6.

Example 6.2. The function ϑ00(τ) has the Fourier expansion
∑
qm

2/2. It is convergent at
q = 0. So ϑ4k

00 is a modular form of weight k. It is not a cusp form.

Let us give more examples of modular forms. This time we use the groups other than
SL(2,Z). For each N let us introduce the principal congruence subgroup of SL(2,Z) of
level N

Γ(N) = {M =

(
α β
γ δ

)
∈ SL(2,Z) : M ≡ I mod N}.

Notice that the map

SL(2,Z)→ SL(2,Z/NZ),

(
α β
γ δ

)
→
(
ᾱ β̄
γ̄ δ̄

)
is a homomorphism of groups. Being the kernel of this homomorphism, Γ(N) is a normal
subgroup of Γ(1) = SL(2,Z). I think it is time to name the group Γ(1). It is called the
full modular group.

We have

Lemma 6.2. The group Γ(2) is generated by the matrices

−I, T 2 =

(
1 2
0 1

)
, ST 2S =

(
1 0
−2 1

)
.

Proof. Let H be the subgroup of Γ(1) generated by T 2,−I and ST 2S−1. We know that
Γ(1) is generated by T and S, it is easy to verify that H is a normal subgroup of Γ(1)
contained in Γ(2). Since Γ(1)/Γ(2) ∼= SL(2,Z/2) it suffices to show that the natural
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homomorphism φ : Γ(1)/H → SL(2,Z/2) is injective. Let g ∈ Γ(1) \H be an element
of the kernel of φ. It can be written as a word in S and T . Since

φ(T ) = φ(T−1), φ(T 2) = 1, S2 = 1, S−1 = S,

we can replace g with another element from the same coset modulo H to assume that g is
a word in S and T where no S2 or T 2 appears. Since we know that (ST )3 = STSTST =
1, we have the following possible expressions for g:

S, ST, STS, STST, STSTS, T.

Here we used that φ(TS) = φ(ST )−1 since φ(T 2S2) = 1 and similarly

φ(TST ) = φ(STS)−1, φ(TSTS) = φ(STST )−1,

φ(TSTST ) = φ(STSTS)−1.

Also φ(ST ) = φ(STST )−1. Thus it is enough to verify that the elements S, ST, STS,
T are not in the kernel, i.e. do not belong to Γ(2). This is verified directly.

Example 6.3. Consider the theta constants ϑ ε
2
ε
2
. Applying the transformation τ ′ = τ + 1

twice and using formulas (5.1) , we obtain

ϑ00(τ + 2) = ϑ0 1
2
(τ + 1) = ϑ00(τ),

ϑ0 1
2
(τ + 2) = ϑ00(τ + 1) = ϑ0 1

2
(τ),

ϑ 1
2

0(τ + 2) = eπi/4ϑ 1
2

0(τ + 1) = eπi/2ϑ 1
2

0(τ).

Next, using formulas (5.11)-(5.14), we have

ϑ00(ST 2Sτ) = ϑ00(
(−1 0

2 −1

)
·τ) = ϑ00(

−1

(−1/τ) + 2
) = e3πi/4(

−1

τ
+2)1/2ϑ00(

−1

τ
+2) =

e3πi/4(−1

τ
+ 2)1/2ϑ00(−1

τ
) =

e3πi/2(−1

τ
+ 2)1/2(τ)1/2ϑ00(τ) = −i(2τ − 1)1/2ϑ00(τ).

Similarly we obtain

ϑ0 1
2
(ST 2Sτ) = e3πi/4(−1

τ
+ 2)1/2ϑ 1

2
0(−1

τ
+ 2) =

ie3πi/4(−1

τ
+ 2)1/2ϑ 1

2
0(−1

τ
) = (2τ − 1)1/2ϑ0 1

2
(τ),
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ϑ 1
2

0(ST 2Sτ) = −i(2τ − 1)1/2ϑ0 1
2
(τ).

Applying Lemma 6.2, this shows that

ϑ00(τ)4, ϑ 1
2

0(τ)4, ϑ0 1
2
(τ)4 (6.11)

are weak modular forms with respect to the group Γ(2). This group has three cusps
represented by 0, 1, and∞. Since Γ∞ is generated by the matrices ±T 2, we see that∞
is the cusp of Γ(2) of index 2. Since the subgroup Γ(2) is normal in Γ(1) all cusps have
the same index. Also it is enough to check the condition of holomorphicity only at one
cusp, say the ∞. By formula (4.6) ϑab(τ)4 has infinite product in q

1
2 = eπiτ with only

non-negative powers of q. Thus the functions (6.11)) are modular forms of weight 1 with
respect to Γ(2). Since

ϑ 1
2

0(τ)4 = 24q
1
2

∞∏
m=1

(1− qm)4(1 + qm)8,

we see that ϑ4
1
2

0
is a cusp form.

6.4 We know that any elliptic curve is isomorphic to a Hesse cubic curve. Let us give
another cubic equation for an elliptic curve, called a Weierstrass equation. Its coefficients
will give us new examples of modular forms. Recall that dim Th(k,Λτ )ab = k. Let use
<,> to denote the linear span. We have

Th(1,Λτ ) 1
2

1
2

=< ϑ 1
2

1
2
(z; τ) >=< T >;

Th(2,Λτ ) =< T 2, X ′ >,

Th(3,Λτ ) 1
2

1
2

=< T 3, TX ′, Y ′ >,

for some functions X ′ ∈ Th(2,Λτ ), Y ′ ∈ Th(3,Λτ ) 1
2

1
2
. Now the following seven func-

tions
T 6, T 4X ′, T 2X ′2, X ′3, T 3Y ′, TX ′Y ′, Y ′2

all belong to the space Th(6,Λτ ). They must be linearly dependent and we have

aT 6 + bT 4X ′2 + cT 2X ′2 + dX ′3 + eT 3Y ′ + fTX ′Y ′ + gY ′2 = 0. (6.12)

Assume g 6= 0, d 6= 0. It is easy to find

X = αX + βT 2, Y = γY ′ + δXT + ωT 3



71

which reduces this expression to the form

Y 2T −X3 −AXT 4 −BT 6 = 0, (6.13)

for some scalars A,B. Let

℘(z) = X/T 2, ℘1(z) = Y/T 3.

Dividing (6.13) by T 6 we obtain a relation

℘1(z)2 = ℘(z)3 +A℘(z) +B. (6.14)

Since both X and T 2 belong to the same space Th(2, τ) the functions ℘(z), ℘1(z) have
periods γ ∈ Z + τZ and meromorphic on C. As we shall see a little later, ℘1(z) = d℘

dz .
Consider the map

Eτ = C/Λ→ P2, z → (T (z)3, T (z)X(z), Y (z)).

Since T (z)3, T (z)X(z), Y (z) all belong to the same space Th(3,Λτ ) 1
2
, 1
2

this map is well-
defined and holomorphic. It differs from the map from Example 3.2 only by a composition
with a translation on Eτ and a linear change of the projective coordinates coordinates.
This is because, for any f ∈ Th(k; Λ) we have

eπi[a
2τ+2(z+a)b]f(z +

b+ aτ

k
) ∈ Th(k; Λ)ab

(see Lecture 3). So it is an isomorphism onto its image. The relation (6.13) tells us that
the image is the plane projective curve of degree 3 given by the equation

y2t− x3 −Axt2 −Bt3 = 0, (6.15)

Now it is clear why we assumed that the coefficients d, g in (6.12) are not equal to zero. If
g = 0, we obtain an equation f(x, y, t) = 0 for the image of Eτ in which y enters only in
the first degree. Thus we can express y in terms of x, t and obtain that Eτ is isomorphic
to P1(C). If d = 0 we obtain that f could be chosen of degree 2. Again this is impossible.
Note that we also have in (6.13)

4A3 + 27B2. 6= 0 (6.16)

This is the condition that the polynomial x3 +Ax2 +B does not have a multiple root. If
it has, (6.13) does not define a Riemann surface. A cubic equation of the form (6.15) with
the condition (6.16) is called a Weierstrass cubic equation.
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We know from Lecture 3 that T = ϑ 1
2

1
2
(z; τ) has simple zeroes at the points z =

γ ∈ Λτ . Since X does not vanish at these points (it is a linear combinations of T 2 and
ϑ00(z; τ)2), ℘(z) has poles of order 2 at z ∈ Λ. Differentiating (6.14), we obtain

2℘1(z)℘1(z)′ = (3℘(z)2 +A)℘(z)′.

Let ℘1(z1) = 0. If 3℘(z1)2 +A = 0, the polynomial x3 +Ax+B is reducible since ℘(z1)
must be its double root. So, ℘1(z) has common roots with ℘(z)′. Now both functions have
a pole of order 3 at points from Λ. This shows that the function ℘1/℘

′ has no poles and
zeroes, hence it is constant. Let c℘1 = ℘. Replacing ℘1 by c3℘1, ℘ by c2℘, A by c4A, B
by c6B we may assume that

℘1(z) = ℘(z)′. (6.17)

Let
℘(z) = a−2z

−2 + a2z
2 + . . .

be the Laurent expansion of ℘(z) at 0. Note that ℘(z) must be an even function since all
functions in Th(2,Λτ ) are even. We have

℘1(z) = ℘(z)′ = −2a−2z
−3 + 2a2z + . . . .

Plugging in the equation (6.11) we obtain 4a2
−2 = a3

−2 hence a−2 = 4. Finally, if we
replace ℘(z) with ℘(z)/4 we can assume that

℘(z) = z−2 + c2z
2 + c4z

4 + . . . , (6.18)

and
℘(z)′2 = 4℘(z)3 − g2℘(z)− g3. (6.19)

Here we use the classical notation for the coefficients of the Weierstrass equation. Differ-
entiating (6.18) we find

℘(z)′ = −2z−3 + 2c2z + 4c4z
3 + . . . , (6.20)

Plugging this in the Weierstrass equation (6.19), we easily get

℘(z)′2 − 4℘(z)3 = −20c2z
−2 − 28c4 + z2(. . .).

Thus the function ℘(z)′2 − 4℘(z)3 + 20c2℘(z) + 28c4 is holomorphic and periodic. It
must be a constant. Since it vanishes at 0, it is identical zero. Comparing this with the
Weierstrass equation, we find that

g2 = 20c2, g3 = 28c4. (6.21)
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After all of these normalizations, the elliptic function ℘(z) with respect to Λτ is
uniquely determined by the conditions (6.18) and (6.19). It is called called the Weier-
strass function with respect to the lattice Λτ .

One can find explicitly the function ℘(z) as follows. I claim that

℘(z) = φ(z) :=
1

z2
+

∑
γ∈Λ\{0}

(
1

(z − γ)2
− 1

γ2
). (6.22)

First of all the series (6.22) is absolutely convergent on any compact subset of C not
containing 0. We shall skip the proof of this fact (see for example [Cartan])[?]. This
implies that φ(z) is a meromorphic function with pole of order 2 at 0. Its derivative is a
meromorphic function given by the series

φ(z)′ = −2
∑
γ∈Λ

1

(z − γ)3
.

It is obviously periodic. This implies that φ(z) is periodic too.
Since φ(z) is an even function, φ(z)′ is odd. But then it must vanish at all γ ∈ 1

2Λ. In
fact

φ′(−γ/2) = −φ′(γ/2) = −φ′(−γ/2 + γ) = −φ′(γ/2).

The same argument shows that ℘(z)′ vanishes at the same points. It follows from the
Cauchy residue formula that the number of zeroes minus the number of poles of a mero-
morphic double periodic function inside of its fundamental parallelogram is equal to zero
(see computations from Lecture 3). This shows that φ′ and ℘′ has the same set of zeroes
and poles counting with multiplicities. This implies that φ′(z) = c℘(z)′ for some con-
stant c. Now comparing the coefficients at z−3 we see that c = 1. So ℘(z)′ = φ(z)′.
After integrating we get ℘(z) = φ(z)+constant. Again comparing the terms at z−2 we
get φ(z) = ℘(z). This proves (6.22).

After differentiating ℘(z) at 0 we obtain

c2 = 3
∑

γ∈Λ\{0}

1

γ4
, c4 = 5

∑
γ∈Λ\{0}

1

γ6
.

Remark 6.2. Now it is time to explain the reason for the names “elliptic functions” and
“elliptic curves”. We know that the Weierstrass function ℘(z; τ) is a solution of the dif-
ferential equation (dxdz )2 = 4x3 − g2x− g3. Thus the function z = ℘−1(x) is given, up to
adding a constant, by the indefinite integral

z =

∫
dx√

4x3 − g2x− g3

. (6.23)
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This is called an elliptic integral. Of course, the function x = ℘(z) does not have single-
valued inverse, so one has to justify the previous equality. To do this we consider a
non-empty simply connected region U in the complex plane C which does not contain the
roots e1, e2, e3 of the polynomial 4x3 − g2x− g3. Then we define f : U → C by

f(u) =

∫ ∞
u

dx√
4x3 − g2x− g3

This is independent of the path from u to∞ since U is simply connected. Using analytic
continuation we obtain a multivalued holomorphic function defined on C \ {e1, e2, e3}.
Using the chain rule one verifies that ℘(f(u)) = ±u. So, f is well-defined as a holomor-
phic map from C \ {e1, e2, e3} to (C/Λτ )/(z → −z). It can be shown that it extends
to a holomorphic isomorphism from the Weiertrass cubic y2 = 4x3 − g2x − g3 onto
(C/Λτ ) \ {0}. This is the inverse of the map given by z → (℘(z), ℘(z)′). As was first
shown by Euler, the elliptic integral (6.23) with special values of g2 and g3 over a special
path in the real part of the complex plane x gives the value of the length of an arc of an
ellipse. This explains the names “elliptic”.

6.5 Next we shall show that, considered as functions of the lattice Λ = Z + Zτ , and
hence as functions of τ , the coefficients g2 and g3 are modular forms of level 4 and 6,
respectively. Set for any positive even integer k:

Ek(τ) =
∑

γ∈Λτ\{0}

1

γk
.

Assume |τ | > R > 0 and k > 2. Since∑
γ∈Z+τZ\{0}

1

|γ|k
<

∫ ∫
|x+iy|>R

|x+ iy|−kdxdy =

∞∫
R

2π∫
0

r−k+1drdθ = 2π

∞∫
R

r1−kdr,

we see that Ek(τ) is absolutely convergent on any compact subset of H. Thus Ek(τ) are
holomorphic functions onH for k > 2. From (6.21) we infer

g2 = 60E4, g3 = 140E6. (6.24)

We have
Ek(

ατ + β

γτ + δ
) =

∑
(m,n)6=0

[m(
ατ + β

γτ + δ
) + n]−k =
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(γτ + δ)k
∑

(m,n)6=0

[(mα+ nγ)τ + (mβ + nδ)]−k = (γτ + δ)kEk(τ).

This shows that Ek(τ) is a weak modular form with respect to the full modular group
Γ(1). We can also compute the Fourier expansion at the cusp∞. We have

Ek(τ) =
∑

m∈Z\{0}

1

mk
+

∑
n∈Z\{0}

(∑
m∈Z

1

(m+ nτ)k

)
.

Since k is even, this can be rewritten in the form

Ek(τ) = 2
∑
m∈N

1

mk
+ 2

∑
n∈N

( ∑
m∈Z

1

(m+ nτ)k
)

= 2(ζ(k) +
∑
n∈N

( ∑
m∈Z

1

(m+ nτ)k
),

where
ζ(s) =

∑
m∈N

1

ms
, Re s > 1

is the Riemann zeta function. Now we use the well-known formula (see for example
[Cartan], Chapter V, §2, (3.2)):

π cot(πz) =

∞∑
m∈Z

(z +m)−1.

Setting t = e2πiz , we rewrite the left-hand side as follows:

π cot(πz) = π
cosπz

sinπz
= πi

eπiz + e−πiz

eπiz − e−πiz
) = πi

t+ 1

t− 1
= πi(1− 2

∞∑
m=0

tm).

Differentiating k − 1 ≥ 2 times in z, we get

(k − 1)!
∞∑
m∈Z

(z +m)−k = (2πi)k
∞∑
m=1

mk−1tm.

This gives us the needed Fourier expansion of Ek(τ). Replace in above z with nτ , set
q = e2πiτ to obtain

Ek(τ) = 2ζ(k) +
∑
n∈N

2(2πi)k

(k − 1)!

( ∞∑
m=1

mk−1qnm
)
. (6.25)

It is obviously convergent at q = 0. So, we obtain that Ek(τ) is a modular form of weight
k/2 with respect to the full modular group Γ(1). It is called the Eisenstein form of weight
k/2. Recall that k must be even and also k ≥ 4. One can rewrite (6.21) in the form

Ek(τ) = 2ζ(k) +
2(2πi)k

(k − 1)!

∞∑
m=1

σk−1(m)qm, (6.26)
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where

σn(m) =
∑
d|m

dn = sum of nth powers of all positive divisors of m.

Now we observe that we have 3 modular forms of weight 6 with respect to Γ(1). They
are g3

2 = 603E3
4 , g3 = (140)2E2

6 ,∆. There is a linear relation between these 3 forms:

Theorem 6.1.
(2π)12∆ = g3

2 − 27g2
3.

Proof. First notice that g3
2 − 27g2

3 is equal to the discriminant of the cubic polynomial
4x3 − g2x − g3 (this is the reason for naming ∆ the discriminant). Thus the function
g3

2 − 27g2
3 does not vanish for any τ ∈ H. Since ∆ is proportional to a power of ϑ′1

2
1
2

and

the latter does not vanish onH (because ϑ 1
2

1
2
(z; τ) has zero of the first order at 0), we see

that ∆ also does not vanish on H. Now consider the ratio g3
2 − 27g2

3/∆. It has neither
zeroes nor poles inH. Let us look at its behaviour at infinity. Let

X =
∞∑
n=1

σ3(n)qn, Y =
∞∑
n=1

σ5(n)qn.

We use the well-known formula (see, for example,[Serre][?]), )

ζ(2r) =
22r−1

(2r)!
B2rπ

2r,

where Bi are the Bernoulli numbers defined by the identity

x

ex − 1
= 1− x

2
+
∞∑
i=1

(−1)i+1Bi
x2i

(2i)!
.

In particular, 120ζ(4) = (2π)4/12, 280ζ(6) = (2π)6/216 and we can write

g2 = (2π)4[
1

12
+ 20X], g3 = (2π)6

[ 1

216
− 7Y

3

]
.

This gives

g3
2 − 27g2

3 = (2π)12[(5X + 7Y )/12 + 100X2 + 20X3 − 42Y 2] =

(2π)12q + q2(. . .).

Now from Example 6.1 we have ∆(τ) = q + q2(. . .). This shows that the ratio R =
g3

2−27g2
3/∆ is holomorphic at∞ too. This implies thatR is bounded on the fundamental

domain D of Γ(1). Since R is invariant with respect to Γ(1) we see that R is bounded
on the whole upper half-plane. By Liouville’s theorem it is constant. Comparing the
coefficients at q, we get the assertion.
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6.6 Recall that we constructed the modular forms g2 and g3 as the coefficients of the
elliptic function ℘(z; τ) in its Taylor expansion at z = 0. The next theorem gives a
generalization of this construction providing a convenient way to construct modular forms
with respect to a subgroup of finite index Γ of SL(2,Z).

Theorem 6.2. Let Φ(z; τ) be a meromorphic periodic function in z with respect to the
lattice Λτ = Z + Zτ . Assume that, as a function of τ , it satisfies

Φ(
z

γτ + δ
;
ατ + β

γτ + δ
) = (γτ + δ)mΦ(z; τ), ∀

(
α β
γ δ

)
∈ Γ ⊂ Γ(1)

Let gn(τ) be the n-th coefficient of the Taylor expansion of Φ(z; τ) at z0 = xτ + y for
some x, y ∈ R. Then

gn(
ατ + β

γτ + δ
) = (γτ + δ)m+ngn(τ),

for any M ∈ SL(2,Z) such that (x′, y′) = (x, y) ·M ≡ (x, y) mod Z2.

Proof. Use the Cauchy formula

gn(
ατ + β

γτ + δ
) =

1

2πi

∮ Φ(z + xατ+β
γτ+δ + y; ατ+β

γτ+δ )

zn+1
dz =

1

2πi

∮ Φ( z(γτ+δ)+x(ατ+β)+y(γτ+δ)
γτ+δ ; ατ+β

γτ+δ )

zn+1
dz =

1

2πi

∮
Φ(z(γτ + δ) + x(ατ + β) + y(γτ + δ); τ)(γτ + δ)mzn+1dz =

1

2πi

∮
Φ(z(γτ + δ) + x′τ + y′; τ)(γτ + δ)m

zn+1
dz =

1

2πi

∮
Φ(z(γτ + δ) + xτ + y; τ)(γτ + δ)m

zn+1
dz.

here we integrate along a circle of a small radius with center at 0 in a counterclockwise
direction.

After substitution z(γτ + δ) = z′, we obtain

gn(
ατ + β

γτ + δ
) = (γτ + δ)m+ngn(τ).
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Example 6.4. We apply the previous theorem to Φ(z; τ) = ℘(z) and z = 1
2 . In this case

Γ = Γ0(2) = {
(
α β
γ δ

)
∈ Γ(1) : 2|γ}.

Now, replacing z with z/(γτ + δ) in (6.22), we get

℘(
z

γτ + δ
;
ατ + β

γτ + δ
) = (γτ + δ)2[z−2 +

∑
(m,n)6=(0,0)

1

z −m(γτ + δ) + n(ατ + β)
].

Since Z + Zτ = Z(γτ + δ) + Z(ατ + β), we get finally that

℘(
z

γτ + δ
;
ατ + β

γτ + δ
) = (γτ + δ)2℘(z; τ).

Thus ℘(z; τ) satisfies the assumption of the Lemma with m = 2. Let M ∈ Γ(1). Since
(0, 1

2) ·M − (1
2 , 0) ∈ Z2 if and only if M ∈ Γ0(2) we obtain that the 0-th coefficient

g0(τ) = ℘(1
2) of the Taylor expansion of ℘(z) at 1

2 satisfies

℘(
1

2
;
ατ + β

γτ + δ
) = (γτ + δ)2℘(

1

2
; τ).

Similarly, if we replace 1
2 with τ

2 and τ
2 + 1

2 we get that

℘(
τ

2
;
ατ + β

γτ + δ
) = (γτ + δ)2℘(

τ

2
; τ), ∀

(
α β
γ δ

)
∈ Γ0(2),

where

Γ0(2) = {
(
α β
γ δ

)
∈ Γ(1) : 2|β} =

(
1 1
−1 0

)
Γ0(2)

(
0 −1
1 0

)
.

℘(
τ

2
+

1

2
;
ατ + β

γτ + δ
) = (γτ + δ)2℘(

τ

2
+

1

2
; τ).

We skip the verification that ℘( τ2 ) and ℘(1
2) satisfy the regularity condition at the

cusps. Since both Γ0(2) and Γ0(2) contain Γ(2) as its subgroup, we see that

℘(
τ

2
+

1

2
), ℘(

τ

2
), ℘(

1

2
)

are modular forms of weight 1 with respect to Γ(2).
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Exercises

6.1 Show that ℘(z) is a time independent solution of the Kortweg-de Vries partial differ-
ential equation

ut = uxxx − 12uux, u = u(x, t).

6.2 Compute the first two coefficients c6, c8 in the Laurent expansion of ℘(z).

6.3 Show that ℘(z) = − d2

dz2 log ϑ 1
2

1
2
(z; τ)+constant.

6.4 Let Eτ \ {0} → C2 be the map given by z → (℘(z), ℘(z)′). Show that the images of
the non-trivial 2-torsion points of Eτ are the points (αi, 0), where αi are the zeroes of the
polynomial 4x3 − g2x− g3.

6.5 Show that

det

 ℘(z1) ℘′(z1) 1
℘(z2) ℘′(z2) 1
r℘(z3) ℘′(z3) 1

 = 0

whenever z1 + z2 + z3 = 0. Deduce from this an explicit formula for the group law on
the projective cubic curve y2t = 4x3 − g2xt

2 − g3t
3.

6.6 (Weierstrass ζ-function) It is defined by

Z(z; Λ) =
1

z
+

∑
ω∈Λ\{0}

(
1

−ω
+

1

ω
+

z

ω2

)
.

Let Λ = Zω1 + Zω2. Show that

(i) Z ′(z) = −℘(z);

(ii) Z(z + ωi) = Z(z) + ηi, i = 1, 2 where ηi = Z(ωi/2);

(iii) η1ω2 − η2ω1 = 2πi;

(iv) Z(γz; γ · Λ) = γ−1Z(z; ·Λ), where γ is any nonzero complex number.

6.7 Let φ(z) be a holomorphic function satisfying

φ(z)′/φ(z) = Z(z),

(i) Show that φ(−z) = −φ(z);

(ii) φ(z + ωi) = −eηi(z+
ωi
2 φ(z);

(iii) φ(z) = σ(z), where σ(z) is the Weierstrass σ-function.
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6.8 Using the previous exercise show that the Weierstrass σ-function σ(z) admits an in
finite product expansion of the form

σ(z) = z
∏

ω∈Λ\{0}

(1− z

ω
)e

z
ω

+ 1
2

( z
ω

)2

which converges absolutely, and uniformly in each disc |z| ≤ R.

6.9 LetEτ be an elliptic curve and y2 = 4x3−g2x−g3 be its Weierstrass equation. Show
that any automorphism of Eτ is obtained by a linear transformation of the variables (x, y)
which transforms the Weierstrass equation to the form y2 = 4x3− c4g2x− c6g3 for some
c 6= 0. Show that Eτ is harmonic (resp. anharmonic) if and only if g3 = 0 (resp. g2 = 0).

6.10 Let k be an even integer and letL ⊂ Rk be a lattice with a basis (e1, . . . , ek). Assume
that ||v||2 is even for any v ∈ L. Let D be the determinant of the matrix (ei · ej) and N be
the smallest positive integer such that N ||v∗||2 ∈ 2Z for all v∗ ∈ Rk satisfying v∗ ·w ∈ Z
for all w ∈ L. Define the theta series of the lattice L by

θL(τ) =

∞∑
n=0

#{v ∈ L : ||v||2 = 2n}e2πinτ .

(i) Show that θL(τ) =
∑

v∈L e
πiτ ||v||2 ;

(ii) Show that the functions Θ(0; τ)k discussed in the beginning of Lecture 6 are special
cases of the function θL.

(iii) Show that θL(τ) is “almost” modular form for the group

Γ0(N) = {
(
α β
γ δ

)
∈ SL(2,Z) : N |c},

i.e.

θL(
ατ + β

γτ + δ
) = (γτ + δ)k/2χ(d)θL(τ),

(
α β
γ δ

)
∈ Γ0(N),

where χ(d) = ( (−1)
k
2D
d ) is the quadratic residue symbol.

(iv) Prove that θL(τ) is a modular form for Γ0(2) whenever D = 1 and k ≡ 0 mod 4.

6.11 Let Φ(z; τ) be a function in z and τ satisfying the assumptions of Theorem 6.2 (such
a function is called a Jacobi form of weight m and index 0 with respect to the group Γ).
Show that

(i) ℘(z; τ) is a Jacobi form of weight 2 and index 0 with respect to Γ(1);
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(ii) σ(z; 1, τ) is a Jacobi form of weight 1 with respect to Γ(1).

6.12 Let n be a positive integer greater than 2. Consider the map of a complex torus
Eτ \ {0} → Cn given by the formula

z → (1, ℘(z), . . . , ℘(z)
n−1

2 , ℘(z)′, ℘(z)℘(z)′, . . . , ℘(z)
n−3

2 ℘(z)′)

if n is odd and

z → (1, ℘(z), . . . , ℘(z)
n
2 , ℘(z)′, ℘(z)℘(z)′, . . . , ℘(z)

n−4
2 ℘(z)′)

if n is even. Show this map extends uniquely to a holomorphic map fn : Eτ → Pn. Show
that fn is an isomorphism onto its image (a normal elliptic curve of degree n). Find the
image for n = 4.

6.13 Let q = e2πiτ , v = e2πiz.

(i) Show that the function

X =
∑
r∈Z

1

(qr/2v
1
2 − q−r/2v−

1
2 )2
− 1

12
+

∑
r∈Z,r 6=0

1

(qr/2 − q−r/2)2

coincides with ℘(z).

(ii) Using (i) show that ℘(z; τ) considered as a function of τ has the following Fourier
expansion

1

(2πi)2
℘(z; τ) =

1

(v
1
2 − v−

1
2 )2

+

∞∑
n=1

(
∑
d|n

d(vd + v−d))qn+

1

12

(
1− 24

∑
σ1(n)qn

)
.
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Lecture 7

The Algebra of Modular Forms

7.1 Let Γ be a subgroup of finite index of Γ(1). We set

Mk(Γ) = {modular forms of weight k with respect to Γ},

We also denote by Mk(Γ)0 the subspace of cuspidal modular forms. It is clear that
Mk(Γ) is a vector space over C. Also multiplication of functions defines a bilinear map

Mk(Γ)×Ml(Γ)→Mk+l(Γ).

This allows us to consider the direct space

M(Γ) =
∞⊕

k=−∞
Mk(Γ) (7.1)

as a graded commutative algebra over C. SinceMk(Γ)∩Ml(Γ) = {0} if k 6= l, we may
viewM(Γ) as a graded subalgebra of O(H).

Notice that

M(Γ)0 =

∞⊕
k=−∞

Mk(Γ)0 (7.2)

is an ideal inM(Γ).
We shall see later that there are no modular forms of negative weight.

7.2 Our next goal is to prove that the algebraM(Γ) is finitely generated. In particular
each spaceMk(Γ) is finite-dimensional.

Let f(z) be a meromorphic function in a neighborhood of a point a ∈ C and let

f(z) =

∞∑
n=m

cn(z − a)n

83
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be its Laurent expansion in a neighborhood of the point a. We assume that cm 6= 0 and
set νa(f) = m. We shall call the number νa(f) the order ( of zero if m ≥ 0 or of pole if
m < 0) of f at a. If f is meromorphic at∞ we set

ν∞(f) = ν0(f(1/z)).

Note that when f is a modular form with respect to a group Γ we have

νg·τ (f) = ντ (f), ∀g ∈ Γ.

For each τ ∈ H let

mτ =


2 if τ ∈ Γ(1) · i,
3 if τ ∈ Γ(1) · e2πi/3,
1 otherwise.

(7.3)

Lemma 7.1. Let f(τ) be a modular form of weight k with respect to the full modular
group Γ(1). Then ∑

τ∈H/Γ(1)

ντ (f)

mτ
=
k

6
.

Proof. Consider the subset P of the modular figure D obtained as follows. First delete
the part of D defined by the condition Im τ > h for sufficiently large h such that f has
no zeroes or poles for Im τ ≥ h. Let Cr(ρ), Cr(ρ

2), Cr(i) be a small circle of radius r
centered at ρ = eπi/3 at ρ2 and at i, respectively. Delete fromD the intersection with each
of these circles. Finally if f(z) has a zero or pole a at the boundary of D we delete from
D its intersection with a small circle of radius r with center at a.

Fig.1
Applying the Cauchy Residue Theorem we obtain

1

2πi

∫
∂P

f ′dτ

f
=
∑
τ∈P

ντ (f) =
∑
τ∈P

ντ (f)

mτ
.

When we integrate over the part ∂P1 of the boundary defined by Im τ = h we obtain

1

2πi

∫
∂P1

f ′dz

f
= −ν∞(f).
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In fact, considering the Fourier expansions of f at∞, we get

f(τ) =
∞∑

n=ν∞(f)

ane
2πinτ ,

f(τ)′ =
∞∑

n=ν∞(f)

(2πin)ane
2πniτ .

Use the function q = e2πiτ to map the segment {τ : |Re τ | ≤ 1
2 , Im τ = h} onto the

circle C : |q| = e−2πh. When we move along the segment from the point 1
2 + ih to the

point −1
2 + ih the image point moves along the circle in the clockwise way. We have

1

2πi

∫
∂P1

f ′dτ

f
= − 1

2πi

∫
C

(2πiν∞(f)qν∞(f) + . . .)dq

2πiq(aν∞(f)qν∞(f) + . . .)
= −ν∞(f).

If we integrate along the part ∂P2 of the boundary of P which lies on the circleCr(ρ2)
we get

lim
r→0

1

2πi

∫
∂P2

f ′dτ

f
= −1

6
νρ2(f).

This is because the arc ∂P2 approaches to the one-sixth of the full circle when its ra-
dius goes to zero. Also we take into account that the direction of the path is clockwise.
Similarly, if we let ∂P3 = ∂P ∩ Cr(i), ∂P4 = ∂P ∩ Cr(ρ), we find

lim
r→0

1

2πi

∫
∂P3

f ′dτ

f
= −1

2
νi(f).

lim
r→0

1

2πi

∫
∂P4

f ′dτ

f
= −1

6
νρ(f).

Now the transformation T : τ → τ + 1 transforms the path along ∂P from −1
2 + ih to

ρ2 to the path along the boundary from the point ρ to the point 1
2 + ih. Since our function

satisfies f(τ + 1) = f(τ) and we are moving in the opposite direction along these paths,
the two contributions to the total integral cancel out. Finally, if we consider the remaining
part of the boundary, and use the transformation S : τ → − 1

τ we obtain

df(−1
τ )

f(−1
τ )

=
d(τ2kf(τ)

f(τ))
= 2k

dτ

τ
+
df

f
,

When we move from ρ2 to i the point S · τ moves from ρ to i. This easily gives us that the
portion of the integral over the remaining part of the boundary is equal to (when r goes to
zero)

1

2πi

∫
γ

−2kdτ

τ
= −2k(− 1

12
) =

k

6
,
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where γ is the part of the circle τ = 1 starting at ρ2 and ending at i. Collecting everything
together we obtain the assertion of the lemma.

Theorem 7.1. Mk(Γ(1)) = {0} if k < 0. If k ≥ 0, we have

dimMk(Γ(1)) =

{
[k/6] if k ≡ 1 mod (6)

[k/6] + 1 otherwise.

Proof. Let f(τ) ∈ Mk(Γ(1)). Then ντ ≥ 0 for all τ ∈ H, and Lemma 7.1 implies
that k6 = A + B

2 + C
3 for some non-negative integers A,B,C. Clearly this implies that

dimMk(Γ(1)) = {0} when k < 0 or k = 1. If k = 2 we must have A = B = 0, C = 1.
Since f ∈M2(Γ(1)) we have

νρ(f) = νρ2(f) = 1.

In particular, this is true for g2. For any other f ∈ M2(Γ(1)) we have f/g2 is Γ(1)
invariant and also holomorphic at∞ (since g2 is not a cusp form). This shows that f/g2

is constant and
M2(Γ(1)) = Cg2.

Similar arguments show that
M3(Γ(1)) = Cg3,

M4(Γ(1)) = Cg2
2,

M5(Γ(1)) = Cg2g3.

This checks the assertion for k < 6. Now for any cuspidal form f ∈ Mk(Γ(1)) with
k > 6 we have f/∆ is a modular form of weight k − 6 (because ∆ does not vanish onH
and has a simple zero at infinity). This shows that for k > 6

Mk(Γ(1))0 = ∆Mk−6(Γ(1)). (7.4)

SinceMk(Γ(1))/Mk(Γ(1))0 ∼= C (we have only one cusp) we obtain for k > 6

dimMk(Γ(1)) = dimMk−6(Γ(1)) + 1.

Now the assertion follows by induction on k.

Corollary 7.1. The algebraM(Γ(1)) is generated by the modular forms g2 and g3. The
homomorphism of algebras φ : C[T1, T2]→M(Γ(1)) defined by sending T1 to g2 and T2

to g3 defines an isomorphism betweenM(Γ(1)) and the algebra of complex polynomials
in two variables.
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Proof. The first assertion is equivalent to the surjectivity of the homomorphism φ. Let us
prove it. We have to show that any f ∈ M(Γ(1)) can be written as a polynomial in g2

and g3. Without loss of generality we may assume that f ∈ M(Γ(1))k for some k ≥ 0.
Write k in form k = 2a + 3b for some nonnegative integers a and b. Since ga2g

b
3 does

not vanish at infinity, we can find a constant c such that f − cga2gb3 is a cuspidal form. By
(7.4), it is equal to g∆ for some g ∈M(Γ(1))k−6. Since ∆ is a polynomial in g2 and g3,
proceeding by induction on k we prove the first assertion. To prove the second assertion
we use that any element F (T1, T2) from the kernel of φ can be written uniquely as a sum
of polynomials Gd satisfying

Gd(τ
2T1, τ

3t3) = τdGd(T1, T2)

for some d > 0 and any τ ∈ H. In fact, writing F as a sum of monomials in T1, T2 we
define Gd as the sum of monomials T i1T

j
2 entering into F such that 2i+ 3j = d. Since

F (g2(−1/τ), g3(−1/τ)) = F (τ2g2, τ
3g3) ≡ 0,

each Gd must belong to the kernel of φ. This allows us to assume that F = Gd for some
d. Dividing by T d2 we obtain Gd(g2, g3)/gd3 = G(g3

2/g
2
3) ≡ 0 for some polynomial G in

one variable T = T1/T2. Since C is algebraically closed, g3
2/g

2
3 must be a constant. But

this is impossible since g3 vanishes only at Γ · i and g2 vanishes only at Γ(1) · ρ.

Corollary 7.2. The ideal of cuspidal modular formsM0(Γ(1)) is generated by ∆.

Proof. We have seen already in (7.4) thatMk(Γ(1))0 = ∆Mk−6(Γ(1)). Also we have
Mk(Γ(1))0 = {0} for k < 6. This checks the assertion.

7.3 Let us give some examples.

Example 7.1. We know that the Eisenstein series E2k is a modular form of weight k with
respect to Γ(1). SinceM4(Γ(1)) = Cg2

2 = CE2
4 , comparing the constant coefficients in

the Fourier expansions we obtain

E8 =
ζ(8)

2ζ(4)2
E2

4 .

Comparing the other coefficients we get a lot of identities between the numbers σk(n).
For example, we have

σ7(n) = σ3(n) + 120
∑

0<m<n

σ3(m)σ3(n−m). (7.5)

Similarly we have

E10 =
ζ(10)

2ζ(4)ζ(6)
E4E6.
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This gives us more identities. By the way our old relation

(2π)12∆ = g3
2 − 27g2

3

gives the expression of the Ramanujan function τ(n) defined by

∆ = q
∞∏
m=1

(1− qm)24 =
∑
n=0

τ(n)qn

in terms of the functions σk(n):

τ(n) =
65

756
σ11(n) +

691

756
σ5(n)− 691

3

∑
0<m<n

σ5(m)σ5(n−m). (7.6)

We shall prove in Lecture 11 that τ(n) satisfies

τ(nm) = τ(n)τ(m) if (n,m) = 1,

τ(pk+1) = τ(p)τ(pk)− p11τ(pk−1) if p is prime, k ≥ 0.

Example 7.2. LetL be a lattice in Rn of rank n such that for any v ∈ L the Euclidean norm
||v||2 takes integer values. We say that L is an integral lattice in Rn. If (v1, . . . , vn) is a
basis of Λ, then the dot products aij = vi ·vj define an integral symmetric non-degenerate
matrix, hence an integral quadratic form

Q =

n∑
i,j=1

aijxixj .

Obviously for any v = (a1, . . . , an) 6= 0 we have

Q(v) = ||v||2 > 0.

In other words, Q is positive definite. Conversely given any positive definite integral
quadratic form Q as above, we can find a basis (e′1, . . . , e

′
n) such that Q diagonalizes, i.e.

its matrix with respect to this basis is the identity matrix. Let φ : Rn → Rn be the linear
automorphism which sends the standard basis (e1, . . . , en) to the basis (e′1, . . . , e

′
n). Then

the pre-image of the standard lattice Zn = Ze1 + . . . + Zen is an integral lattice L with
the distance function Q.

Let us define the theta function of the lattice L by setting

θL(τ) =

∞∑
m=0

rL(m)qm =
∑
v∈L

qQ(v)/2, (7.7)
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where
rL(m) = #{v ∈ L : Q(v) = 2m}.

(see Exercise 6.10). Since rL(m) ≤ (2m)n/2 (inscribe the cube around the sphere of
radius

√
2m), and hence grows only polynomially, we easily see that θL(τ) absolutely

converges on any bounded subset ofH, and therefore defines a holomorphic form onH.
We shall assume that L is unimodular, i.e. the determinant of the matrix (aij) is equal

to 1. This definition does not depend on the choice of a basis in L and is equivalent to the
property that L is equal to the set of vectors w in Rn such that w · v ∈ Z for all v ∈ L.
For example, if L is the standard lattice Zn we see from Lecture 4 that

θZn(τ) = Θ(0; τ)n.

Repeating the argument from the beginning of Lecture 4 we obtain that, for any unimod-
ular lattice L,

θL(−1/τ) = (−iτ)n/2θL(τ). (7.8)

Also, if we additionally assume that L is even, i.e. Q(v) ∈ 2Z for any v ∈ L, we
obviously get

θL(τ + 1) = θL(τ).

In particular, if 8|nwe see that θL(τ) is a modular form with respect to Γ(1). It is amazing
that one does not need to assume that n is divisible by 8. It is a fact! Let us prove it.
Assume n is not divisible by 8. Replacing n by 2n (if n is even)(resp. 4n if n is odd), and
L by L⊕L (resp. by L⊕L⊕L⊕L), we may assume that n is divisible by 4 but not by
8. By (7.8) we get

θL(−1/τ) = −τn/2θL(τ).

Since θL is always periodic with respect to 1, this implies

θL|n
2
ST = −θL|n

2
T = −θL.

Obviously this contradicts the fact that (ST )3 = 1. Now we know that for any even
unimodular lattice

θL ∈Mn/4(Γ(1)). (7.9)

Now let n = 8. Since M2(Γ(1)) = CE4 we see that θL is proportional to the
Eisenstein series E4. Comparing the constant coefficients we see that

θL = E4/2ζ(4).

In particular, for any m ≥ 1,

rL(m) = 240σ3(m). (7.10)
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In fact there exists only one even unimodular lattice in R8 (up to equivalence of lattices).
The lattice is the famous E8 lattice, the root lattice of simple Lie algebra of type E8.

Fig.2
Here the diagram describes a symmetric matrix as follows. All the diagonal elements

are equal to 2. If we order the vertices, then the entry aij is equal to −1 or 0 dependent
on whether the i-th vertex is connected to the j-th vertex or not, respectively.

Take n = 16. Since M4(Γ(1)) = CE8, we obtain, by comparing the constant
coefficients,

θL = E8/2ζ(8).

In particular, we have
rL(m) = 16σ7(m)/B4, (7.11)

whereB4 is the fourth Bernoulli number (see Lecture 6). There exist two even unimodular
lattices in R16. One is E8 ⊕ E8. Another is Γ16 defined by the following graph:

Fig.3
Now let n = 24. The spaceM6(Γ(1)) is spanned by ∆ and E12. We can write

θL =
1

2ζ(12)
E12 + cL∆.

This gives

rL(m) =
65520

691
σ11(m) + cLτ(m), (7.12)

where τ(m) is the Ramanujan function (the coefficient at qm in ∆). Setting m = 1, we
get

cL = rL(1)− 65520

691
. (7.13)

Clearly, cL 6= 0.
Except obvious examplesE8⊕E8⊕E8 orE8⊕Γ16 there are 22 more even unimodular

lattices of rank 24. One of them is the Leech lattice Λ. It differs from any other lattice by
the property that rΛ(1) = 0. So,

rL(m) =
65520

691
(σ11(m)− τ(m)), (7.14)

In particular, we see that
τ(m) ≡ σ11(m) mod 691.

This is one of the numerous congruences satisfied by the Ramanujan function τ(m).
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7.4 Our goal is to prove an analog of Theorem 7.1 for any subgroup of finite index Γ
of Γ(1). Let Γ′ ⊂ Γ be two such subgroups. Assume also that Γ′ is normal in Γ and
let G = Γ/Γ′ be the quotient group. The group G acts on Mk(Γ

′) as follows. Take a
representative g of ḡ ∈ G. Then set, for any f ∈Mk(Γ

′),

ḡ · f = f |kg.

Since f |kg′ = f for any g′ ∈ Γ′ this definition does not depend on the choice of a
representative.

The following lemma follows from the definition of elements ofMk(Γ).

Lemma 7.2. Let Γ′ be a normal subgroup of Γ and G = Γ/Γ′. Then

Mk(Γ) =Mk(Γ
′)G = {f ∈Mk(Γ

′) : g · f = f,∀g ∈ G}.

It follows from this lemma that the algebraM(Γ) is equal to the subalgebra ofM(Γ′)
which consists of elements invariant with respect to the action of the group Γ/Γ′. Let n be
the order of the group G = Γ/Γ′ (recall that we consider only subgroups of finite index
of Γ(1)). For any f ∈M(Γ′) we have∏

g∈G
(f − (g · f)) = 0

since the factor of this product corresponding to 1 is equal to zero. We have

fn + h1f
n−1 + . . .+ hn = 0, (7.15)

where hi are symmetric polynomials in g · f, g ∈ G. Clearly they are invariant with
respect to G and hence, by Lemma 7.2, represent elements ofM(Γ). In particular we see
that for any normal subgroup Γ of Γ(1)

Mk(Γ) = {0}, k < 0.

In fact, any modular form of negative weight k will satisfy an equation (7.6) where we
may assume that each coefficient hi is a modular form of weight ik with respect to Γ(1).
However no such modular forms exist except zero. If Γ is not normal we choose a normal
subgroup of finite index Γ′ of Γ and apply Lemma 7.2.

Lemma 7.3. Let B be any commutative algebra over a field F without zero divisors and
A be a Noetherian subalgebra of B. Assume that each element b ∈ B satisfies a monic
equation with coefficients in A:

bn + a1b
n−1 + . . .+ an = 0

(we say in this case that that B is integral over A). Also assume that the field of fractions
of B is a finite extension of the field of fractions of A. Then B is finitely generated F -
algebra if and only if A is finitely generated F -algebra.
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Proof. This fact can be found in any text-book in commutative algebra and its proof will
be omitted.

Theorem 7.2. For any subgroup Γ of finite index of Γ(1) the algebraM(Γ) is a finitely
generated algebra over C.

Proof. Let Γ′ be a normal subgroup of finite index in Γ(1) which is contained in Γ. It
always can be found by taking the intersection of conjugate subgroups g−1 · Γ · g, g ∈
Γ(1). We first apply Lemma 7.3 to the case when B = M(Γ′), A = M(Γ(1)). Since
A ∼= C[T1, T2] is finitely generated, B is finitely generated. It follows easily from (7.15)
that the field of fractions of B is a finite extension of the field of fractions of A of degree
equal to the order of the group Γ/Γ′. Next we apply the same lemma to the case when
B =M(Γ′), A =M(Γ). ThenB is finitely generated, henceA is finitely generated.

Corollary 7.3. The linear spacesMk(Γ) are finite-dimensional.

Proof. Let f1, . . . , fk be a set of generators of the algebraMk(Γ). Writing each fi as a
linear combination of modular forms of different weights, and then adding to the set of
generators all the summands, we may assume thatMk(Γ) is generated by finitely many
modular forms fi ∈ Mki(Γ), i = 1, . . . , n. Now Mk(Γ) is spanned as a vector space
over C by the monomials f i11 . . . f inn where k1i1 + . . . + inkn = k. The number of such
monomials is finite. It is equal to the coefficient at tk of the Taylor expansion of the
rational function

n∏
i=1

1

(1− tki)
.

In the next lecture we shall give an explicit formula for the dimension of the spaces
Mk(Γ).

Exercises
7.1 Find a fundamental domain for the principal congruence subgroup Γ(2) of level 2.
7.2 Using Exercise 7.1 find and prove an analog of Lemma 7.1 for the case Γ = Γ(2).
7.3 Let n = 8k. Consider the subgroup Γn of Rn generated by vectors v = (a1, . . . , an)
with ai ∈ Z and a1 + . . .+ an ∈ 2Z and the vector (1

2 , . . . ,
1
2).

(i) Show that Γn is an even unimodular lattice in Rn.

(ii) Show that Γ8 is isomorphic to the lattice E8 defined in the lecture.
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(iii) Show that Γ16 can be defined by the graph from Fig.3

(iv) Show that Γ16 is not isomorphic to Γ8 ⊕ Γ8.

(v) Compute the number of points (x1, . . . , x8) ∈ R8 such that 2xi ∈ 2Z, xi − xj ∈
Z, x1 + . . .+ x8 ∈ Z, x2

1 + . . .+ x2
8 = 2N , where N = 1, 2.

7.4 Let L ⊂ Rn be an integral lattice not necessary unimodular. Using the Poisson
formula from Lecture 4 show that

θL(−1

τ
) = (

τ

i
)n/2

1

D
1/2
L

θL∗(τ),

where L∗ is the dual lattice defined by L∗ = {v ∈ Rn : v · x ∈ Z for all x ∈ L} and DL

is the discriminant of L defined by DL = #L∗/L.

7.5 Let C be a linear subspace of Fn2 (a linear binary code). Let LC = 1√
2
r−1(C), where

r is the natural homomorphism Zn → Fn2 .

(i) Show that LC is an integral lattice if and only if for any x = (ε1, . . . , εn) ∈ C the
number wt(x) = #{i : εi 6= 0} (called the weight of x) is divisible by 4. In this
case we say that C is a doubly even linear code.

(ii) Show that the discriminant of the lattice LC is equal to 2n−2k, where k = dimC.

(iii) Let C⊥ = {y ∈ Fn2 : x · y = 0, ∀x ∈ C}. Show that LC is integral if and only if
C ⊂ C⊥.

(iv) AssumeC is doubly even. Show that LC⊥ = L∗C . In particular, LC is a unimodular
even lattice if and only if C = C⊥ (in this case C is called a self-dual code).

(v) Let C ⊂ Fn2 be a self-dual doubly even code. Show that n must be divisible by 8.

7.6 Let A(τ) = ϑ(0; τ), B(τ) = ϑ 1
2

0(0; τ).

(i) Show that

(A(−1/τ), B(−1/τ)) = (
τ

i
)1/2(A(τ), B(τ)) ·

(
1√
2

1√
2

1√
2
− 1√

2

)
.

(ii) Show that the expression A4B4(A4 − B4)4 is a modular form of weight 6 with
respect to Γ(1).

(iii) Show that A4B4(A4 −B4)4 = 16∆(τ).
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(iv) Show that A8 + 14A4B4 +B8 = 1
2ζ(4)E4(τ).

7.7 Let C ⊂ Fn2 be a linear code. Define its weight enumerator polynomial by

WC(X,Y ) =
∑
x∈C

Xn−wt(x)Y wt(x) =

n∑
i=0

AiX
n−iY i,

where Ai is the number of x ∈ C with wt(x) = i.

(i) Show that
θLC = WC(A,B).

(ii) Prove MacWilliams’s Identity:

WC⊥(X,Y ) =
1

2dimC
WC(X + Y,X − Y ).

(iii) Using Theorem 7.1 show that for any self-dual doubly even code the enumerator
polynomialWC(X,Y ) can be written as a polynomial inX ′ = X8+14X4Y 4+Y 8

and Y ′ = X4Y 4(X4 − Y 4)4 (Gleason’ Theorem). where A,B are defined in the
previous problem.

(iv) Deduce from (iii) that the enumerator polynomial WC(X,Y ) of any doubly even
self-dual linear code is a symmetric polynomial inX,Y (i.e. WC(X,Y ) = WC(Y,X)).
Give it an independent proof using only the definition of WC(X,Y ).

7.8 Let C be a self-dual doubly even linear code in F24
2 and θLC (τ) =

∑
rLC (m)qm be

the theta function of the even unimodular lattice LC associated to it and WC(X,Y ) =∑
AiX

iY 24−i be its weight enumerator polynomial.

(i) Show that

rLC (2) = 48 + 16A4, rLC (4) = 28A8 + 640A4 + 1104.

(ii) Using (7.13) show that A8 = 759− 4A4.

7.9 Let A = ⊕∞n=−∞An be a commutative graded algebra over a field F . Assume A has
no zero divisors, A0 = F · 1 and dimAN > 1 for some nN > 0. Show that An = 0 for
n < 0. Apply this to give another proof thatMk(Γ) = 0 for k < 0.
7.10 Find an explicit linear relation between the modular forms E16, E

2
8 and E4E10,

where E2k denotes the Eisenstein series. Translate this relation into a relation between
the values of the functions σd(m).
7.11 Let f(τ) be a parabolic modular form of weight k with respect to Γ(1).
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(i) Show that the function φ(τ) = |f(τ)|(Im τ)k is invariant with respect to Γ(1).

(ii) Show that φ(τ) is bounded onH (it is not true if f is not cuspidal).

(iii) Show that the coefficient an in the Fourier expansion f(τ) =
∑
anq

n can be
computed as the integral

an =

∫ 1

0
f(x+ iy)e−2πin(x+iy)dx.

(iv) Using (iii) prove that |an| = O(nk) (Hecke’s Theorem).

7.12 Let L be an even unimodular lattice in R8k and rL(m) be defined as in Example 7.2.
Using the previous exercise show that

rL(m) =
8k

B2k
σ4k−1(m) +O(m2k).

7.13 Let L = E8 ⊕ E8 ⊕ E8. Show that

θL =
1

ζ(12)
E12 +

432000

691
∆.
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Lecture 8

The Modular Curve

8.1 In this lecture we shall give an explicit formula for the dimension of the spaces
Mk(Γ), where Γ is any subgroup of finite index in SL(2,Z). For this we have to apply
some techinique from algebraic geometry. We shall start with equipping H∗/Γ with a
structure of a compact Riemann surface.

Let Γ be a subgroup of SL(2,R). We say that Γ is a discrete subgroup if the usual
topology in SL(2,R) (considered as a subset of R4) induces a discrete topology in Γ. The
latter means that any point of Γ is an open subset in the induced topology. Obviously
SL(2,Z) is a discrete subgroup of SL(2,R). We shall consider the natural action of
SL(2,R) on the upper half-planeH by Moebius transformations.

Lemma 8.1. Any discrete subgroup Γ of SL(2,R) acts onH properly discontinuously.

Proof. Observe that the group SL(2,R) acts transitively onH (view the latter as a subset
of R2 of vectors with positive second coordinate). For any point z ∈ H the stabilizer
group is conjugate to the stabilizer of say z = i. The latter consists of matrices

(
a b
c d

)
∈

SL(2,R) such that a = d, b = −c. It follows that this group is diffeomorphic to the circle
{(a, b) ∈ R2 : a2 + b2 = 1}. This shows that the map f : SL(2,R) → H defined by
f(g) = g · i is diffeomorphic to a circle fibration over H. This easily implies that pre-
image of a compact set is compact. Let A,B be two compact subsets in H. We have to
check that X = {g ∈ Γ : g(A) ∩ B 6= ∅} is finite. Clearly, g(A) ∩ B 6= ∅ if and only if
gg′ = g′′ for some g′ ∈ f−1(A), g′′ ∈ f−1(B). Since A′ = f−1(A) and B′ = f−1(B)
are compact subsets of the group SL(2,R) the set B′ · A′−1 is also compact. In fact,
this set is the image of the compact subset B′ × A′ of SL(2,R) × SL(2,R) under the
continuous map (g′, g′′) → g′g′′−1. Thus X is equal to the intersection of the discrete
subset Γ with a compact subset of SL(2,R), hence it is a finite set.

Applying the previous Lemma and Theorem 2.2 we obtain that H/Γ has a structure

97
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of a Riemann surface and the canonical map

πΓ : H → H/Γ (8.1)

is a holomorphic map.
Example 8.1. Let Γ = Γ(1). Let us show that there exists a holomorphic isomorphism

H/SL(2,Z) ∼= C.

This shows that the set of isomorphism classes of elliptic curves has a natural structure of
a complex manifold of dimension 1 isomorphic to the complex plane C. Since g3

2 and ∆
are of the same weight, the map

H → P1(C), τ → (g2(τ)3,∆(τ))

is a well defined holomorphic map. Obviously it is constant on any orbit of Γ(1), hence
factors through a holomorphic map

f : H/Γ(1)→ P1(C).

Since ∆ does not vanish onH, its image is contained in P1(C)\{∞} = C. I claim that f
is one-to-one onto C. In fact, for any complex number c the modular form f = g3

2−c∆ is
of weight 6. It follows from Lemma 7.1 that f has either one simple zero, or one zero of
multiplicity 2 at the elliptic point of order 2, or a triple zero at the elliptic point of index
3. This shows that each c ∈ Z occurs in the image of j onH/Γ and only once.

We leave to the reader the simple check that a bijective map between two complex
manifolds of dimension 1 is an isomorphism.

Notice that the explicit isomorphism H/SL(2,Z) → C is given by the holomorphic
function τ → g3

2/(g
3
2 − 27g2

3). The function

j(τ) =
1728g3

2

g3
2 − 27g2

3

=
1728(2π)12g3

2

∆
(8.2)

is called the absolute invariant. The constant factor 1728 = 123 is inserted here to nor-
malize the coefficient at q−1 for the Fourier expansion of j at∞:

j(τ) = q−1 + 744 +

∞∑
n=1

cnq
n, q = e2πiτ . (8.3)

We have proved that
Eτ ∼= Eτ ′ ⇐⇒ j(τ) = j(τ ′). (8.4)

The coefficients cn in (8.3) have been computed for n ≤ 100. The first three are

c1 = 196884, c2 = 21493760, c3 = 864299970.

They are all positive and equal to the dimensions of linear representations of the Griess-
Fisher finite simple group (also called the Monster group).
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8.2 The Riemann surfaceH/Γ is not compact. To compactify it we shall define a com-
plex structure on

H∗/Γ = H/Γ ∪ {cusps}. (8.5)

First we make H∗ a topological space. We define a basis of open neighborhoods of∞ as
the set of open sets of the form

Uc = {τ ∈ H : Im τ > c} ∪ {∞}, (8.6)

where c is a positive real number. Since SL(2,Z) acts transitively onH∗ \H we can take
for a basis of open neighborhoods of each x ∈ Q the set of g-translates of the sets Uc for
all c > 0 and all g ∈ SL(2,Z) such that g · ∞ = x. Each g(Uc) is equal to the union of
the point x and the interior the disk of radius r = 1

2γ2c
touching the real line at the point

x. In fact, if g =

(
α β
γ δ

)
, we have x = α/γ and

g(Uc) = {τ ∈ H : Im g−1 · τ > c} = {τ ∈ H :
Im τ

| − γτ + α|2
> c} =

{τ = x+ iy : (x− α

γ
)2 + (y − 1

2γ2c
)2 <

1

4γ4c2
}.

(8.7)

Now the topology onH∗/Γ is defined as the usual quotient topology: an open set inH∗/Γ
is open if and only if its pre-image in H is open. Since |γ| ≥ 1 in (8.7) unless g ∈ Γ∞,
we can find a sufficiently large c such that

Γ∞ = {g ∈ Γ : g(Uc) ∩ Uc 6= ∅}.

Now, if x = g1 · ∞ we deduce from this that

Γx = g1Γ∞g
−1
1 = {g ∈ Γ : g(g1(Uc)) ∩ g1(Uc) 6= ∅}. (8.8)

This shows that the pre-image of some open neighborhood of a cusp onH∗/Γ is equal to
the disjoint sum of open neighborhoods of the representatives of this cusp.

Theorem 8.1. Let Γ be a subgroup of finite index in SL(2,Z). The topological space
H∗/Γ admits a unique structure of a compact complex manifold of dimension 1 such that
H/Γ is an open submanifold.

Proof. To warm up let us first see this in the case Γ = SL(2,Z). We saw in Example
1 that H/Γ(1) ∼= C. The complex plane C admits a natural compactification. It is the
Riemann sphere P1(C) = C ∪ {∞}. The point ∞ represents the unique cusp of Γ(1).
Thus we see that

H∗/Γ ∼= P1(C). (8.9)
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Now let us consider the general case. The canonical holomorphic map πΓ(1) : H →
H/Γ(1) is equal to the composition of the holomorphic maps πΓ : H → H/Γ and
πΓ/Γ(1) : H/Γ→ H/Γ(1). It extends to the composition of continuous maps

π∗Γ(1) : H∗
π∗Γ→ H∗/Γ

π∗
Γ/Γ(1)→ H∗/Γ(1) ∼= P1(C).

First we see that the orbit spaceH∗/Γ is a Hausdorff topological space. This is obviously
true in the case Γ = Γ(1). SinceH/Γ is Hausdorff, we can separate any two points which
are not cusps. Since we can separate∞ onH∗/Γ(1) from any finite point, we can separate
any pre-image of ∞ in H∗/Γ(1), which is a cusp on H∗/Γ(1), from a point on H/Γ.
Finally we can separate any two cusps inH/Γ since the pre-image π∗Γ(1)

−1(U) of an open
neighborhood U of∞ ∈ H∗/Γ(1) is equal to the disjoint union of open neighborhoods
of points inH∗ \H = P1(Q). The pre-image π∗Γ(V (c)) of an open neighborhood V (c) of
a cusp c = Γ · x ∈ H∗/Γ is the disjoint union of open neighborhoods of points belonging
to the orbit Γ · x. Obviously for two different Γ-orbits c and c′ these sets are disjoint.
Thus the open sets V (c) and V (c′) are disjoint. Let U = g1(Uc) be a neighborhood of a
representative x = g1 · ∞ of some cusp c of Γ. The natural inclusion U → H∗ factors
through the map U/Γx → H∗/Γx. Taking c small enough and using (8.8) we see that
this map is injective. Its image is an open neighborhood Ū of the cusp c ∈ H∗/Γ. Let h

be the index of the cusp. Then Γx consists of matrices ±
(

1 mh
0 1

)
and hence the map

τ → e2πiτ/h sends U/Γx into C with the image isomorphic to an open disk. This defines
a natural complex structure on the neighborhood Ū . Notice that it is consistent with the
complex structure on Ū ∩H/Γ = Ū \{c}. Also it is easy to see that the map π∗Γ(1) extends
to the composition of holomorphic maps.

It remains to prove the last assertion, the compactness of H∗/Γ. First of all, we
replace Γ by a subgroup of finite index Γ′ which is normal in Γ(1). Then

H∗/Γ = (H∗/Γ′)/(Γ/Γ), H∗/Γ(1) = (H∗/Γ′)/(Γ/Γ(1))

It remains to use the following simple fact from topology:

Lemma 8.2. Let G be a finite group acting continuously on a topological space X . Then
X is compact if and only if X/G is compact.

Proof. Consider the projection π : X → X/G = Y . It is a surjective map. It is obvious
that the image of a compact space is compact. Assume that Y is compact. Take an open
cover {Ui} of X . Then replacing Ui with ∪g∈Gg(Ui) we may assume that each Ui is
G-invariant. Since Ui = π−1(π(Ui)) the sets π(Ui) are open in Y . Since Y is compact
we can find a finite subcover of {π(Ui)}. This will give us a finite subcover of {Ui}.
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Remark 8.1. The assertion of the previous theorem does not extend to any discrete sub-
group of SL(2,R). For example, if we take Γ = {1}, the space H∗ = H∗/{1} does
not have any complex structure. In fact, any open neighborhood U of ∞, after deleting
∞, must be isomorphic to the punctured open unit disk {z ∈ C : 0 < |z| < 1}. The
latter space is not simply-connected (its fundamental group is isomorphic to Z). However
U \ {∞} can be always chosen to be equal to Im τ > c which is simply-connected. How-
ever, there is a large class of discrete subgroups of SL(2,R), including subgroups of finite
index in SL(2,Z), for which the assertion of the theorem remains true. These groups are
called fuchsian groups of the first kind.

Definition. The compact Riemann surface H∗/Γ is called the modular curve associated
to the subgroup Γ of SL(2,Z) and is denoted by X(Γ).

8.3 Now let us discuss some generalities from the theory of compact Riemann surfaces.
Let X be a connected compact Riemann surface and f be a meromorphic function on X .
This means that the restriction of f to any open neighborhood U is equal to the quotient
of two holomorphic functions on U . Assume f 6= 0. For each point x ∈ X we can define
the order νx(f) of f at x as follows. First we identify a small neighborhood U of x with
a small neighborhood V of 0 in C. Then f is equal to the pre-image of a meromorphic
function on V which admits a Laurent expansion anzn+an+1z

n+1 + . . . with an 6= 0 for
some integer n. We set

νx(f) = n.

It is easy to see that this definition does not depend on the choice of an isomorphism
between U and V . When νx(f) > 0 (resp. νx(f) < 0) we say that νx(f) is the order of
zero (resp. the order of pole) of f at x. We have the following easily verified properties
of νx(f):

Lemma 8.3. Let x ∈ X and f, g be two meromorphic functions on X . Then

(i) νx(fg) = νx(f) + νx(g);

(ii) νx(f + g) = min{νx(f), νx(g)} if f + g 6= 0.

A meromorphic function on X is called a local parameter at x if νx(f) = 1. Lemma
8.3 (i) allows us to give an equivalent definition of νx(f). It is an integer such that for any
local parameter t at x, there exists an open neighborhood U in which

f = tνx(f)ε

for some invertible function ε ∈ O(U).

Let Div(X) be the free abelian group generated by the set X . Its elements are called
divisors. One may view a divisor as a function D : X → Z with finite support. It can be
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written as formal finite linear combinations D =
∑
axx, where ax = D(x) ∈ Z, x ∈ X .

For any D =
∑
axx ∈ Div(X) we define its degree by the formula:

deg(D) =
∑

ax. (8.10)

There is an obvious order in Div(X) defined by choosing positive elements defined
by positive valued divisors. We say D ≥ 0 if D is positive or equal to 0.

For any nonzero meromorphic function f we define the divisor of the function f by

div(f) =
∑
x∈X

νx(f)x. (8.11)

Here we use the compactness ofX to see that this sum is finite. Using Lemma 8.3, we
see that divisors of functions (principal divisors) form a subgroup P(X) of Div(X). Two
divisors from the same coset are called linearly equivalent. The group Div(X)/P(X) is
called the group of classes of divisors.

Finally we introduce the space

L(D) = {f ∈M(X)∗ : (f) +D ≥ 0}. (8.12)

The famous Riemann-Roch theorem provides a formula for the dimension of this space.
In order to state it we need two more ingredients in this formula. The first one is the notion
of the canonical class of divisors.

Definition. Let U be an open subset of a Riemann surfaceX and t : U → C is a holomor-
phic function defining an isomorphism from U to an open subset of C. A meromorphic
differential on U is an expression ω of the form

ω = f(t)dt,

where f(t) is a meromorphic function on U . A meromorphic differential on X is a col-
lection ω = {f(tU )dtU} of differentials on open subsets U as above which cover X . It
must satify the following compatibility property: if two open sets U and U ′ overlap then

fU = f ′U
dtU ′

dtU

when restricted to U ∩ U ′. Here dtU′
dtU

is the derivative of the function gU,U ′ = tU ′ ◦ t−1
U :

tU (U ∩ U ′)→ tU ′(U ∩ U ′).
Two meromorphic differentials are said be equal if they coincide when restricted to

the subcover formed by intersections of their defining covers.
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Let ω = {f(tU )dtU} be a meromorphic function on X . Define

νx(ω) = νx(fU ). (8.13)

Since the function dtU′
dtU

is invertible at x, we see that this definition is independent of the
choice of an open neighborhood U of x. The divisor

div(ω) =
∑
x

νx(ω)x. (8.14)

is called the divisor of the meromorphic differential ω
Since X is compact and hence can be covered by a finite set of locally compact sub-

sets, we see that div(ω) is well-defined.

Lemma 8.4. Let ω and ω′ be two meromorphic differentials on X . Then their divisors
div(ω) and div(ω′) are linearly equivalent.

Proof. Without loss of generality we may assume that ω and ω′ are defined on the same
open cover and use the same local parameter functions tU . If ω = fUdtU and ω′ = fU ′dtU
then the collection of meromorphic functions fU/f ′U define a meromorphic function F on
the wholeX (since fU/fU ′ = f ′U/f

′
U ′ for any two overlapping open subsets in the cover).

It follows from the definition that

div(ω) = div(ω′) + div(F ).

This proves the assertion.

Definition. The class of linear equivalence of the divisor div(ω) of a meromorphic dif-
ferential is called the canonical class of X and is denoted by KX .

8.4 We can state (without proof) the following:

Theorem 8.2. (Riemann-(Roch) For any divisor on X ,

dimL(D) = deg(D) + dimL(KX −D) + 1− g

for some non-negative integer g, called the genus of X .

Note that the space L(D) depends only on the linear equivalence class of D. In fact,
if D′ = D + div(f), then the map g → gf establishes a bijective linear map from L(D′)
onto L(D). We use this remark to explain the notation L(KX − D) (where KX is not
a divisor but rather a class of divisors). This remark, together with the Riemann-Roch
formula proves the following:
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Corollary 8.1. Linearly equivalent divisors have the same degree. In particular, for every
non-zero meromorphic function f on X ,

deg(div(f)) = 0. (8.15)

Proof. Replacing D with D + div(f), we do not change the dimensions of the spaces
L(D) and L(KX−D) but change deg(D) by deg(D+div(f)) = degD+deg(div(f)).
It follows from Riemann-Roch that deg(div(f)) = 0.

Corollary 8.2.
degKX = 2g − 2.

Proof. Take D = 0 and use that L(0) = O(X) = C. Here we use that a holomorphic
function on compact Riemannian surface is constant. This gives

g = dimL(KX). (8.16)

Now take D = KX and get deg(KX) = 2g − 2.

Theorem 8.3. Let bi(X) = dimHi(X,R) be the Betti numbers of X . Then

b1 = 2g, b0 = b2 = 1.

Proof. Since X is a connected compact manifold of dimension 2, this is equivalent to

e(X) =
2∑
i=0

(−1)ibi(X) = 2− 2g = −deg(KX). (8.17)

Let f be a non-constant meromorphic function on X (its existence follows from the
Riemann-Roch theorem). It defines a holomorphic map f : X → P1(C). For any point
x ∈ X set

ex(f) =

{
νx(f − z) if f(x) = z 6=∞
−νx(f) if f(x) =∞.

(8.18)

It is a positive integer. Since deg(div(f − z)) = 0 we obtain∑
x∈f−1(z)

ex(f) =
∑

x∈f−1(∞)

ex(f). (8.19)

Notice that, for any x ∈ X ,

νx(df) =

{
ex(f)− 1 if f(x) 6=∞
−ex(f)− 1 if f(x) =∞.

(8.20)
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Here df is the meromorphic differential defined locally by df
dtdt, where t is a local param-

eter at x. Since the degree of df is finite we obtain that there are only finitely many
points x ∈ X such that ex(f) > 1. In particular, there is a finite subset of points
S = {y1, . . . , ys} in P1(C) such that, for any y 6∈ S∑

x:f(x)=y

ex(f) = n = #f−1(y). (8.21)

Taking into account the formulas (??)-(8.21), we obtain

2g − 2 =
∑
x∈X

νx(div(df)) =
∑

y:f(y)6=∞

(ex(f)− 1) +
∑

y:f(y)=∞

(−ex(f)− 1) =

∑
x∈X

(ex(f)− 1)− 2
∑

f(x)=∞

ex =
∑
x∈X

(ex(f)− 1)− 2n =

∑
y∈Y

(n−#f−1(y))− 2n.

(8.22)

This is called the Hurwitz formula. The number n here is called the degree of the mero-
morphic function f . Formula (8.21) says that this number is equal to #f−1(y) for almost
all y ∈ P1(C).

We shall define the triangulation of X as follows. Take a triangulation T of P1(C)
in which each point yj is a vertex. Consider the pre-image T ′ of this triangulation in X .
Since, the restriction of f to P1(C)\S is a covering map, the open cell of our triangulation
are equal to connected components of the pre-images of open cells of the triangulation of
the sphere. Let d0, d1, d2 be the number of 0-,1-, and 2-cells T . Then we have nd1 1- and
nd2 2-cells in T ′. We also have

∑
y∈S #f−1(y) 0-cells in T ′. By the Euler formula we

have

e(X) =
∑
y∈S

#f−1(y)− nd1 + nd2 =

∑
y∈S

#f−1(y) + n(e(P1(C))− n#S = 2n−
∑
y∈S

(n−#f−1(y)).

Comparing this with (8.22) we obtain the assertion of the Theorem.

Example 8.2. Let X = P1(C). Take ω = dz on the complement of∞ and ω = −z2d1
z

on the complement to 0. Then div(ω) = −2∞. Hence deg(KX) = −2. This shows that
g = 0 for the Riemann sphere. Of course this agrees with the topological definition of the
genus.
Example 8.3. LetX = Eτ be a complex torus. The holomorphic differential form ω = dz
on C is invariant with respect to translations. Hence it descends to a 1-differential on X .
Obviously its divisor is zero. Thus deg(KX) = 0 and the genus equals 1. Again this
agrees with the topological definition.
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8.5 Let us compute the genus of the Riemann surface X = H∗/Γ. Consider the mero-
morphic function j(τ). Since it is a meromorphic modular form of weight 0 with respect
to Γ(1) it is a also a meromorphic modular form of weight 0 with respect to Γ. Hence
it can be considered as a meromorphic function on X . Let π : X → H∗/Γ(1) be the
canonical projection. Since j, considered as a function on H∗/Γ(1) has a unique sim-
ple pole at ∞, we may identify j with the pull-back π∗(z) of the coordinate function
z on P1(C). We use the Hurwitz formula (8.22) from the proof of Theorem 8.4. Let
x = Γ · τ ∈ X . If τ 6∈ Γ(1) · i ∪ Γ(1) · ρ ∪ Γ(1) · ∞, then x has an open neighborhood
holomorphically isomorphic to an open neighborhood of τ and an open neighborhood of
π(x). Since j − j(x) = π∗(z − j(x)), we see that ex(j) = 1. If τ ∈ Γ(1) · i, and
Γτ = {1}, then x has an open neighborhood isomorphic to an open neighborhood U of
τ but j(x) = j(τ) has an open neighborhood isomorphic to U/Γ(1)τ . This shows that
j − j(x) = π∗(z − j(x)) vanishes at x with order 2, i.e. ex(j) = 2. If τ ∈ Γ(1) · i, but
Γτ 6= {1}, then x has an open neighborhood isomorphic to an open neighborhood U of
j(x), hence ex(f) = 1. Similarly we find that ex(f) = 3 if τ ∈ Γ(1) · ρ and Γτ = {1}
and ex(j) = 1 if τ ∈ Γ(1) · ρ and Γτ 6= {1}. Finally, if x is a cusp of index h, then x has
an open neighborhood U isomorphic to Uc/(T h), where Uc = {τ : Im τ > c} ∪∞, and
j(x) =∞ has an open neighborhood V isomorphic to Uc/(T ). The restriction of π to U
is given by sending a local parameter in V to the h-th power of a local parameter in U .
Since 1/z is a local parameter∞, j has a pole at x of order h. This shows that νx(j) = h
and hence ex(j) = h.

To collect everything together and state a formula for the genus of X , let us make the
following:

Definition. Let X = H∗/Γ. A point x = Γ · τ is called an elliptic point of order 2 (resp,
of order 3) if τ ∈ Γ(1) · i (resp. τ ∈ Γ(1) · ρ) and Γτ 6= 1.

Theorem 8.4. The genus ofH∗/Γ is equal to

g = 1 +
µΓ

12
− r2

4
− r3

3
− r∞

2
,

where µΓ is the index of Γ/Γ ∩ (±1) in Γ(1)/(±1), r2 is the number of elliptic points of
Γ of order 2, r3 is the number of elliptic points of Γ of order 3, and r∞ is the number of
cusps of Γ.

Proof. Notice first that the number µΓ is equal to the degree of the meromorphic function
X(Γ) → X(Γ(1)) ∼= P1(C) defined by the j-function j : H → C. In fact, the number
of the points in the pre-image of a general z ∈ C is equal to the number of Γ-orbits in H
contained in a Γ(1)-orbit. Applying (8.22), we have

2g − 2 = −2µ+
∑
x∈X

(ex(j)− 1) =
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−2µ+
∑

j(x)=j(i)

(ex(j)− 1) +
∑

j(x)=j(ρ)

(ex(j)− 1) +
∑

j(x)=∞

(ex(j)− 1).

We have (µ− r2)/2 points over j(i) with ex(j) = 2 and (µ− r3)/3 points over j(ρ) with
ex(j) = 3. Also by (8.21), the sum of indices of cusps is equal to µ. This gives

2g − 2 = −2µ+ (µ− r2)/2 + 2(µ− r3)/3 + (µ− r∞),

hence
g = 1 +

µ

12
− r2

4
− r3

3
− r∞

2
.

We shall concentrate on the special subgroups Γ of Γ(1) introduced earlier. They are
the principal congruence subgroup Γ(N) of level N and

Γ0(N) = {
(
α β
γ δ

)
∈ SL(2,Z) : N |γ}.

Obviously
Γ(N) ⊂ Γ0(N).

Lemma 8.5.

µN := µΓ(N) =

{
1
2N

3
∏
p|N (1− p−2) if N > 2,

6 if N = 2,
(8.23)

µ0,N := µΓ0(N) = [Γ(1) : Γ0(N)] = N
∏
p|N

(1 + p−1),

where p denotes a prime number.

Proof. This easily follows from considering the action of the group SL(2,Z/N) on the
set (Z/N)2. The isotropy subgroup of the vector (1, 0) is isomorphic to the group of

Γ0(N)/Γ(N) ⊂ SL(2,Z/N). It consists of matrices of the form
(
a b
0 a−1

)
. The number

of invertible elements a in the ring Z/N is equal to the value of the Euler function φ(N).
The number of elements b is N . This gives the index of Γ(N) in Γ0(N). The index of
Γ0(N) in Γ(1) is equal to the number of elements in the orbit of (1, 0). It is the set of
pairs (a, b) ∈ Z/N which are coprime modulo N . This is easy to compute.

Lemma 8.6. There are no elliptic points for Γ(N) if N > 1. The number of cusps is
equal to µN/N . Each of them is of order N .
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Proof. The subgroup Γ = Γ(N) is normal in Γ(1). If Γτ 6= {±1}, then gΓg−1 = Γi for
any g ∈ Γ(1) which sends τ to i. Similarly for elliptic points of order 3 we get a subgroup
of Γ fixing e2πi/3. It is easy to see that only the matrices 1 or −1 , if N = 2, from Γ(N)
satisfy this property. We leave to the reader to prove the assertion about the cusps.

Next computation will be given without proof. The reader is referred to [Shimura].

Lemma 8.7. The number of elliptic points and cusps for the group Γ0(N) is given by the
following formula:

(i)

r2 =

{
0 if 4|N ,∏
p|N (1 + (−1

p )) otherwise.
(8.24)

(ii)

r3 =

{
0 if 9|N ,∏
p|N (1 + (−3

p )) otherwise.
(8.25)

(iii)

r∞ =
∑

d|N,d>0

φ((d,
N

d
)).

Here φ is the Euler function and (p) is the Legendre symbol of quadratic residue. We
have

(
−1

p
) =


0 if p = 2,
1 if p ≡ 1 mod 4,
−1 if p ≡ 3 mod 4,

(8.26)

(
−3

p
) =


0 if p = 3,
1 if p ≡ 1 mod 3,
−1 if p ≡ 2 mod 3.

(8.27)

Applying the previous lemmas we obtain

Corollary 8.3. The genus gN of the Riemann surface X(N) = H∗/Γ(N) is given by the
formula

gN =

{
1 + µN (N−6)

12N if N > 1,
0 if N = 1.

(8.28)
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Here we use that −I 6∈ Γ(N) for N > 1. We know that the Riemann surface X(1) =

H∗/Γ(1) parametrizes isomorphism clases of elliptic curves.

For any elliptic curve E we denote by NE the subgroup of N -torsion points. If
E = C/Λ we have

NE =
1

N
Λ/Λ

Theorem 8.5. There is a natural bijective map between the set of points of X(N)′ =
X(N) \ {cusps} and isomorhism classes of pairs (E, φ), where E is an elliptic curve
and φ : (Z/N)2 → NE is an isomorphism of groups. Two pairs (E, φ) and (E′, φ′) are
called isomorphic if there exists an isomorphism f : E → E′ of elliptic curves such that
f ◦ φ = φ′.

Proof. Let E = C/Λ. Then NE = 1
NΛ/Λ. An isomorphism φ : (Z/N)2 → NE is

defined by a choice of a basis in NE. A representative of a basis is an ordered pair of
vectors (a, b) from Λ such that (Na,Nb) is a basis of Λ. Replacing E by an isomorphic
curve, we may assume that Λ = Z + τZ for some τ ∈ H and (Na,Nb) = (1, τ). This
defines a surjective map fromH to the set of isomorphism classes of pairs (E, φ). Assume
the pair (Eτ , (

1
N ,

τ
N )) is isomorphic to the pair (Eτ ′ , (

1
N ,

τ ′

N )). Since E′τ is isomorphic to

Eτ we get τ ′ = ατ+β
γτ+δ for some M =

(
α β
γ δ

)
∈ Γ(1). The corresponding isomorphism

is induced by the isomorphism of C, z → z(γτ + δ). It sends 1/N to (γτ + δ)/N and
τ ′/N to (ατ + β)/N . It is easy to see that

(ατ + β)/N ≡ τ/N modulo Λ ⇐⇒ α ≡ 1 modulo N, β ≡ 0 modulo N

(γτ + δ)/N ≡ 1/N modulo Λ ⇐⇒ δ ≡ 1 modulo N, γ ≡ 0 modulo N.

This shows that τ and τ ′ define isomorphic pairs (Eτ , φ), (Eτ ′ , φ
′) if and only if they

differ by an element of Γ(N).

Remark 8.2. Since Γ(N) is an invariant subgroup of Γ(1) the factor group
Γ(1)/Γ(N) ∼= SL(2,Z/N) acts naturally on X(N) and the orbit space is isomorphic to
X(1). If one uses the interpretation of H/Γ(N) given in the theorem, then it is easy to
see that the action of an element σ ∈ SL(2,Z/N) is defined by sending the isomorphism
class of a pair (E, φ) to the isomorphism class of the pair (E, σ ◦ φ).

Theorem 8.6. There is a natural bijective map between the set of points of X0(N)′ =
X0(N) \ {cusps} and isomorhism classes of pairs (E,H), where E is an elliptic curve
and H is a cyclic subgroup of order N of NE Two pairs (E,H) and (E′, H ′) are called
isomorphic if there exists an isomorphism f : E → E′ of elliptic curves such that f(H) =
H ′.
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Proof. It is similar to the previous proof and is left to the reader.

Remark 8.3. There is a natural interpretation of the cusp points as the isomorphism classes
of certain degenerate pairs (E,H) but to explain this is beyond of the scope of these
lectures.

8.6 Finally we interpret the spacesMk(Γ) as the spaces L(D) for some D on the Rie-
mann surface X(Γ). To state it in a convenient form let us generalize divisors to admit
rational coefficients. We define a Q-divisor as a function D : X → Q with a finite sup-
port. We continue to writeD as a formal linear combinationD =

∑
axx of points x ∈ X

with rational coefficients ax. The set of Q-divisors form an abelian group which we shall
denote by Div(X)Q. For any x ∈ Q we denote by bxc the largest integer less or equal
than x. For any Q-divisor D =

∑
axx we set

bDc =
∑
baxcx.

Theorem 8.7. Let

D =
1

2

r2∑
i=1

xi +
2

3

r3∑
i=r1+1

xi +

r∞∑
i=1

ci, Dc = D − 1

k

r∞∑
i=1

ci,

where x1, . . . , xr1 are elliptic points of order 2, xr1+1, . . . , xr12+r2 are elliptic points of
order 3 and c1, . . . , r∞ are cusps. There is a canonical isomorphism of vector spaces

Mk(Γ) ∼= L(kKX + bkDc)), Mk(Γ)0 ∼= L(kKX + bkDcc).

Proof. Let F ∈Mk(Γ). We define its divisor

div(F ) =
∑
x∈X

νx(F )x ∈ Div(X)Q,

by setting

νx(F ) =


1
eντ (F ) if x = Γ · τ is an elliptic point of order e,
νc(F ) if c is a representative of a cusp x.
ντ (F ) if x = Γ · τ is neither an elliptic point nor a cusp.

Here ντ (F ) = n, where an(z − τ)n + . . . , an 6= 0 is the the Taylor expansion of F at τ .
Similarly, νc(F ) is the smallest non-zero power of q = e2πi/h which occurs in the Fourier
expansion of F at the cusp c of order h.

Consider the j-function j : H → P1(C) as a meromorphic Γ-invariant function onH.
Its derivative satifies

j(τ)′ =
d

dτ
j(
ατ + β

γτ + δ
) = j′(

ατ + β

γτ + δ
)
d

dτ
(
ατ + β

γτ + δ
) = (γτ + δ)−2j′(

ατ + β

γτ + δ
).
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This shows that Φ(τ) = j′(τ)k satisfies

Φ(
ατ + β

γτ + δ
) = (γτ + δ)2kΦ(τ).

So if we consider the ratio F (τ)/Φ(τ) we obtain a Γ-invariant meromorphic function on
H. Obviously Φ is meromorphic at the cusps. So this function descends to a meromorphic
function on X . Let us compute its divisor. Let x = Γ · τ ∈ X and t be a local parameter
at x. We know that ντ (π∗Γ(t)) = e(x) where e(x) = 1, 2 or 3 dependent on whether x is
not an elliptic point, an elliptic point of order 2, or an elliptic point of order 3. Thus

νx(F/Φ) =
ντ (F )− ντ (Φ)

e(x)
= νx(F )− νx(Φ).

Let us compute ντ (Φ). We know that

ντ (j − j(τ)) =


2 if i ∈ Γ(1)τ ,
3 if e2πi/3 ∈ Γ(1)τ ,
1 otherwise.

This immediately implies that

ντ (j′) =


1 if i ∈ Γ(1) · τ ,
2 if e2πi/3 ∈ Γ(1) · τ ,
0 otherwise.

Thus
νx(Φ) = k(ex(j)− 1)/e(x).

Now, let x = ci be a cusp represented by c ∈ P1(Q). We used the local parameter
e2πiτ/h to define νc(F ). Since j admits the Fourier expansion e−2πiτ +744+c1e

2πiτ +. . .
at∞, we see that j′ has the expansion −2πie−2πiτ + c22πie2πiτ + . . . at the cusp c. This
shows that νc(Φ) = −kh. So we get

div(F/Φ) = div(F )− k
∑
x

(
ex(j)− 1

e(x)
)x+

r∞∑
i=1

hici.

Comparing this with the computation of div(dj) in the proof of Theorem 8.5, we get

div(F ) = div(F/Φ) + kdiv(dj) + k
∑

elliptic x

(1− e(x)−1)x+ k

r∞∑
i=1

ci.



112 LECTURE 8. THE MODULAR CURVE

Since div(F ) ≥ 0 we obtain that F/Φ ∈ L(D′), where D′ is linearly equivalent to
kKX + bkDc as in the assertion of the theorem. Conversely, if Ψ ∈ L(D′) we easily get
that F = ΨΦ ∈ Mk(Γ). Finally, if F is a cuspidal modular form, we have νx(F ) > 0
at cusps. This easily implies that F/Φ ∈ L(D′ − c1 − . . . − cr∞). This proves the
theorem.

Corollary 8.4.

dimMk(Γ) =

{
(2k − 1)(g − 1) + kr∞ + r2bk/2c+ r3b2k/3c if k > 1,
g + r∞ − 1 if k = 1.

dimMk(Γ)0 =

{
(2k − 1)(g − 1) + (k − 1)r∞ + r2bk/2c+ r3b2k/3c if k > 1,
g if k = 1.

Proof. This follows immediately from the Riemann-Roch theorem (since
deg(kKX + bkDc) > degKX , the space L(KX − (kKX + bkDc)) = {0}).

Corollary 8.5. Let f0, . . . , fN be a basis of the spaceM6(Γ). Then the map

f : H → PN (C), τ → (f0(τ), . . . , fN (τ))

defines an isomorphism from X(Γ) onto a projective algebraic curve in PN (C).

Proof. We know this already when Γ = Γ(1). So we may assume that µΓ > 1. By
Theorem 8.5 we can identify the spaceM6(Γ) with L(D), where

degD = 6 degKX + 6r∞ + 3r2 + 4r3 = 12g − 12 + 6r∞ + 3r2 + 4r3.

I claim that degD > 2g+ 1. If g ≥ 0 this is obvious. If g = 0 we use the formula for the
genus from Theorem 8.4. It easily gives that

−12 + 6r∞ + 3r2 + 4r3 = µ > 2g + 1 = 1.

It follows from the proof of Theorem 8.8 that

νx(fi) = νx(fi/j
′6) +D(x). (8.28)

Now we use the standard argument from the theory of algebraic curves. First of all the map
is well-defined. In fact, if all functions fi vanish at the same point x, we obtain νx(fi) > 0
for all i = 0, . . . , N , and hence νx(fi/j

′6)+D(x)−1 ≥ 0 for i = 0, . . . , N . This implies
that L(D) = L(D − x). However, this contradicts the Riemann-Roch theorem: since

deg(KX −D) < deg(KX − (D − x)) = 2g − 2− deg D + 1 < 0,
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it gives dimL(D) = deg D + 1− g > dimL(D − x) = deg D − 1 + 1− g. Suppose
f(x) = f(x′) = p ∈ PN (C) for some x 6= x′. Without loss of generality we may assume
that p = (1, 0, . . . , 0) (to achieve this we make a linear transformation of coordinates). It
follows from (8.23) that fi/j′6 ∈ L(D − x − x′), i = 1, . . . , N. This contradicts again
Riemann-Roch. We have

deg(KX − (D − x− x′)) = 2g − 2− deg D + 2 = 2g − deg D < 0.

Thus N ≤ dimL(D − x− x′) = deg D − 2 + 1− g = dimL(D)− 2 = N − 1. This
contradiction proves that our map is injective. To show that it is an isomorphism onto the
image, we have to check that its derivative at each point does not vanish. It is easy to see
that this is equivalent to the fact that L(D − x) 6= L(D − 2x) for any x ∈ X . This is
proved by the similar argument as before using the Riemann-Roch theorem.

Corollary 8.6. LetR(X(Γ)) be the field generated by homogeneous fractions f/g, where
f, g are modular forms of the same weight. Then

R(X(Γ)) =M(X(Γ)).

Proof. It is easy to see thatR(X(Γ)) is the field of rational functions on the image of the
curve X(Γ) in PN (C). Now we apply the Chow theorem that says that any meromorphic
function on a projective algebraic variety is a rational function.

Exercises

8.1 Show thatH∗ is not locally compact.

8.2 Find all N for which the modular curve X(N) = X(Γ(N)) has genus 0 and 1.

8.3 Find all N for which the modular curve X0(N) = X(Γ0(N)) has genus 0.

8.4 Find all normal subgroups Γ of Γ(1) for which the genus of the modular curve X(Γ)
is equal to 0. [Hint: Use Theorem 10.4 and prove that r2 = µΓ/2, r3 = µΓ/3, r∞|µΓ].

8.5 Generalize the Hurwitz formula to any non-constant holomorphic map f : X → Y of
compact Riemann surfaces.

8.6 Show that the Moebius transformation τ → −1/Nτ defines a holomorphic auto-
morphism of finite order 2 of the modular curve X0(N). Give an interpretation of this
automorphism if one identifies the points of X0(N) with isomorphism clases of pairs
(E,H) as in Theorem 8.7.

8.7 Let

Γ1(N) = {
(
α β
γ δ

)
∈ Γ0(N) : α ≡ 1 mod N}.
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Give an analogue of Theorems 8.6 and 8.7 for the curveH/Γ1(N).

8.8 Using Riemann-Roch theorem prove that any compact Riemann surface of genus 0 is
isomorphic to P1(C).

8.9 Using Riemann-Roch theorem prove that any compact Riemann surface of genus 1 is
isomorphic to a complex torus C/Λ.

8.10 Compute the dimension of the spaceM1(X0(11)).

8.11 Using the fact that H/Γ(1) ∼= C prove that any nonsingular plane curve of degree 3
in P2(C) is isomorphic to a complex torus.

8.12 Show that any modular curve of positive genus has at least two cusps.

8.13 Find the genus of the curve X(7). Show that the cuspidal forms of weight 1 define
an isomorphism from X(7) onto a plane curve of degree 4.

8.14 Let N = 2, 3, 4, 6, 12 and k = 12/N . Show that the space of cuspidal forms
Mk(Γ(N))0 is spanned by the function ∆(τ)

1
N

8.15 Consider the Hesse equation x3 + y3 + z3 + γxyz = 0 from Lecture 3.

(i) Show that it defines an elliptic curve E(γ) together with an isomorphism φ :
(Z/3)3 → 3E.

(ii) Show that the coefficient γ considered as a function onH/Γ(3) is a modular func-
tion generating the fieldM(X(3)).

(iii) Show that the value of the absolute invariant function j(τ) on the isomorphism
class of E(γ) is equal to

j(γ) =
(216− γ3)3γ3

(γ3 − 27)3
.

[Hint: Find its Weierstrass equation by projecting the curve from the point (0, 1,−1).]

8.16 Desribe explictly the action of SL(2,Z/3) on the fieldM(X(3)) (see Remark 8.2)
as follows:

(i) Show that −I ∈ SL(2,Z/3) acts identically.

(ii) Show that PSL(2,F3) = is generated by the elements T̄ = ( 1 1
0 1 ) and S̄ = ( 0 2

1 0 ).

(viii) Show that PSL(2,F3) acts on the fieldM(X(3)) by transforming its generator γ
as follwos:T̄ : a→ e2πi/3a, T̄ : γ → 6−γ

6+2γ .



Lecture 9

Absolute Invariant and Cross-Ratio

9.1 Let

x1 = (a1, b1), x2 = (a2, b2), x3 = (a3, b3), x4 = (a4, b4)

be four distinct points on P1(C). The expression

R =

∣∣∣∣a1 b1
a2 b2

∣∣∣∣ ∣∣∣∣a3 b3
a4 b4

∣∣∣∣∣∣∣∣a1 b1
a3 b3

∣∣∣∣ ∣∣∣∣a2 b2
a4 b4

∣∣∣∣ (9.1)

is called the cross-ratio of the four points. As is easy to see it does not depend on the
choice of projective coordinates of the points. Also it is unchanged under the projective
linear transformation of P1(C):

(x, y)→ (ax+ by, cx+ dy).

If none of the points is equal to the infinity point ∞ = (0, 1) we can write each xi as
(1, zi) and rewrite R in the form

R =
(z2 − z1)(z4 − z3)

(z3 − z1)(z4 − z2)
. (9.2)

One can view the cross-ratio function as a function on the space

X = (P1(C))4 \∆

of ordered fourtuples of distinct points in P1(C). Here ∆ denotes the “diagonal”, the set
of 4-tuples with at least two coordinates equal. The group GL(2,C) acts naturally on X

115
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by transforming each (x1, x2, x3, x4) in (g · x1, g · x2, g · x3, g · x4) and R is an invariant
function with respect to this action. In other words, R descends to a function on the orbit
space

R : X/GL(2,C)→ C.

The following is a classical result from the theory of invariants:

Theorem 9.1. The cross-ratio R defines a bijective map

R : X/GL(2,C)→ C \ {0, 1}.

Proof. Let (x1, x2, x3, x4) ∈ X . Solving a system of three linear equations with 4 un-
knowns a, b, c, d we find a transformation g : (x, y)→ (ax+ by, cx+ dy) such that

g · (a2, b2) = (1, 0), g · (a3, b3) = (0, 1),

g · (a4, b4) = (1, 1), g · (a1, b1) = (1, λ),

for some λ 6= 0, 1. We recall that two proportional vectors define the same point. This
allows us to choose a representative of each orbit in the form (λ, 0,∞, 1), where we now
identify points in P1(C) \ {∞} with complex numbers. Since the cross-ratio does not
depend on the representative of an orbit, we obtain from (9.1)

R(x1, x2, x3, x4) = λ.

Since λ takes any value except 0 and 1, we obtain that the image ofR is equal to C\{0, 1}.
Also it is immediate to see that λ and hence the orbit is uniquely determined by the value
of R.

Now let us take an orbit from X/GL(2,Z) represented by (λ, 0,∞, 1) and assign to
it the cubic curve given in affine coordinates by the Legendre equation :

E(λ) : y2 − x(x− 1)(x− λ) = 0. (9.3)

This equation can be easily transformed to a Weierstrass equation by a linear change
of variables x′ = x + 1+λ

3 , y′ = 2y. In particular, we see that the functions (℘(z) −
1+λ

3 , ℘(z)′/2) define an isomorphism from a torusEτ = C/Λτ toE(λ) for an appropriate
τ ∈ H. We know that the zeroes of ℘(z)′ are the points in 1

2Λ and hence the points
(x, y) = (0, 0), (1, 0), (λ, 0) are the non-trivial 2-torsion points on E(λ) (the trivial one
goes to the infinity point (0, 1, 0) ∈ P2(C)). If we take the first two points as a basis in the
group of 2-torsion points 2E(λ) we obtain that E(λ) defines an isomorphism class of an
elliptic curve together with a basis of its group of 2-torsion points. In other words, E(λ)
represents a point in the moduli space H/Γ(2). Conversely, given a point in H/Γ(2), we
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can represent it by the isomorphism class of some Eτ with a basis of 2E given by (1
2 ,

τ
2 )

modulo Λ. The points

(x1, x2, x3, x4) = (℘(
τ

2
+

1

2
), ℘(

1

2
),∞, ℘(

τ

2
)) (9.4)

define an ordered 4-tuple of points in P1(C), and hence an orbit from X . Replacing τ
with τ ′ = ατ+β

γτ+δ , where
(
α β
γ δ

)
∈ Γ(2), the point xi changes to (γτ + δ)2xi, i = 2, 3, 4

(see Example 6.5). This shows that the cross-ratio R(x1, x2, x3, x4) does not depend on
the choice of τ representing a point inH/Γ(2). Together with Theorem 9.1, this proves

Theorem 9.2. There is a natural bijection between the set of ordered 4-tuples of distinct
points in P1(C) modulo projective transformation and the points inH/Γ(2).

9.2 In view of this theorem the cross-ratio R can be thought as a function

R : H/Γ(2)→ C.

The next theorem shows that this function extends to a meromorphic function on X(2) =
H∗/Γ(2):

Theorem 9.3. The cross-ratio function R extends to a meromorphic function λ on X(2)
which generates the fieldM(X(2)). It can be explicitly given by the formula

λ(τ) = ϑ0 1
2
(0; τ)4/ϑ00(0; τ)4.

Proof. It follows from the previous discussion that, as a function on H, the cross-ratio is
given by

R = R(℘(
τ

2
+

1

2
), ℘(

1

2
),∞, ℘(

τ

2
)) =

℘( τ2 + 1
2)− ℘(1

2)

℘( τ2 )− ℘(1
2 + τ

2 )
. (9.5)

We have
dimMk(Γ(2)) = 1− 2k + kµ2/2 = k + 1. (9.6)

In particular
dimM1(Γ(2)) = 2.

We have seen in Lecture 6 that ϑ4
00, ϑ

4
1
2

0
, ϑ4

0 1
2

and ℘( τ2 ), ℘( τ2 ), ℘(1
2) are examples of mod-

ular forms of weight 1 with respect to the group Γ(2). There must be some linear relation
between these functions. The explicit relation between the first set is known as Jacobi’s
identity between theta constants:

ϑ4
00 = ϑ4

1
2

0
+ ϑ4

0 1
2

. (9.7)
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The proof easily follows from the transformation formulas for the theta constants from
Lecture 5. Write ϑ4

00 = c1ϑ
4
1
2

0
+ c2ϑ

4
0 1

2

for some constants c1, c2. Replace τ with −1/τ

and use (5.8),(5.9) to obtain that c1 = c2. Next replace τ with τ + 1 and use (5.3), (5.4)
to see that c1 = c2 = 1.

The relation between the functions from the second set is the obvious one:

℘(
τ + 1

2
) + ℘(

τ

2
) + ℘(

1

2
) = 0. (9.8)

It follows from the Weierstrass equation (the sum of zeroes of the cubic polynomial 4x3−
g2x− g3 is equal to zero).

Now let us find the relations between functions from the first set and and the second
one. We must have ℘(1

2) = c1ϑ
4
0 1

2

+ c2ϑ
4
1
2

0
for some constants c1, c2. Applying the

transformation τ → 1 + τ and using formulae (5.2)-(5.4) from Lecture 5, we see that
c1 = 2c2. Using the Fourier expansion of ℘(1

2 ; τ) given in Lecture 6, we obtain that

c1 = −(2πi)2

6 . Thus

℘(
1

2
) = −(2πi)2(

1

6
ϑ4

0 1
2

+
1

12
ϑ4

1
2

0
). (9.9)

Similarly we obtain

℘(
τ

2
) = (2πi)2(

1

12
ϑ4

0 1
2

+
1

6
ϑ4

1
2

0
). (9.10)

℘(
τ

2
+

1

2
) = (2πi)2(

1

12
ϑ4

0 1
2

− 1

12
ϑ4

1
2

0
). (9.11)

Adding up we check the relation (9.8). Subtracting we obtain Thomae’s Formulae:

π2ϑ4
00 = ℘(

1

2
)− ℘(τ/2),

π2ϑ4
1
2

0
= ℘(

τ

2
+

1

2
)− ℘(τ/2),

π2ϑ4
0 1

2

= ℘(
1

2
)− ℘(

τ

2
+

1

2
).

(9.12)

Now we can find an expression for the cross-ratio:

R =
℘( τ2 + 1

2)− ℘(1
2)

℘( τ2 )− ℘(1
2)

= ϑ4
0 1

2

/ϑ4
00. (9.13)

It remains to show that the function λ = ϑ4
1
2

0
/ϑ4

00 generates the field of meromorphic

functions on X(Γ(2)). The algebraM(Γ(2)) contains the subalgebra C[ϑ4
0 1

2

, ϑ4
00]. Us-

ing (9.6) we can compare the dimensions of the subspaces of homogeneous elements of
degree k to see that the algebras coincide. Thus

M(Γ(2)) = C[ϑ4
0 1

2

, ϑ4
00]. (9.14)
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By Corollary 8.6, the fieldM(X(Γ)) is isomorphic to the field of quotients of the algebra
M(Γ). This implies that λ generates the fieldM(X(Γ(2)).

Definition. The modular function

λ = ϑ4
0 1

2

/ϑ4
00

with respect to Γ(2) is called the lambda-function.

Let π : X(2) → X(1) be the natural holomorphic map defined by the inclusion
Γ(2) ⊂ Γ(1). The pre-image of the absolute invariant π∗(j) is a meromorphic function
on X(2) and hence must be a rational function in λ. Let us find the explicit expression
for this rational function.

Theorem 9.4.
j = 28 (1− λ+ λ2)3

λ2(1− λ)2
.

Proof. We know that ℘(1
2), ℘( τ2 ) and ℘(1

2 + τ
2 ) are the three roots x1, x2, x3 of the equa-

tion 4x3 − g2x− g3 = 0. Thus

g2 = −4(x1x2 + x1x3 + x2x3) = −2[(x1 + x2 + x3)2−

(x2
1 + x2

2 + x2
3)] = 2(x2

1 + x2
2 + x2

3).

Applying formulas (9.9)-(9.11), we obtain

g2 = 2(℘(
1

2
)2 + ℘(

τ

2
)2 + ℘(

1

2
+
τ

2
)2) =

(2π)4

12
(ϑ8

1
2

0
+ ϑ8

0 1
2

+ ϑ4
1
2

0
ϑ4

0 1
2

). (9.15)

Using the Jacobi Theorem from Lecture 4 , we have

g3
2 − 27g2

3 = (2π)12∆ = (2π)12(2π)−8θ′1
2

1
2

8 = (24)π12ϑ8
0 1

2

ϑ8
1
2

0
ϑ8

00.

Using (9.7), we get

j =
1728g3

2

g3
2 − 27g2

3

=
(2π)12(ϑ8

1
2

0
+ ϑ8

0 1
2

+ ϑ4
1
2

0
ϑ4

0 1
2

)3

(24)π12ϑ8
0 1

2

ϑ8
1
2

0
ϑ8

00

=

28(ϑ8
00 − ϑ4

0 1
2

(ϑ4
00 − ϑ4

0 1
2

))3

ϑ8
0 1

2

ϑ8
00(ϑ4

00 − ϑ4
0 1

2

)2
= 28 (1− λ+ λ2)3

λ2(1− λ)2
.

Note that there are exactly 6 = 3! values of λ (counting with appropriate multiplic-
ities) which give the same value of j. This corresponds to the orbit of Γ(1)/Γ(2) ∼=
SL(2,F2) ∼= S3 in its natural action on X(2). This shows that there are 6 values of the
parameter λ in the equation (9.3) which define isomorphic elliptic curves.
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Exercises
9.1 Let p ∈ P2(C) and l1, l2, l3, l4 be four distinct lines passing through p. For any line l
in the plane not passing through p let pi = l∩ li, i = 1, 2, 3, 4. Show that the cross-ratio of
the four points p1, p2, p3, p4 does not depend on the choice of an isomorphism l ∼= P1(C)
and also does not depend on the choice of the line l.

9.2 Find the expression for g3 in terms of the fourth powers of theta constants.

9.3

(i) Show that an unordered set of four points defines at most 6 different cross-ratia.

(ii) Find the sets of unordered 4 points for which the cross-ratio takes less than 6 values.

(iii) Show that the exceptional sets of points from (ii) correspond to harmonic or anhar-
monic elliptic curves.

(iv) Verify that the function j = j(λ) from Theorem 9.4 takes the same value at all six
cross-ratia.

(v) Show that there is a natural bijection between the sets of 4 distinct points in P1(C)
modulo projective transformation and isomorphism classes of elliptic curves.

9.4

(i) Show that the permutation group S4 contains a normal subgroup H of order 4
which acts identically on P1(C)4/GL(2,C) via its natural action on P1(C)4 by
permuting the factors.

(ii) Show that S4/H ∼= S3
∼= SL(2,F2) and the action of S4/H on the orbit space

(P1(C)4 \∆)/GL(2,C) corresponds to the action of SL(2,F2) on X(2) under the
identification of (P1(C)4 \∆)/GL(2,C) with X(2).

9.5

(i) Show that the affine curve y2 = (1 − x2)(1 − λx2) is birationally isomorphic to
the curve y2 = x(x − 1)(x + λx). Show that the exists an elliptic function sn(z)
(called the Jacobi sine function) such that (sn(z)′)2 = (1− sn(z))2(1 + λsn(z)2).

(ii) Define the Jacobi cosine function cn(z) by cn(z) = sn(z)′. Prove the addition
formula

sn(z + w) =
sn(z)cn(w) + sn(w)cn(v)

1 + λsn(z)2sn(w)2
.



Lecture 10

The Modular Equation

10.1 In this lecture we shall prove that the modular curve X0(N) can be defined by
homogeneous algebraic equations with coefficients in Z. By reducing the coefficients
modulo a prime p we obtain a nonsingular projective algebraic curve over a finite field Fp
for all prime p except finitely many.

We shall start with the following

Lemma 10.1. Let Γ and Γ′ be subgroups of finite index in Γ(1). Assume that there exists

a matrixA =

(
α β
γ δ

)
∈ SL(2,R) such that Γ′ ⊂ A−1 ·Γ ·A. Then, for any f ∈Mk(Γ),

f |kA = f(
ατ + β

γτ + δ
)(γτ + δ)−2k ∈M(Γ′)k.

Proof. We have checked it in Chapter 6 for the case A ∈ SL(2,Z). But this assumption
has not been used in the proof.

Corollary 10.1. For f(τ) ∈M(Γ(1))k we have

f(Nτ) ∈M(Γ0(N))k.

In particular,
f(Nτ)/f(τ) ∈M(X0(N)).

Proof. Take

F =

(
0 −1/

√
N√

N 0

)
. (10.1)

We have, for any M ∈ Γ(1),

F ·M · F−1 =

(
0 −1/

√
N√

N 0

)
·
(
α β
γ δ

)(
0 1/

√
N

−
√
N 0

)
=

121
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(
δ −γ/N
−Nβ α

)
.

Clearly, this implies that Γ0(N) ⊂ F · Γ(1) · F−1. Now

f |kF = f(−1/Nτ)(N
1
2 τ)−2k = f(Nτ)(Nτ)2k(Nτ)−2k = Nkf(Nτ).

This checks the assertion.

Example 10.1. Take N = 2 and f = ∆(τ) ∈ M(Γ(1))6. We see that ∆(2τ)/∆(τ)
belongs to the spaceM(X0(2)). Observe that q = e2πiτ changes to q2 when we replace
τ with 2τ . So

∆(2τ)/∆(τ) =
q2
∏∞
m=1(1− q2m)24

q
∏∞
m=1(1− qm)24

= q

∞∏
m=1

(1 + qm)24 = 2−12f2(τ)24, (10.2)

where f2(τ) is the Weber function defined in (4.13). In particular, we see that

f24
2 = 212∆(2τ)/∆(τ) (10.3)

is a modular function with respect to Γ0(2). It follows from (10.2) that f24
2 has a simple

zero at the cusp∞. The index of this cusp is equal to 1 since ( 1 1
0 1 ) ∈ Γ0(2). We know

from Lemma 8.5 that µ0,2 = [Γ̄(1) : Γ0(2)] = 3. Thus Γ0(2) has another cusp of index 2.
Since 0 6∈ Γ0(2) · ∞ we can represent it by 0. We have

f24
2 (−1/τ) = 212∆(−2/τ)/∆(−1/τ) = 212∆(−1/(τ/2))/∆(−1/τ) =

212(τ/2)12∆(τ/2)/τ12∆(τ) = ∆(τ/2)/∆(τ) =

q
1
2
∏∞
m=1(1− qm/2)24

q
∏∞
m=1(1− qm)24

= q−
1
2

∞∏
m=1

(1 + qm/2)−24.

This shows that f24
2 has a simple pole at the second cusp. Since f24

2 is obviously holo-
morphic on H we conclude that it has a single pole of order 1. This implies that the
meromorphic function f24

2 : X0(2)→ P1(C) has degree 1 and hence maps X0(2) isomor-
phically onto P1(C). In particular, f24

2 being the inverse transform of the rational function
z on P1(C) generates the field of rational function on X0(2):

M(X0(2)) = C(∆(2τ)/∆(τ)) = C(f24
2 ). (10.4)
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10.2 It follows from the Corollary 10.1 that j(Nτ) belongs to the field M(X0(N)).
This field contains the field M(X(1)) = C(j(τ)) as a subfield and the degree of the
extension is equal to µ0,N . We shall prove that j(Nτ) generates the extension, i.e.
M(X0(N)) = C(j(τ), j(Nτ)). We will also describe the algebraic relation between
j(τ) and j(Nτ).

Lemma 10.2. For any natural N ,

Γ(1) ·
(
N 0
0 1

)
· Γ(1) =

⊔
A∈AN

Γ(1)A,

whereAN is the set of integral matrices
(
a b
0 d

)
with d > 0, ad = N, 0 ≤ b < d, (a, b, d) =

1. The number of elements in AN is equal to µ0,N .

Proof. First of all the right-hand side is the set M(N) of integral primitive (i.e. with
g.c.d of entries equal to 1) matrices with determinant N . In fact, for any such matrix we
can apply row transformations with matrices from Γ(1) to reduce it to upper triangular
form. By further row operations we can make d positive and b satisfy 0 ≤ b < d. The
number a will be the greatest common divisor of the first column of the matrix, so is
defined uniquely. Then d will be defined uniquely by the condition ad = N and b will be
defined uniquely by the above condition. It is obvious that the left-hand side is contained
in M(N). To prove the opposite inclusion, it suffices to show that each matrix A from
AN is contained in the left-hand-side. This follows from the well known fact that each
integral matrix can be transformed by integral row and column transformations to the
unique matrix of the form

(
n 0
0 n′

)
, where n|n′. The last assertion can be checked by using

elementary number theory. When N = p is prime, we obviously have #Ap = p + 1.
Now, if N is not prime we have

#AN = ψ(N) = N
∏
p|N

(1 + p−1) = µ0,N .

This can be proved by using the multiplicative property of the function ψ(n) and the
formula

ψ(N) =
∑
d|N

d

(d, Nd )
φ((d,

N

d
)),

where φ is the Euler function.

Lemma 10.3. Let f(τ) be a modular function with respect to Γ(1) which is holomorphic
onH and admits the Fourier expansion f =

∑∞
n=−r cnq

n. Then f is a polynomial in j(τ)
with coefficients in the subring of C generated by the Fourier coefficients c0, . . . , c−r.
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Proof. Observe first that r > 0 unless f is constant. Since the Fourier expansion of j
starts as q−1 + . . . we can subtract c−rjr from f to decrease the order of its pole at∞.
Then we do it again, if needed, untill we get that the difference g has Fourier expansion
of the form qm + . . . with m > 0. Since g is holomorphic at infinity and vanishes there,
it must be zero. Since all the coefficients of the Fourier expansion of j are integers, as a
result we subtract from f a polynomial in j with coefficients in Z[c−r, . . . , c0] and obtain
0.

Lemma 10.4. Let f : X → Y be a holomorphic map of compact Riemann surfaces.
Then f∗ : M(Y ) → M(X) defines an algebraic extension of the field of meromorphic
functions. The degree of this extension is equal to the number of points in the pre-image
f−1(y) (counting with multiplicities equal to the ramification indices) for any y ∈ Y .

Proof. We skip the proof of this lemma. One can learn about this fact in any intruduction
book in algebraic geometry.

Theorem 10.1. The fieldM(X0(N)) is generated by j(τ) and j(Nτ). There exists a poly-
nomial ΦN [X,Y ] ∈ Z[X,Y ] such that F (j(Nτ), j(τ)) ≡ 0. The polynomial ΦN [X, j] ∈
C(j)[X] is a minimal polynomial for j(Nτ) in the fields extensionM(X0(N))/M(X(1)).
Its degree is µ0,N . When N > 1, ΦN [X,Y ] is symmetric in X and Y , and if N = p is
prime,

ΦN (X,Y ) ≡ Xp+1 + Y p+1 −XpY p −XY mod p.

Proof. Let AN be the set of matrices from Lemma 10.2. Consider the polynomial

Φ =
∏

A∈AN

(X − j(A · τ)) =

ψ(N)∑
m=0

smX
m

Its coefficients sm are symmetric functions in j(A · τ) and hence are holomorphic func-
tions on H. It folows from Lemma 10.2 that, for each M ∈ Γ(1) and A ∈ AN , we have
AM = M ′A′ for some M ′ ∈ Γ(1), A′ ∈ AN . Thus j(A · (M · τ)) = j(M ′ · (A′ · τ)) =
j(A′ · τ). Thus replacing τ by M · τ defines a permutation among the functions j(A · τ).
This implies that sm are modular functions with respect to Γ(1). By Lemma 10.3, each
sm is a polynomial in j(τ) with coefficients belonging to the subring of C generated by
its Fourier coefficients. However, for any A =

(
a b
0 d

)
∈ AN , we have

e
2πi(aτ+b)

d = e
2πiaτ
d e

2πib
d = q

a
d ζbd,

where q = e2πiτ , as usual, and ζd is the primitive d-th root of unity equal to e2πi/d. Now,
using the Fourier expansion of j(τ) we obtain

j(
aτ + b

d
) =

1

qa/dζbd
+ φ(q

a
d ζbd), (10.5)
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where φ is holomorphic at infinity. Since the coefficients of j are integers we see that the
coefficients of the Fourier expansion of each j(A · τ) belong to the ring Z[ζd]. By Lemma
10.3, the coefficients sm are polynomials in j(τ) with coefficients in Z[ζN ]. Consider
the automorphism of the cyclotomic field Q(ζN ) which acts by sending ζN to ζkN , where
(k,N) = 1. It is clear from (10.5) that this automorphism transforms j(A · τ) to j(A′ · τ)
for some other A′ ∈ AN . This shows that the functions sm are invariant with respect to
all such automorphisms, hence must be polynomials in j with coefficients in Z.

Thus we can consider Φ as an element of the ring Z[X, j]. Replacing the variable
j with Y we obtain the polynomial ΦN (X,Y ) ∈ Z[X,Y ]. This will be the polynomial

from the assertion of the theorem. First of all, taking A =

(
N 0
0 1

)
∈ AN we obtain

ΦN (j(Nτ)), j) = 0. The polynomial ΦN [X, j] is of degree ψ(N) and is irreducible
since its roots j(A · τ) are permuted transitively by the group Γ(1). By Lemma 10.4, its
degree is equal to the degree of the extension M(X0(N))/M(X(1)). Since ΦN [X, j]
is the minimal polynomial for j(Nτ) over the field C(j) = M(X(1)), and its degree is
equal to the degree of the extension, we see that j(τ) and j(Nτ) generateM(X0(N)).
Next, replacing τ with −1/Nτ in the identity ΦN (j(Nτ), j) ≡ 0, we obtain

ΦN (j(−1/τ), j(−1/Nτ)) = ΦN (j, j(Nτ)) ≡ 0.

Since ΦN (X, j) is irreducible as a polynomial in X , the polynomial ΦN (j,X) must be
divisible by ΦN (X, j). It follows from the Gauss lemma that
ΦN (X,Y ) = cΦN (Y,X), where c = ±1. If c = −1, we have ΦN (X,X) = 0, hence
ΦN (j, j) = 0. However, ΦN (X, j) is irreducible over C(j) hence j cannot be its zero.
So c = 1 and we obtain that ΦN (X,Y ) is symmetric in X,Y . It remains to prove the last
property (Kronecker’s congruence relation).

Assume N = p is prime. Then the set Ap consists of matrices As =

(
1 s
0 p

)
, 0 ≤

s < p, and Ap =

(
p 0
0 1

)
. It follows from the formula (10.5) and the Fermat theorem

that we have the following congruence for the Fourier expansion of j(As · τ) in q
1
p

j(As · τ)(q) ≡ j(q)1/p mod (1− ζp),

j(Ap · τ)(q) ≡ j(q)p mod p.

Here the congruence means that the corresponding Fourier coefficients satisfy the con-
gruence. The principal ideal (1 − ζp) in the ring Z[ζp] is prime and (1 − ζp)|p (since
(
∑p−1

i=1 iζ
i
p)(1− ζp) = −p). This implies

Φp(X, j(q)) ≡ (X − j(q)p)(Xp − j(q)) mod (1− ζp).
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Let Φp(X, j)− (X − jp)(Xp − j) =
∑

m amX
m. The previous congruence shows that

the coefficients am are all divisible by (1− ζp), and since they are integers, they must be
divisible by p. This proves the theorem.

Definition. The equation ΦN (X,Y ) = 0 from the previous theorem is called the modular
equation .

Example 10.2. Let p = 2. The modular equation in this case is

F (X,Y ) = (X − Y 2)(X2 − Y ) + 24 · 3 · 31XY (X + Y )− 243453(X2 + Y 2)+

28 · 7 · 61 · 373XY + 2837 · 56(X + Y )− 2123959 = 0.

For N = 3 the modular equation was computed by Stephen Smith in 1878 9 (few
coefficients turned out to be wrong and corrected by Hermann, Crelle J. 274 (1973). It
has the form

F (x, y) = x(x+ 215 · 3 · 53)3 + y(y + 27 · 3 · 53)3 − x3y3+

23 · 32 · 31x2y2(x+ y)− 22 · 33 · 9907xy(x2 + y2) + 2 · 34 · 13 · 193 · 6367x2y2+

216 · 35 · 53 · 17 · 263xy(x+ y)− 231 · 56 · 22973xy = 0.

Other cases where it was computed explicitly are N = 5, 7, 11. The last case took
20 hours on a VAX-780. It is a polynomial of degree 21 with some coefficients of order
1060.

Corollary 10.2. The modular curve X0(N) is isomorphic to a nonsingular projective
algebraic curve defined over Q.

Proof. We assume that the reader is familiar with some basic notions in algebraic ge-
ometry (first two chapters of [Shafarevich] suffices). The theorem says that X0(N) is
birationally isomorphic to the plane affine curve ΦN (x, y) = 0 defined over Q (i.e. its
equation is given by a polynomial with rational coeffcients). By homogenizing the equa-
tion we obtain a projective curve defined over Q. Now we use the normalization process.
Since this process can be done over the same ground field, the normalized nonsingular
curve is also defined over Q.

Remark 10.1. In fact, one can choose the equations definingX0(N) with coefficients in Z.
This allows one to reduce the coefficients modulo a prime number p to obtain a projective
algebraic curve over a finite field Fp. It follows from the Kronecker congruence that the
prime numbers p dividing N are “bad primes”, i.e. the reduction is a singular algebraic
curve. One can show that all others primes are “good primes”, i.e. the reduction is a
nonsingular algebraic curve. The reductions of the modular curve X0(N) modulo a good
prime p are examples of curves over a finite field with “many rational points” and are used
in coding theory.
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Definition. A holomorphic map between elliptic curves E′ → E is called an isogeny of
order n if it is a homomorphism of groups whose kernel is a group of order n.

Let E = C/Λ, E′ = C/Λ′. It follows from the definition that any isogeny f : E′ →
E can be lifted to a map f̃ : C → C, z → αz such that f̃(Λ′) ⊂ Λ. The kernel of this
map is the group α−1Λ/Λ′ ⊂ C/Λ′. So its order is equal to the determinant of the matrix
A =

(
a b
c d

)
such that

αω1 = aω′1 + bω′2, αω1 = cω′1 + dω′2.

Here Λ = Zω1 + Zω2,Λ
′ = Zω′1 + Zω′2. We can change the bases to assume that A =(

d1 0
0 d2

)
is diagonal with d1|d2 and d1d2 = n. The pair (d1, d2) is defined uniquely by

the previous property and is called the type of the isogeny. The isogeny is called cyclic if
d1 = 1. In this case the kernel of the isogeny is a cyclic group of order n.

Corollary 10.3. Let Eτ be a complex torus corresponding to the lattice Z+ τZ. Then the
set of isomorphism classes of elliptic curves admitting a cyclic isogeny f : E′ → E of
order N consists of the isomorphism classes of elliptic curves Eτ ′ where

ΦN (j(τ ′), j(τ)) = 0.

Proof. Let E′ → E be a cyclic isogeny of order N . As we have explained before,
replacing the curves by isomorphic curves, we may assume that

E = C/Zω1 + Zω2, E′ = C/Zω1 + ZNω2.

Further replacing them by isomorphic curves we may assume that ω1 = 1, ω2 = τ ∈ H.
Thus the isomorphism class of E is determined by the value of j at τ , and isomorphism
class of E′ is determined by the value of j at Nτ . But the pair (j(Nτ), j(τ)) satisfies
the modular equation ΦN (x, y) = 0. Conversely, if (j(τ ′), j(τ)) satisfies the modular
equation, then j(τ ′) = j(A · τ) for some matrix A =

(
a b
0 d

)
∈ AN . This implies that

E′τ
∼= EA·τ ′ . Since τ andA ·τ are both in the upper half-plane, we must have τ ′ = A ·τ =

(aτ + b)/d. Replacing Z+Zτ ′ with dZ+ (aτ + b)Z which defines an isomorphic curve,
we see that dZ+ (aτ + b)Z ⊂ Z+Zτ and hence there exists an isogeny E′τ → Eτ whose
kernel is given by the matrix A. Since (a, b, d) = 1, the elementary divisors of this matrix
are (1, ad). This shows that f is a cyclic isogeny.

Corollary 10.4. Let τ ∈ Q(
√
−d) where d is a positive rational number. Then the value

j(τ) is an algebraic integer.

Proof. LetO be the ring of integers in the quadratic field Q(
√
−d). It admits a basis 1, ω.

Let α ∈ O such that its norm N is square-free. Then

αω = aω + b, α = cω + d.
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Here the matrix M =
(
a b
c d

)
has determinant equal to the norm of α. Since the latter is

equal to the determinant of the matrix and is square-free, we have (a, b, c, d) = 1. Also
observe that ω = A · ω = aω+b

cω+d . By Lemma 10.2, M = M ′A, where M ′ ∈ Γ(1), and
A ∈ AN . This shows that

j(ω) = j(M · ω) = j(M ′A · ω) = j(A · ω).

and hence j(ω) satisfies the equation ΦN (X,X) = 0. This equation is a monic polyno-
mial over Z, so that j(ω) is an algebraic integer. We can write nτ = αω + β for some
integers n, α, β. Since Φn(j(τ), j(nτ)) = 0, j(τ) is integral over the ring Z[j(nτ ]. So, it
suffices to show that j(nτ) is an algebraic integer. Since j(nτ) = j(αω+β) = j(αω) =
j(−αω), we obtain, by the previous argument, that j(nτ) is integral over j(ω). Since the
latter is an algebraic integer, j(τ) is an algebraic integer as well.

Remark 10.2. Notice that τ ∈ Q(
√
−d) if and only if the lattice Λτ has complex multi-

plication (see Lecture 2). By Exercise 2.6 this is equivalent to that Eτ has endomorphism
ring larger than Z. An elliptic curve with this property is called an elliptic curve with
complex multiplication . Viewing j as a function on the set of isomorphism classes of
elliptic curves, the previous corrollary says that the value of j at the isomorphism class of
an elliptic curve with complex multiplication is an algebraic integer.

Remark 10.3. The classical Kronecker Theorem asserts that any finite abelian extension
of Q with abelian Galois group can be obtained by joining roots of unity to Q. Observe
that a nth root of unity is the value of the function f(z) = e2πiz/n on Z. Let K be an
imaginary quadratic extension of Q and let a be an ideal in the ring of integers of K.
Then the set j(a) generates a maximal non-ramified extension of the field K with abelian
Galois group. This is the celebrated ”Jügendtraum” of Leopold Kronecker which was
proven by himself when he had passed his youth age.

Corollary 10.5. A modular function f ∈ C(j, jN ) belongs to Q(j, jN ) if and only if its
Fourier expansion at∞ has all coefficients in Q.

Proof. Since j and jN has rational Fourier coefficients, we only need to prove the suf-
ficiency. Let f = R(j, jN ) where R = P (x, y)/Q(x, y) is a rational function with
coefficients in C. Any automorphism σ of C acting on C(j, jN ) sends R to Rσ by re-
placing the coefficients of R with its σ-conjugates. This is independent of the choice of
R since the modular equation relating j and jN has coefficients in Q. Let fσ denotes the
image of f under the action of σ. I claim that

fσ(τ) =

∞∑
n=−r

σ(cn)qn,
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where f(τ) =
∑∞

n=−r cnq
n is the Fourier expansion of f at∞. Since

C(j, jN ) =

ψ(N)−1∑
i=0

C(j)jiN ,

it suffices to prove the assertion for f ∈ C(j). Write

f =
a0 + a1j + . . .+ anj

n

b0 + b1j + . . .+ bmjm
. (10.6)

Replacing f with f−1 we may assume n ≥ m. Multiplying by some integer power of
j, we may assume that a0, b0 6= 0. Since a0/b0 is equal to the value of f at ∞, it must
be a rational number. The difference (f − a0

b0
)/j has Fourier coefficients in Q, and has

representation in the form (10.16) with smaller n. Continuing in this way we arrive at the
case n = m = 0 where the assertion is obvious.

10.3 Let us explain the meaning of the symmetry property of the modular equation.
Consider the map H → H defined by the formula τ → −1/Nτ . It is easy to see that the
matrix F =

(
0 1/

√
N

−
√
N 0

)
belongs to the normalizer of the group Γ0(N) in SL(2,R), i.e.

FMF−1 ∈ Γ0(N) for any M ∈ Γ0(N). This implies that the previous map factors to a
map of the quotientH/Γ0(N)→ H/Γ0(N). It can be shown using some basic algebraic
geometry that it extends uniquely to a holomorphic map

Fr : X0(N)→ X0(N).

Observe also that F 2 = −1 so that Fr2 = identity. It is called the Fricke involution. By
taking the inverse transform of functions, the Fricke involution acts on modular functions
of weight k by

Fr∗(f)(τ) = f(−1/Nτ) = (Nτ)2kf(Nτ).

In particular,

Fr∗(j(τ)) = j(Nτ), Fr∗(j(Nτ)) = j(−1/τ) = j(τ).

This implies that the Fricke involution acts on the modular equation by switching X and
Y .

Remark 10.4. Let X0(N)+ = X0(N)/(Fr) be the quotient of the curve X0(N) by the
cyclic group generated by the Fricke involution. One can find all numbersN such that the
genus of this curve is equal to 0. It was observed by A. Ogg that the list of corresponding
primes is the same as the list of all prime divisors of the order of the Monster group, the
largest simple sporadic finite group. This has been explained now.
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Example 10.3. We know that R = ∆(2τ)/∆(τ) generates the field M(X0(2)). The
Fricke involution acts on this generator as follows:

Fr∗(R) =
∆(−1/τ)

∆(−1/2τ)
=

∆(τ)(τ)12

∆(2τ)(2τ)12
=

∆(τ)

212∆(2τ)
= 2−12R−1.

We know that every modular function with respect to the field Γ0(N) can be written
as a rational function in j and jN with complex coefficients. In other words, it belongs
to the field C(j, jN ). The next theorem characterizes functions which belong to the field
Q(j, jN ).

Exercises
10.1 Prove that there exists exactly ψ(N) isomorphism classes of elliptic curves admitting
a cyclic isogeny of order N onto a fixed elliptic curve.
10.2 Let f : E′ → E be an isogeny between elliptic curves of order N . Show that there
exists an isogeny f ′ : E → E′ of the same order.
10.3 Show that the Fricke involution of H/Γ0(N) sends the point representing the iso-
morphism class of the pair (E,A) (E is an elliptic curve and A is its cyclic subgoup of
orer N ) to the pair (E′, A′), where E′ = E/A,A′ = NE/A.
10.4 Let f, g be two modular forms of the same weight with respct to Γ(1). Show
that, for any A ∈ AN the function f(A · τ)/g(τ) is a modular function with respect
to (A−1Γ(1)M) ∩ Γ(1).
10.5 Show that Φ(j(τ), j(τ)) = 0 for some N > 1 if and only if Eτ has complex
multiplication.
10.6 Let N = 2, 3, 5, 11 and k = 12/(N + 1). Show that the space of cuspidal forms
Mk(Γ0(N))0 is spanned by the function (∆(τ)∆(Nτ))

1
N+1 .

10.7 Let N = 2, 3, 6 and k = 6/N . Show that the space of parabolic formsMk(Γ(N))0

is spanned by the function ∆(τ)1/N .

10.8 Show thatM(X0(2)) = C(
℘( 1

2
+ τ

2
;τ)

℘( τ
2

;τ) ) [Hint: use that f24 = ϑ12
1
2

0
/η12 and apply the

six crss-ratia formulas].

10.9 Generalize Example 10.1 by proving that the function Φ(τ) = (∆(Nτ)
∆(τ) )

1
N−1 gener-

ates the fieldM(X0(N)) for N = 2, 3, 5, 7, 13 [Hint: Check that ΦN−1 has one zero and
one pole of multiplicity N − 1 and use the formula for the genus of X0(N) to check that
X0(N) ∼= P1(C)]
10.10 A modular function f ∈ M(X(Γ)) is called a Hauptfunction for Γ if it generates
the fieldM(X(Γ)) and admits a Fourier expansion at the cusp∞ (of index h) of the form
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q−1/h +
∑

m≥0 amq
m/h, where am are integers. An example of a Hauptfunction is the

absolute invarinat j.

(i) Show that the functions (∆(Nτ)
∆(τ) )

1
N−1 are Hauptfunctions for the group Γ0(N) when

N = 2, 3, 5, 7.

(ii) Show that the function γ3, where γ is the parameter in the Hesse equation (see
Problem 3.6) is a Hauptfunction for Γ0(3).

(iii) Show that the 2−4λ is a Hauptfunction for Γ(2) (see Lecture 10).

(iv) Show that the function 4
ϑ00(0;τ)2+ϑ

0 1
2

(0;τ)2

ϑ 1
2 0

(0;τ)2 is a Hauptfunction for Γ(4).

10.11 Show that the fundamental domain for Γ0(p) where p is prime, can be obtained as
the union of the fundamental domain for Γ(1) and its translates by transformations ST k,
where k = 0, . . . , p.

10.12 Find the expression of the absolute invariant j in terms of the generator Φ of the
field of modular functions for Γ0(2).

10.13 Prove that the cosets of Γ(1) modulo Γ0(N) can be represented by the matrices(
α β
γ δ

)
where (c, d) = 1, d|Nm0 ≤ c < N/d.

10.14 Prove the doubling identities:

2ϑ 1
2

0(2τ)2 = ϑ00(τ)2 − ϑ0 1
2
(τ)2,

2ϑ00(2τ)2 = ϑ00(τ)2 + ϑ0 1
2
(τ)2.
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Lecture 11

Hecke Operators

11.1 Let S and S′ be two sets. A correspondence between S and S′ is a subset Z ⊂
S × S′. For example, Z could be the graph Γf of a map f : S → S′. One can view Z
as a multi-valued map from S to S′ as follows. Take s ∈ S, and consider the intersection
{s} × S′ ∩ Z. Then take the image Z(s) of this set under the second projection prS′ :
S × S′ → S′. This is called the image of s under Z. We will assume that Z is a
finite correspondence meaning that each set Z(s) is finite (maybe empty). Clearly, Z
is completely determined by its images. When Z = Γf is the graph correspondence
we obtain the usual value of the map on s. The analog of compositions of maps for
correspondences is the following operation. Let Z ′ ⊂ S′×S′′ be another correspondence.
Set

Z ′ ◦ Z = pr13((Z × S′′)× (S × Z ′)),

where p13 is the projection map S × S′ × S′′ → S × S′′. It is called the composition of
the correspondences Z and Z ′. It is easy to see that the value of Z ′ ◦ Z at s ∈ S is equal
to the union ∪s′∈Z(s)Z

′(s′). In particular, when Z ′ is a function f : S′ → S′′ (identified
with its graph), we have f ◦ Z(s) = f(Z(s)).

One can view any finite correspondence as a map f : S → P(S′)fin, where P(S′)fin
is the finite Boolean of the set S′, i.e. the set of finite subsets of S′. Using the characteristic
function of a set we can identify P(S′)fin with the set of functions with finite support
which take values 0 or 1. Now let K be any commutative ring. For any set X denote by
KX the ring of functions X → K with finite support. Its basis consists of characteristic
functions χ{x} and can be identified with elements of X . This allows us to write its
elements as finite linear combinations of elements of X with coefficients in K. We have
encountered this notion when we defined divisors on Riemann surfaces. By including 0, 1
in K we can identify any correspondence Z ⊂ S × S′ with a function Z : S → KS′ . We
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have
Z(s) =

∑
s′∈Z(s)

1 · s′. (11.1)

Now we extend the notion of a correspondence by making the following:

Definition. LetK be a commutative ring and let S, S′ be two sets. A finiteK-correspondence
on the set S × S′ is a function Z : S → KS′ .

We have a natural function

deg : KS → K, φ→
∑
s∈s

φ(s) (11.2)

which is an analog of the degree of a divisor. If Z is a correspondence as in (11.1), then
deg(Z(s)) = #Z(s), where Z is considered as a multivalued map.

Since KS′ is an abelian group with respect to the operation of addition of functions,
we see that the set of finite K-correspondences on S ×S′ forms an abelian group. In par-
ticular, take S = S′ and denote the set of finite correspondences on S × S by Corr(S)K .
It has two operations: an addition and the composition. The latter generalizes the opera-
tion of composition of correspondences from above. For any f : S → KS denote by f̃ its
extension to a map KS → KS defined uniquely by additivity:

f̃(
∑
s∈S

ass) =
∑
s∈S

asf(s).

For any f, g ∈ Corr(S)K we set

f ◦ g(s) = f̃(g(s)). (11.3)

We leave to the reader to verify that this defines a structure of an associative ring on
Corr(S)K . It is called ring of finite K-correspondences on the set S with values in K. In
fact, it is obviously an algebra over K (since KS is a K-algebra). When K = Z we skip
the subscript in the notation.

Let Z be a finite K-correspondence on S ×S′. Any function φ : S′ → R with values
in a K-algebra R can be extended by additivity to a function φ̃ : KS′ → R using the
formula

φ̃(
∑
s′∈S′

as′s
′) =

∑
s′∈S′

as′φ(s′).

This allows us to define the inverse transform of φ under the correspondence Z:

Z∗(φ) = φ̃ ◦ Z.

If Z(s) =
∑

s′∈S′ as′s
′, then

Z∗(φ)(s) =
∑
s′∈S′

as′φ(s′). (11.4)
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Example 11.1. Let f : X → Y be a holomorphic map of compact Riemann surfaces.
Define a function r : X → Z by r(x) = ramification index of f at x. Recall that this
means that, taking a local parameter t at f(x), the function t ◦ f has a zero at x of order
r(x). Consider f−1 as a correspondence on Y × X given by the inverse f−1. More
precisely, f−1 = {(y, x) ∈ Y ×X : f(x) = y}. Then

(f−1)∗(r)(y) =
∑

f(x)=y

r(x) = n

does not depend on y and is equal to the degree of the map f .

11.2 We will be interested in the following situation. Let S be the set L of lattices in C.
Define a correspondence on L as follows

T (n) = {(Λ,Λ′) ∈ L × L : Λ′ ⊂ Λ, [Λ : Λ′] = n}. (11.5)

We take the natural inclusion of T (n) in the product L × L.

Lemma 11.1. Let A′n be the set of integral matrices
(
a b
0 d

)
with ad = n and 0 ≤ b < d.

Fix a basis (ω1, ω2) of a lattice Λ. For any A ∈ A′n denote by Λ(A) the sublattice
Z(aω2 + bω1) + Zdω2. Then the map A→ Λ(A) is a bijection from the set A′n onto the
set T (n)(Λ).

Proof. Note that the set A′n differs from the set An used in the previous lecture only
by abandoning the primitivity property of the matrix. As in the proof of Lemma 2 in
this lecture, we show that any integral matrix with determinant n can be transformed
to a unique A ∈ A′n by integral row transformations. This shows that any sublattice
Λ′ ∈ T (n)(Λ) has a unique basis of the form ω′1 = dω1, ω

′
2 = bω1 + aω2, and hence is

equal to a unique Λ(A) with A ∈ A′n.

Corollary 11.1.
deg T (n)(Λ) =

∑
d|n

d. (11.6)

For any nonzero complex number c consider the correspondence Rc on L defined by
the function Λ→ cΛ.

Lemma 11.2. The correspondences T (n) and Rc form a subring of the ring Corr(L).
They satisfy the following relations:

(i) T (m) ◦ T (n) = T (mn) if (m,n) = 1;

(ii) T (pn) ◦ T (p) = T (pn+1) + pT (pn−1) ◦Rp, where p is prime;
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(iii) T (n) ◦Ra = Ra ◦ T (n);

(iv) Ra ◦Rb = Rab.

Proof. The last two properties are obvious. To prove (i) we observe that

T (n) ◦ T (m) = {(Λ,Λ′′) ∈ L × L : [Λ : Λ′] = n, [Λ′ : Λ′′] = m for some Λ′}.

If (m,n) = 1, the finite abelian group Λ/Λ′′ contains a unique subgroup of order m. Its
pre-image in Λ must be Λ′. This shows that

T (n) ◦ T (m) = {(Λ,Λ′′) ∈ L × L : [Λ : Λ′′] = mn} = T (mn).

This proves (i). We have

T (pn) ◦ T (p)(Λ) =
∑

[Λ:Λ′]=pn+1

aΛ′Λ
′,

where
aΛ′ = #{Λ′′ : [Λ : Λ′′] = p, [Λ′′ : Λ′] = pn}.

Now
T (pn+1)(Λ) =

∑
[Λ:Λ′]=pn+1

Λ′,

pT (pn−1) ◦Rp(Λ) = pT (pn−1)(pΛ) = p
∑

[Λ:Λ′]=pn+1

bΛ′Λ
′,

where

bΛ′ =

{
1 if Λ′ ⊂ pΛ.
0 if Λ′ 6⊂ pΛ.

(11.7)

Comparing the coefficients at Λ′ we have to show that

(a) aΛ′ = 1 if Λ′ 6⊂ pΛ;

(b) aΛ′ = p+ 1 if Λ′ ⊂ pΛ.

Recall that aΛ′ counts the number of Λ′′ of index p in Λ which contain Λ′ as a sublat-
tice of index pn. We have pΛ ⊂ Λ′′ ⊂ Λ. Thus the image Λ̄′ of Λ′′ in Λ/pΛ is a subgroup
of index p. In case (a) the image of Λ′ in the same group is a non-trivial group contained
in Λ̄′. Since the order of Λ̄ is equal to p, they must coincide. This shows that Λ′′ in Λ/pΛ
is defined uniquely, hence there is only one such Λ′′, i.e. aλ′ = 1.

In case (b), Λ̄′′ could be any subgroup of order p in Λ/pΛ. The number of subgroups
of order p in (Z/pZ)2 is obviously equal to p+ 1.
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Corollary 11.2. The correspondences T (n) are polynomials in T (p)’s and
Rp’s, where p runs through the set of prime numbers. In particular, T (n)’s and Rn’s
generate a commutative subring H of Corr.

Definition. The subring H of Corr generated by the correspondences T (n) and Rn is
called the Hecke ring of Γ(1).

11.3 Consider a function f on L; using definition (11.4) , we have

T (n)∗(f)(Λ) =
∑

[Λ:Λ′]=n

f(Λ′). (11.8)

We apply it to the case when f is defined by a modular form of weight 2k with respect to
Γ. Choose a basis (ω1, ω2) of Λ with τ = ω2/ω1 ∈ H. Then set

f̃(Λ) = (ω1)−2kf(τ). (11.9)

This definition is independent of the choice of the basis as above. In fact, if ω′2 = αω2 +

βω1, ω′1 = γω2 + δω1 with some M =
(
α β
γ δ

)
∈ SL(2,Z), we have

(ω′1)−2kf(ω′2/ω
′
1) = (γω2 + δω1)−2kf(

αω2 + βω1

γω2 + δω1
) =

ω−2k
1 (γτ + δ)−2kf(M · τ) = ω−2k

1 f(τ).

This function satisfies the property

f(aΛ) = a−2kf̃(Λ). (11.10)

Conversely given a function f̃ on L satisfying this property we can set f(τ) = f̃(Z+Zτ).
Then

f(
ατ + β

γτ + δ
) = f̃(Z +

ατ + β

γτ + δ
) = (γτ + δ)−2kf((γτ + δ)Z + (ατ + β)Z) =

(γτ + δ)−2kf̃(Z + τZ) = (γτ + δ)−2kf(τ).

By property (iii) of Lemma 1, we obtain that T (n) leave the set of functions f̃ on H
satisfying (11.6) invariant.

Let Fk be the space of functions on L of the form f̃ where f ∈M(Γ(1))k.

Theorem 11.1. For any positive integer n and any non-negatve integer k,

Tn(Fk) ⊂ Fk.
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Proof. Let f ∈M(Γ(1))k and f̃ ∈ Fk. We know that

T (n)f̃(cΛ) =
∑

[Λ:Λ′]=n

f̃(cΛ′) = c−2k
∑

[Λ:Λ′]=n

f̃(Λ′).

This shows that T (n)f̃ = g̃, where g is a function on H satisfying g(
(
α β
γ δ

)
τ) = (γτ +

δ)−2kg(τ) for any
(
α β
γ δ

)
∈ Γ(1). We have to check that g is a holomorphic function

onH and at infinity. Applying Lemma 2, we have

g(τ) = T (n)f̃(Z + τZ) =
∑
A∈A′n

f̃((aτ + b)Z + dZ) =
∑
A∈A′n

d−2kf(
aτ + b

d
).

Thus
g(τ) =

∑
A∈A′n

d−2kf(
aτ + b

d
) =

∑
A∈A′n

f |kA. (11.11)

Clearly, g is holomorphic onH as soon as f is holomorphic. It remains to find its behavior
at infinity. Let

f =
∞∑
m=0

cme
2πimτ

be the Fourier expansion of f at∞. Then

g =
∑
A∈A′n

d−2k(
∞∑
m=0

cme
2πim(aτ+b)/d).

Observe that ∑
0≤b<d

e2πimb/d =

{
d if d|m,
0 otherwise.

(11.12)

This gives

g =
∑

ad=n,a≥1

d−2k+1(
∑
m′∈Z

cm′de
2πim′aτ ) =

∑
ad=n,a≥1

d−2k+1(
∑
m′∈Z

cm′dq
am′).

Now let m = am′ we have d = n/a, so we can rewrite it as follows:

g =
∑
m∈Z

qm(
∑

a|(n,m),a≥1

(n/a)−2k+1cmn/a2) =
∑
m∈Z

bmq
m. (11.13)

Since ck = 0 for k < 0 we get bm = 0 form < 0, so that g is holomorphic at∞. Also we
see that, if c0 = 0, then b0 = 0, i.e. T (n) maps a parabolic form to a parabolic form.
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From now on we shall identifyM(Γ(1))k with Fk. So we have linear operators T (n)
in each spaceM(Γ(1))k which also leave the subspaceM(Γ(1))0

k invariant.
To avoid denominators in the formulas one redefines the action of operators T (n) on

the vector spaceM(Γ(1))k by setting

T (n)f = n2k−1T (n)∗(f) = n2k−1
∑
A∈A′n

f |kA (11.14)

These operators are called the Hecke operators. Let

T (n)(

∞∑
m=0

cmq
m) =

∞∑
m=0

bmq
m. (11.15)

It follows from (11.9) that for prime n = p, we have

bm =

{
cpm if p 6 |m,
cmp + p2k−1cm/p if p|m.

(11.16)

Also, for any n,
b0 = σ2k−1(n)c0, b1 = cn. (11.17)

11.4 We will be interested in common eigenfunctions of operators T (n), that is, func-
tions f ∈Mk(Γ(1) satisfying

T (n)f = λ(n)f for all n.

Lemma 11.3. Suppose f is a non-zero modular form of weight 2k with respect to Γ(1)
which is a simultaneous eigenfunction for all the Hecke operators and let

∑
cnq

n be its
Fourier expansion. Then c1 6= 0 and

T (n)f =
cn
c1
f.

Moreover, if c0 6= 0 we have
cn/c1 = σ2k−1(n).

Conversely, if c0 6= 0 and the coefficients cn satisfy the previous equality, then f is a
simultaneous eigenfunction of Hecke operators.

Proof. In the notation of (11.11) we have

bm = λ(n)cm, ∀m,n.
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If c1 = 0, then b1 = λ(n)c1 = 0. But, by (11.12) we have cn = b1. This shows that
cn = 0 for all n 6= 0. Thus f is constant, contradicting the assumption. So, c1 6= 0, and
cn = b1 = λ(n)c1 implies

λ(n) = cn/c1.

If c0 6= 0, we use (11.12) to get b0 = σ2k−1(n)c0 = λ(n)c0. This gives

λ(n) = σ2k−1(n).

Corollary 11.3. Keep the notation from the previous lemma. Assume f is normalized so
that c1 = 1. Then

cmcn = cmn if (m,n) = 1,

cpcpn = cpn+1 + p2k−1cpn−1

where p is prime and n ≥ 1.

Proof. The coefficient cn is equal to the eigenvalue of T (n) on Mk(Γ(1)). Obviously
cmcn is the eigenvalue of T (n)T (m) on the same space. Now we apply assertion (ii) tak-
ing into account that the correspondence Rp acts as multiplication by p−2k and remember
that we have introduced the factor n2k−1 in the definition of the operator T (n).

Example 11.2. Let Ek(τ) be the Eisenstein modular form of weight 2k, k ≥ 2. We have
seen in (6.21) that its Fourier coefficients are equal to

cn =
2(2π)kσ2k−1(n)

(k − 1)!
, n ≥ 1,

c0 = 2ζ(k) =
22k−1πkBk

(2k)!
.

Thus cn = c1σ2k−1(n), and thereforeEk(τ) is a simultaneous eigenvalue of all the Hecke
operators.

Corollary 11.4.

σ2k−1(m)σ2k−1(m) = σ2k−1(mn) if (m,n) = 1,

σ2k−1(p)σ2k−1(pn) = σ2k−1(pn+1) + p2k−1σ2k−1(pn−1),

where p is prime and n ≥ 1.
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Example 11.3. Let f = ∆. Since f spans the space of cusp forms of weight 6 and this
space is T (n)-invariant for all n, we obtain that f is a simultaneous eigenfunction for all
the Hecke operators. We have

∆ = q

∞∏
m=1

(1− qm)24 =

∞∑
m=1

τ(n)qn.

We see that the Ramanujan function n→ τ(n) satisfies

τ(m)τ(n) = τ(mn) if (m,n) = 1, (11.18)

τ(p)τ(pn) = τ(pn+1) + p11τ(pn−1) if p is prime and n ≥ 1, (11.19)

Recall from Number Theory that a function f : N → C is called multiplicative if
f(mn) = f(m)f(n) if (m,n) = 1. It follows from above that the Fourier coefficients
cn of any modular form which is a simultaneous eigenfunction of all the Hecke operators
and normalized with the condition that c1 = 1 define a multiplicative function. Example
2 provides the function σ2k−1(n). Of course, the fact that is multiplicative is well-known
and can be found in any text-book in number theory. The fact that the Ramanujan function
is multiplicative is not easy, and does not follow immediately from its definition.

11.5 One can say more about the Fourier coefficients of a cuspidal modular form which
is a simultaneous eigenfunction of Hecke operators. This is done by introducing an inner
product in the spaceM(Γ(1))0

k.

Definition. Let f, g be two parabolic modular forms of weight k with respect to Γ. Let
D ⊂ H be the modular figure. The formula

〈f, g〉 =
i

2

∫
D
f(τ)g(τ)Im (τ)2k−2dτdτ̄ =

∫
D
f(x+ iy)g(x+ iy)y2k−2dxdy

defines a Hermitian inner product in the spaceMk(Γ)0. It is called the Petersson inner
product .

Observe that the integral converges because at the cusps f(τ)g(τ) behaves likeO(e−cy)
for some c > 0. This is why we have to restrict ourselves to parabolic forms only.

Lemma 11.4. For any A =
(
a b
c d

)
∈ GL(2,R) with detA > 0,

〈f |kA, gkA〉 = 〈f, g〉.
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Proof. We have

〈f |kA, g|kA〉 =
i

2

∫
D
f(Aτ)(cτ + d)−2kg(Aτ)(cτ + d)−2kIm (τ)2k−2dτdτ̄ =

i

2

∫
D
f(Aτ)g(Aτ)|cτ + d|−4kIm (τ)2k−2dτdτ̄ =

i

2

∫
D
f(Aτ)g(Aτ)Im (Aτ)2k−2d(Aτ)d(Aτ) =

i

2

∫
A(D)

f(τ)g(τ)Im (τ)2k−2dτdτ̄ .

In particular, when we takeA ∈ Γ we get that in the definition of the inner product we can
integrate overA(D) which is another fundamental domain for Γ. In fact, this computation
shows that for any measurable subset Q ofH and any A ∈ Γ, we have∫

D
f(τ)g(τ)Im (τ)2k−2dτdτ̄ =

∫
A(D)

f(τ)g(τ)Im (τ)2k−2dτdτ̄ .

This allows one to view 〈f, g〉 as the integral of the differential form

ω =
i

2
f(τ)g(τ)Im (τ)2k−2dτdτ̄

over H/Γ. Since for any A ∈ GL(2,R) with detA > 0, the set A(D) is another funda-
mental domain for Γ, the see that the last integral in (11.14) is also equal to the integral of
ω overH/Γ. Hence, it is equal to 〈f, g〉.

Theorem 11.2. The Hecke operators are Hermitian operators on the spaceMk(Γ(1))0

with respect to the Petersson inner product.

Proof. We have to check that

〈T (n)f, g〉 = 〈f, T (n)g〉.

In view of Lemma 2 it is enough to check it when n = p is prime. We have

〈T (p)f, g〉 =
∑
A∈A′p

〈f |k, g〉 =
∑
A∈A′p

〈f, g|kA−1〉.

Note that for any A ∈ A′p we have pA−1 is an integral matrix of determinant p. Thus we
can write as MA′ for some M ∈ Γ(1) and A ∈ A′p. This gives us that

〈T (p)f, g〉 =
∑
A′∈A′p

〈f, g|kMA′〉 =
∑
A′∈A′p

〈f, g|kA′〉 = 〈f, T (p)g〉.



143

Corollary 11.5. The space of parabolic modular formsMk(Γ(1)0 admits an orthonor-
mal basis which consists of eigenfunctions of all the Hecke operators T (n).

Proof. This follows from a well-known fact in linear algebra: a finite-dimensional Hilbert
space admits an orthonormal basis of eigenvalues of any set of commuting normal opera-
tors.

Corollary 11.6. Let f be a cuspidal modular form which is a simultaneous eigenfunction
for Hecke operators and let cn be its Fourier coefficients. Then cn/c1 are totally real
algebraic numbers.

Proof. The numbers cn/c1 are eigenvalues of a Hermitian operator. They must be real.
To prove the algebraicity, let us consider the set Mk(Z) of modular form of weight k
for Γ(1) with integral Fourier coefficients. Examples of such forms are the normalized
Eisenstein series E∗k = (k−1)!

2(2π)k
Ek(τ). This set is a Z-module and invariant with respect

to Hecke operators (as it follows from the formula for the Fourier coefficients of trans-
formed functions). We can find a basis in this module which is a subset of monomials
(E∗2)a(E∗3)b, a+ b = 2k. Thus the egenvalues of T (n) being the roots of the characteris-
tic polynomial with integer coefficients must be algebraic numbers.

Exercises

11.1 Let S be the set of finite-dimensional vector spaces over a finite field Fq of q ele-
ments. For each positive integer n consider the correspondence T (n) = {(V,W ) : W ⊂
V,dimV/W = n}. Show that the operators T (n) generate a commutative subring of
the ring of correspondences Corr(S). Show that T (n)T (m) = k(n,m)T (n+m), where
k(n,m) = #G(n, n+m)(Fq) (G(n, n+m) is the Grassmann variety of linear subspaces
of dimension n in Fn+m

q ).

11.2 Show that the Hecke operators T (n) together with operators Rc generate a commu-
tative algebra H over C which is freely generated by the operators T (p) and Rp, where p
is prime. The algebra H is called the Hecke algebra of the group Γ(1).

11.3 Show that the vector subspace of Corr(L)Q spanned by the Hecke operators T (n) is
a subalgebra of Corr(L)Q.

11.4 Consider the formal infinite series
∑∞

n=1 T (n)n−s with coefficients in the Hecke
algebra H of Γ(1). Show that

∞∑
n=1

T (n)n−s =
∏

p prime

[1− T (p)p−s +Rpp
1−2s]−1.
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11.5 Show that for any lattice L in C and a complex number s with Re s > 1, we have

∞∑
n=1

#T (n)(L)n−s = ζ(s)ζ(s− 1),

where ζ(s) is the Riemann zeta function.
Let Γ be a subgroup of finite index in Γ(1) and ∆ be a subsemigroup of the group
GL(2,Q)+ of rational 2 × 2-matrices with positive determinant which contains Γ and
satisfies the property that, for any α ∈ ∆, α · Γ · α−1 ∩ Γ is of finite index in Γ (e.g.
Γ = Γ(1) and ∆ = {σ ∈ M2(Z) : detσ > 0}). Let H(Γ,∆) be the free abelian group
with the basis formed by the double cosets [σ] = ΓσΓ, σ ∈ ∆.

(i) Show that, for any σ ∈ ∆, the double coset [σ] is equal to a finite union of right
cosets Γσi, where σi ∈ ∆.

(ii) If [σ] = ∪Γi∈Iσi, [σ
′] = ∪Γj∈Jσ

′
j , let cασ,σ′ denote the number of pairs (i, j) ∈

I × J such that Γσiσ
′
j = Γα for a fixed α ∈ ∆. Show that the formula

[σ] · [σ′] =
∑

α:ΓαΓ⊂ΓσΓσ′Γ

cασ,σ′ [α]

togeher with the addition law defines a stucture of an associative ring on H(Γ,∆).
This ring is called the Hecke ring of (Γ,∆).

(iii) Let ι be the adjugation involution in M2(Z) (i.e. ι(M)M = det(M)I2).Assume
that ∆ is invariant with respect to ι. Show thatH(Γ,∆) is commutative if and only
if [ι(σ)] = [σ] for any σ ∈ ∆.

11.7 Let S be the set of right cosets Γ · σ, σ ∈ ∆. For any σ ∈ ∆ set Zσ = {(Γα,Γβ) ∈
S × S : Γ · β ⊂ ΓσΓα}.

(i) Show that Zσ depends only on the double coset [σ] of σ, so we can denote it by
Z[σ].

(iii) Show that [σ] → Z[σ] defines a homomorphism of the Hecke ring H(Γ,∆) to the
ring Corrf(S) of finite correspondences on the set S.

11.8 For any σ ∈ ∆ let Γσ = (σΓσ−1) ∩ Γ. Let π : H/Γσ → H/Γ correspond to
the natural inclusion Γσ ⊂ Γ and let πσ : H/Γσ → H/Γ be the composition of an
isomorphism H/σ−1Γσ ∼= H/Γ induced by the Möebius transformation τ → σ · τ and
the natural projection mapH/Γσ → H/σ−1Γσ.

(i) Show that the composition of the correspondences π ◦ π−1
σ defines a finite corre-

spondence Cσ onH/Γ. Here π−1
σ is defined as in Example 1 from the lecture.
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(ii) Show that Cσ depends only on the double coset ΓσΓ. Denote it by C[σ].

(iii) Show that Z[σ] → C[σ] defines a homomorphism from the Hecke ring H(Γ,∆) to
the ring Corr(H/Γ).

11.9 Consider the Hecke ring H(Γ(1),M2(Z)+). For any pair of positive integers a, b
with a|b denote by T (a, b) the double coset of the matrix

(
a 0
0 b

)
. For any positive integer

n set T (n) =
∑

ab=n T (a, b).

(i) Show that T (a, b)T (a′, b′) = T (aa′, bb′) if (b, b′) = 1.

(ii) Show that T (pk, pm) = T (p, p)T (pk−1, pm−1), where p is prime.

(iii) Show that there exists an isomorphism of algebras H(Γ(1),M2(Z)+)⊗C and the
Hecke algebraH of Γ(1) as defined in Exercise 11.2. Under this isomorphism each
element T (n) is mapped to the Hecke operator T (n), and each element T (a, a) is
mapped to the operator Ra.

11.10 Let ∆(N) ⊂ M2(Z)+ be the set of integral matrices with positive determinant
prime to N . Prove that the map Γ(N)σΓ(N) → Γ(1)σΓ(1) defines an isomorphism
from H(Γ(N),∆(N)) onto H(Γ(1),M2(Z)0

+).

11.11 Let N > 1 and A be a fixed subgroup of (Z/NZ)∗. Let ∆ be the semigroup
of matrices σ =

(
a b
c d

)
∈ M2(Z)+ such that (detσ,N) = 1, N |c and the image of a

in Z/NZ belongs to A. Let Γ be the group of invertible elements in ∆. For example,
Γ = Γ0(N) or Γ1(N). Consider the Hecke ring H(Γ,∆). For any d ∈ (Z/NZ)∗ let σd
denote any representative of

(
d 0
0 d−1

)
in SL(2,Z). For any pair of positive integers a, b

such that a|b and (b,N) = 1, denote by T (a, b) the double coset of the matrix
(
a 0
0 b

)
. For

any positive integer n let T (n) be the sum of the double cosets Z[σ], where detσ = n.
Show that

(i) any Zσ ∈ H(Γ,∆) can be uniquely expressed as the product T (m)T (a, b), where
each prime factor of m divides N (we write it as m|N∞);

(ii) if (m,n) = 1 or m|N∞ or n|N∞, then T (mn) = T (m)T (n);

(iii) H(Γ,∆) is a polynomial ring over Z in the variables T (p, p) for all primes p 6 |N
and T (p) for all prime p;

(iv) H(Γ,∆)⊗Q is generated as an algebra over Q by T (n) for all n;

(v) the map H(Γ(1),M2(Z)+) → H(Γ,∆) defined by sending T (p) to T (p) if p is
any prime, T (p, p) to T (p, p) if p is a prime with p 6 |N , and sending T (p, p) to
zero if p is prime with p|N , is a surjective homomorphism of rings;
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(vi) H(Γ,∆) is a commutative ring.

11.12 Define the action of [σ] ∈ H(Γ,∆) on Mk(Γ) by f |[σ] = det(σ)k−1
∑

i f |kσi,
where [σ] = ∪iΓσi and f |kσi is defined as in (6.5) (which applies to not necessary uni-
modular matrices).

(i) Show that, extending by linearity, this defines a linear representation T → T ∗ of
the ring H(Γ,∆) inMk(Γ) and inMk(Γ)0.

(ii) Let (Γ,∆) be as in Exercise 11.11. Show that, for any n > 0 and f ∈Mk(Γ),

T (n)∗(f) =
∑

ad=n,(a,N)=1,0≤b<d

f |kσa
(
a b
0 d

)
.

11.13 Let us identify the set of points ofX0(N)′ = H/Γ0(N) with the set of isomorphism
classes of pairs (E,H), whereE is an elliptic curve andH is a cyclic subgroup of orderN
of its group of N -torsion points (see Theorem 8.6). Let p be a prime number not dividing
N and let T (p) be the Hecke correspondence on X0(N)′ (see Exercise 11.7). Show that
T (p)((E,H)) = {(E/Ai, Ai + H/Ai), i = 0, . . . , p}, where A0, . . . , Ap is the set of
cyclic subgroups of order p in E.



Lecture 12

Dirichlet Series

12.1 A Dirichler series is an infinite series of the form
∞∑
n=1

an
ns
,

where s is a complex number. It absolutely converges for Re s > 1 + c, where

an = O(nc).

An absolutely convergent Dirichlet series in a domain D is a holomorphic function in D.
The most notorious example of a Dirichlet series is the Riemann zeta function

ζ(s) =
∞∑
n=1

1

ns
.

It converges for Re s > 1. We will be interested in Dirichlet series for which the coeffi-
cients an are the Fourier coefficients of a modular form.

Let f ∈M(Γ)k and let

f =
∞∑
n=0

ane
2πinτ/h (12.1)

be its Fourier series at∞. For any complex number s we define the formal expression

Zf (s) =
∞∑
n=1

an
ns

=
∞∑
n=1

ane
−s logn (12.2)

and call it the Dirichlet series associated to f . Let us first invesigate the convergence of

this series.

147
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Lemma 12.1. Let f ∈Mk(Γ). Then f is parabolic if and only if

|f(x+ iy)| ≤ Cy−k (12.3)

for some constant C independent of x.

Proof. Let φ(x + iy) = |f(x + iy)|yk. It is immediately seen that this function is Γ-
invariant. Let α be a representative of a cusp with respect to Γ. Choose A ∈ Γ(1) such
that A · α =∞. Then f |kA = Φ(e2πiτ/h) for some function Φ holomorphic in a domain
Re τ > c. We also have φ(A · (x + iy)) = |Φ(e2π(ix−y)/h)|yk. Assume f vanishes at
α. Then Φ = e2π(ix−y)/hΦ0, where limy→∞Φ0 6= 0. Thus limy→∞ φ(A · (x + iy)) =
limy→∞ e

−2πyyk = 0. This implies that the function φ(x + iy) converges to zero when
τ = x+iy converges to a cusp. Hence it is a continuous function on a compact topological
spaceH∗/Γ. It must be bounded. Conversely, if the inequality (12.3) holds, then φ(x+iy)
must be bounded and hence Φ must be vanishing at 0.

Corollary 12.1. Let f ∈ Mk(Γ)0 and an be the coefficient at e2πin/h in its Fourier
expansion at∞. Then

|an| = O(nk).

In particular, Zf (s) converges for Re s > k + 1.

Proof. Let q = e2πi(x+iy)/h. Fix y and let x vary from 0 to h. Then q moves along the
circle C(y) of radius e−2πy/h with center at 0. By Cauchy’s residue formula

an =
1

2πi

∫
C(y)

f(τ)q−n−1dq =
1

h

∫ h

0
f(x+ iy)q−ndx.

By Lemma 12.1, |f(x+ iy)| ≤ Cy−k for some constant C. We have

|an| ≤
1

h

∫ h

0
|f(x+ iy)||q|−ndx ≤ Cy−2ke2πny/h.

Taking y = 1/n, we get |an| ≤Mnk.

12.2 We shall now find a functional equation for the Dirichlet series Zf (s).

Lemma 12.2. Let f ∈Mk(Γ) and FN =
(

0 −1/
√
N√

N 0

)
. Assume that Γ′ = F−1

N ·Γ ·FN
is a subgroup of finite index in SL(2,Z). Then

WN (f) := f |kFN = f(−1/Nτ)N−kτ−2k ∈Mk(Γ
′).

Moreover, if f ∈Mk(Γ)0, then WN (f) ∈Mk(Γ
′)0.
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Proof. For any A ∈ Γ′ we have FNA = BFN for some B ∈ Γ. Hence

WN (f)|kA = (f |kFN )|kA = f |kFNA =

f |kBFN = (f |kB)|kFN = f |kFN = WN (f).

We leave the proof of the last assertion to the reader.

Example 12.1. Let f ∈Mk(Γ0(n)). Assume that N |n. Then

WN (f) = f(−1/Nτ)N−kτ−2k ∈Mk(Γ0(N)).

To see this we use that(
0 −1/

√
N√

N 0

)(
a b
nc d

)(
0 −1/

√
N√

N 0

)−1

=

(
d −cn/N
−bN a

)
∈ Γ0(N).

(12.4)
The same equality shows that

f ∈Mk(Γ(n)) =⇒WN (f) ∈Mk(Γ(n/N) ∩ Γ0(nN)).

Theorem 12.1. (Erich Hecke) Let f ∈ Mk(Γ)0 and let g = WN (f). Assume that
FN
−1 · Γ · FN is a subgroup of finite index in SL(2,Z). Let h be the index of the cusp

∞ of Γ and h′ be the same for Γ′. The Dirichlet series Zf (s) can be extended to a
holomorphic function on the whole complex plane. Setting

R(s, f) = N s/2(2π)−sΓ(s)Zf (s),

we have the functional equation

hsR(s, f) = (−1)kh′2k−sR(2k − s; g),

Here Γ(s) is the Gamma-function.

Proof. We shall use the Mellin transform which carries a function φ(y) defined on the
positive ray of real numbers, and bounded at 0 and∞, to a holomorphic function Mφ(s)
defined by Mφ = F , where

F (s) =

∫ ∞
0

φ(y)ys−1dy.

It is inverted by

φ(y) =
1

2π

∫ y+i∞

y−i∞
F (s)y−sds, y > 0.
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Take φ(y) = f(iy) and let f =
∑∞

n=1 ane
2πinτ/h be its Fourier expansion at∞. We have

Mφ(s) =
∞∑
n=1

an

∞∫
0

e−2πny/hys−1dy =

∞∑
n=1

an

∞∫
0

e−tts−1 hsdt

(2πn)s
= (h/2π)sΓ(s)Zf (s).

Here we have used the integral formula for the Gamma-function:

Γ(s) =

∞∫
0

e−tts−1dt. (12.5)

We leave to the reader to justify the possibility of the term-by-term integration of the
infinite series (we have to use Lemma 12.2). Now let us do the same for the function
g = WN (f) ∈Mk(Γ

′)0, where Γ′ = FN
−1ΓFN . We have

Mφ(s) =

∫ ∞
0

f(iy)ys−1dy =

A∫
0

f(iy)ys−1dy +

∞∫
A

f(iy)ys−1dy,

where the first summand converges for Re s > k + 1 and the second one converges
everywhere. The Fricke transformation transforms f(iy) to f(i/Ny) = Nk(iy)2kg(iy).
So changing the variable y to 1/Ny we obtain

A∫
0

f(iy)ys−1dy =

∞∫
A

f(i/Ny)N−sy−s−1dy = (−1)kNk−s
∞∫
A

g(iy)y2k−1−sdy.

(12.6)
This converges for all s ∈ C. Similarly,

∞∫
A

f(iy)ys−1dy = (−1)kNk−s
A∫

0

g(iy)y2k−1−sdy.

This converges for Re s > k + 1. This shows that each summand in (12.6) can be
holomorphically extended to the whole complex plane. After summing up we get

Mφ(s) = (h/2π)sΓ(s)Zf (s) = (−1)kNk−sMg(iy)(2k − s) =

(−1)kNk−s(h′/2π)2k−sΓ(2k − s)Zg(2k − s).
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Thus if we set R(s, f) = N s/2(2π)−sΓ(s)Zf (s) we obtain

hsR(s, f) = (−1)kh′2k−sR(2k − s, g)

for Re s > k + 1.

It follows from Example 1 that the Fricke transformation FN defines a linear operator
WN on the spaceMk(Γ0(N)) . It satisfies

W 2
N = 1.

In fact we have

W 2
N (f) = WN (N−kτ−2kf(−1/Nτ)) = N−kτ−2kN−k(−1/Nτ)−2kf(τ) = f(τ).

Thus we can decomposeMk(Γ0(N)) into the direct sum of two eigensubspaces

Mk(Γ0(N)) =Mk(Γ0(N))+ ⊕Mk(Γ0(N))−

with eigenvalue +1 or −1. Similarly, we see that WN acts on the spaceMk(Γ(N)) and
we can decompose it in the direct sum of two eigensubspaces:

Mk(Γ(N)) =Mk(Γ(N))+ ⊕Mk(Γ(N))−.

Corollary 12.2. Let f ∈Mk(Γ0(N))ε, where ε = ±1. Then

R(s; f) = (−1)kεR(2k − s; f).

Corollary 12.3. Let f ∈Mk(Γ(N))ε, where ε = ±1. Then

R(s; f) = (−1)kN2k−2sεR(2k − s; f).

12.3 If f ∈ Mk(Γ) is not a parabolic modular form we cannot, in general, attach the
Dirichlet series to it. However, if we assume that f admits a Fourier expansion at∞ with
coefficients satifying |an| ≤ nc we can still do it and obtain a holomorphic function Zf (s)
defined for Re s > c. The next theorem generalizes the previous theorem to this case.

Theorem 12.2. Let f ∈Mk(Γ) and g = WN (f) ∈Mk(Γ
′) where Γ′ = F−1

N · Γ · FN is
a subgroup of finite index in SL(2,Z). Let

f =

∞∑
n=0

ane
2πin/h, g =

∞∑
n=0

bne
2πin/h′

be the Fourier expansions at f and g at ∞. Assume that |an|, |bn| ≤ O(nc). Let
R(f ; s) := N s/2(2π)−sΓ(s)Zf (s). Then Zf (s) is holomorphic for Re s > c + 1 and
R(f ; s) + a0s

−1 + (−1)kb0(2k − s)−1 admits a holomorphic extension to the whole
complex plane. Moreover,

hsR(f ; s) = (−1)kh′2k−sR(f |kFN ; 2k − s).
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Remark 12.1. It is known that the Gamma-function Γ(s) is meromorphic and has a simple
pole at s = 0. Thus, in Theorem 12.2, Zf (s) admits a meromorphic extension to the
complex plane with single pole at 2k.

Example 12.2. Take f(τ) = E2k(τ). Then

E2k(τ) = 2ζ(2k) +
2(2πi)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n)qn,

where
σ2k−1(n) =

∑
d|n

d2k−1.

It is easy to see that
n2k−1 ≤ σ2k−1(n) ≤ An2k−1

for some positive constant A. Thus Zf (s) is defined and is convergent for Re s > 2k.
Since

∞∑
n=1

σ2k−1(n)n−s =
∞∑

m,l=1

l2k−1(lm)−s =

∞∑
m,l=1

m−sl−s+2k−1 = ζ(s)ζ(s− 2k + 1),

we have

ZE2k
(s) =

2(2πi)2k

(2k − 1)!
ζ(s)ζ(s− 2k + 1). (12.7)

Recall that E2k(τ) ∈Mk(Γ(1) =Mk(Γ0(1)). Applying Theorem 12.2, we obtain

ζ(s)ζ(s− 2k + 1) = (2π)2k−2sΓ(2k − s)
Γ(s)

ζ(2k − s)ζ(1− s).

Of course it follows also from the known functional equation for the Riemann zeta func-
tion

π−
s
2 Γ(

s

2
)ζ(s) = π

s−1
2 Γ(

1− s
2

)ζ(1− s).

Example 12.3. Take f(τ) = Θ(0; τ)8t. We know that these functions are modular forms
of weight k = 2t for Γ(2). We have

Θ(0; τ)8n =

∞∑
n=0

c8t(n)eπin,

where
c8t(n) = #{(r1, . . . , r8t) ∈ Z8t : n = r2

1 + . . .+ r2
8t}.
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It is clear that we can bound c8t(n) by the number of integer points inside of the cube
[−
√
n,−
√
n]8t. This easily gives

c8t(n) ≤ Cn4t = Cn2k.

Therefore, the Zf (s) is convergent for Re s > 2k + 1. We have

Zf (τ) =
∞∑
m=1

c8t(n)

ns
=

∑
(r1,...,r8t)∈Z8t\{0}

1

(r2
1 + . . .+ r2

8t)
s

=
∑

λ∈Λ\{0}

1

Q(λ)s
,

where Q = x2
1 + . . .+ x2

8t and Λ = Z8t ⊂ R8t. More generally, for any positive definite
quadratic form Q : Rn → R and a lattice Λ in Rn we can define the Epstein zeta function

ZQ(s) =
∑

λ∈Λ\{0}

1

Q(λ)s
.

Although f(τ) is not a modular form for Γ(1) it satisfies f(−1/τ) = f(τ)τ4t. Applying
Corollary 2 to Theorem 1 with N = 2 we get

2s2s/2(2π)−sΓ(s)Zf (s) = 24t−s2
4t−s

2 (2π)−4t+sΓ(4t− s)Zf (4t− s)

which gives

Zf (4t− s) =
π4t−2s

22t−s
Γ(s)

Γ(4t− s)
Zf (s).

12.4 Now let us look at the Dirichlet series associated to cuspidal forms which are
simultaneous eigenfunctions of Hecke operators.

Theorem 12.3. Let f be a normalized cuspidal modular form of weight k with respect
to Γ(1) and

∑
cnq

n be its Fourier expansion. Assume f is normalized in the sense that
c1 = 1. Assume that f is an eigenfunction for all the Hecke operators. Then the associated
Dirichlet series Zf (s) admits the following infinite product expansion:

Zf (s) =
∏

p prime

1

(1− cpp−s + p2k−1p−2s)
.

Proof. We know from Corollary 11.3 that the function n → cn is a multiplicative func-
tion. This implies that for any finite set S of prime numbers

∑
n∈N(S)

cn
ns

=
∏
p∈S

(
∞∑
m=0

cpmp
−ms) =

∏
p∈S

1

(1− cpp−s + p2k−1p−2s)
,
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where N(S) denotes the set of natural numbers whose prime decomposition involves only
numbers from S. Here we use Corollary 11.3 which gives us that

(1− cpp−s + p2k−1p−2s)(
∞∑
m=0

cpmp
−ms) = 1.

When S grows, the left-hand side tends to Zf (s). This implies that the infinite products
converges to Zf (s).

Example 12.4. Take f = ∆ to obtain

Z∆ =

∞∑
n=1

τ(n)

ns
=

∏
p prime

1

(1− τ(p)p−s + p11p−2s)
,

where τ(n) is the Ramanujan function. Applying Corollary 2 with N = 1, we get also
the functional equation for Z∆(s):

Z∆(12− s) = (2π)12−2s Γ(s)

Γ(12− s)
Z∆(s).

Remark 12.2. Let

Φf,p = 1− cpT + p2k−1T 2 = (1− αpT )(1− α′pT ).

We know that αp and α′p are algebraic integers. The Petersson conjecture suggested that
α′p = ᾱp, or, equivalently,

|αp| = |α′p| = pk−
1
2 ,

or

|cp| ≤ 2pk−
1
2 ,

or

|cn| ≤ nk−
1
2σ0(n) for all n ≥ 1.

This was proven by P. Deligne as a special case of his proof of Weil’s conjectures about
the zeta function of algebraic varieties. In particular, when k = 6 we get the Ramanujan’s
Conjecture:

|τ(p)| ≤ 2p11/2.
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12.5 In this section we generalize some of the previous results to the case when Γ(1)
is replaced with Γ1(N). We will be rather sketchy and refer for the details to [Seminar].
We use the definition of the corresponding Hecke ring H(Γ,∆) from Exercise 11.11. Let
us denote it by TN . It is generated by the elements T (p) for all prime p and elements
T (p, p) for all primes p not dividing N . Let T(N) denote the subring of TN generated by
T (p) and T (p, p), where p does not divide N . One can extend the proof of Theorem 11.2
to show that T(N) acts in the spaceMk(Γ1(N))0 by Hermitian operators (with respect to
the Petersson inner product). This is not true for the ring TN . So a cuspidal form could
be a simulateneous eigenfunction for all the Hecke operators coming from T(N) but not
an eigenfunction for some Hecke operator from TN .

It is easy to see that Γ1(N) is a normal subgroup of Γ0(N) with the quotient group
isomorphic to (Z/NZ)∗. Thue latter group acts naturally on the algebra of modular forms
with respect to Γ0(N), and for each k ≥ 0 we have a direct sum decomposition into the
eigensubspaces corresponding to Dirichlet characters χ : (Z/NZ)∗ → C∗:

Mk(Γ1(N)) = ⊕χMk(Γ1(N)χ, (12.8)

Let

Mk(Γ0(N);χ) := {f ∈Mk(Γ0(N)) : f |kg = χ′(g)f, ∀g ∈ Γ0(N)},

where χ′ is the composition of χ with the homomorphism Γ0(N) → (Z/NZ)∗ which
sends a matrix to the residue modulo N of its first coefficient. We will also need the
notation

Mk(Γ0(N);χ)0 =Mk(Γ0(N);χ) ∩Mk(Γ0(N))0.

We have
Mk(Γ1(N)χ =Mk(Γ0(N);χ).

Clearly the subspaceMk(Γ0(N) ⊂Mk(Γ1(N) corresponds to the trivial character.
More explicitly, the action of (Z/NZ)∗ on Mk(Γ1(N)) is defined as follows. For

any n ∈ (Z/NZ)∗, let αn be any element of SL(2,Z) such that αn =
(
n 0
0 n−1

)
modulo

N . Then the action of n onMk(Γ1(N) is given by the formula

< n >k: f → f |kαn. (12.9)

Notice that the Hecke operator T (n, n) acts onMk(Γ1(N)) as nk−2 < n >.
We have the following analogue of Theorem 11.2:

Theorem 12.4. Let T (n) ∈ T(N) with (n,N) = 1. For any f, g ∈Mk(Γ0(N);χ)0,

〈T (n)f, g〉 = χ(n)〈f, T (n)g〉,

where the inner product is the Petersson inner product. In other words, the adjoint of
T (n) is Tn◦ < n mod N >.
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It is easy to see that the operators T (m), (m,N) = 1 and < n > form a set of com-
muting normal operators onMk(Γ1(N)). This allows to decompose eachMk(Γ0(N);χ)
into an orthogonal sum of T(N)-eigensubspaces.

The condition (n,N) = 1 is important. The operators T (n) for which n does not
satisfy this condition are not normal operators. So, it becomes problematic to find a
modular form which is a simultaneous eigenfunction for all the Hecke operators.

Another unfortunate thing is that the operator WN does not commute with all the
Hecke operators, so that we cannot combine Theorem 12.3 and Corollary 12.3 to ob-
tain Dirichlet series Zf (s) with the infinite product as in Theorem 12.3 which satisfy the
functional equation as in Corollary 12.3.

We have the following weaker assertion:

Proposition 12.1. Let WN be the operator onMk(Γ1(N))0 corresponding to the Fricke
transformation FN defined by f → f |k

(
0 −1
N 0

)
. Let T (n)k,χ denote the restriction of the

Hecke operator T (n), (n,N) = 1 to the subspaceMk(Γ0(N);χ). Then

T (n)k,χ ◦WN = χ(n)WN ◦ T (n)k,χ̄,

where χ̄ denotes the complex conjugate character.

Proof. We refer for the proof to [Shimura].

However, one can still find common eigenvalues in Mk(Γ1(N))0 for all the Hecke
operators if we restrict these operators to a certain subspace. Let us explain this.

Let d,M be positive integers such that dM |N . There exists an injective linear map

ıd,M,N :Mk(Γ1(M))0 →Mk(Γ1(M))0. (12.10)

It is defined by sending f(τ) to d
k
2
−1f(dτ). One checks that it is a homomorphism

of T(N)-modules. Let Mk(Γ1(M))0
old be the subspace of Mk(Γ1(M))0 spanned by

the images of the maps ıd,M,N . Let Mk(Γ1(M))0
new be the orthogonal complement of

Mk(Γ1(M))0
old with respect to the Petersson inner product. In fact, we have an orthogo-

nal decompositions

Mk(Γ1(M))0
old = ⊕χMk(Γ0(M);χ)0

old,

whereMk(Γ0(M);χ)0
old =Mk(Γ0(M);χ)0 ∩Mk(Γ0(M))0

old, as well as

Mk(Γ0(M);χ)0 =Mk(Γ0(M);χ)0
old ⊕Mk(Γ0(M);χ)0

new.

The next result, due to Atkin and Lehler, is called the Multiplicity One Theorem.

Theorem 12.5. Let f ∈ Mk(Γ1(N))0
new. Suppose that f is an eingefunction for all the

Hecke operators from T(ND), for some D > 0. If g is another such form with the same
eiegenvalues, then g is a scalar multiple of f .
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Corollary 12.4. Let f ∈Mk(Γ1(N))0
new. The following assertions are equivalent:

(i) f is an eigenfunction for T(ND) for some D > 0;

(ii) f is an eigenfunction for T(N);

(iii) f is an eigenfunction for TN .

Proof. It follows from the theorem that each T(ND)-eigensubspace in Mk(Γ1(N))0
new

is one-dimensional, and hence is TN -invariant because all the Hecke operators commute
(Exercise 11.11 (vi)). This shows that (i) implies (iii). The rest of implications are obvi-
ous.

Remark 12.3. Let f =
∑
anq

n be the Fourier expansion of a f ∈ Mk(Γ1(N))0
new

satisfying one of the equivalent conditions of the previous corollary. One can show that
a1 6= 0 so we can alaways normalize f to assume a1 = 1. Such a modular form is called
a newform.

So we can extend Theorem 11.2 to newforms. To see when newforms exist we ob-
serve that the maps ıd,M,N send Mk(Γ0(M);χ)0 to Mk(Γ0(N);χ′)0, where χ′ is the
composition of χ : (Z/NZ)→ C∗ with the natural surjection (Z/NZ)→ (Z/MZ). So,
if χ is a primitive character of (Z/NZ), we have

Mk(Γ0(M);χ)0 =Mk(Γ0(M);χ)0
new.

We can apply Corollary 12.3 to get a functional equation for newforms. Notice that
the spaceMk(Γ1(N))0

new is invariant with respect to the operatorWN . This follows from
the WN -invariance of the spaceMk(Γ1(N))0

old. The latter is easy to check. We have, for
any f ∈Mk(Γ1(M))0 such that N = dM ,

WdM (ıd,M,N (f(τ)) = WM (d
k
2
−1f(dτ)) =

(dM)−kd
k
2
−1(τ)−2kf(−1/Mτ) = d−kıd,M,N (WM (f)). (12.11)

This checks the claim.
It is also easy to see that

WN (Mk(Γ0(N);χ)0
new) =Mk(Γ0(N); χ̄)0

new.

In particular, we can decomposeMk(Γ0(N))0
new into a direct sum of eigensubspaces of

WN :
Mk(Γ0(N))0

new =Mk(Γ0(N))0
new,+ ⊕Mk(Γ1(N))0

new,−.

An element of each space will satisfy the functional equation from Corollary 12.3 and
also will admit the infinite product decomposition from Theorem 12.3.
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Exercises
12.1 Show that the Mellin transform of the function f(x) = ϑ(0; ix) − 1 is equal to
2π−sζ(2s)Γ(s).

12.2 Show that the Dirichlet series
∑∞

n=1 ann
−s can be expressed as the Laplace trans-

form
∫∞

0 f(t)e−stdt for an appropriate function f(t).

12.3 Find the functional equation for Zf where f(τ) = ∆(11τ)/∆(τ)1/12 (see Exercise
10.6).

12.4 Show that E2(τ)− pE2(pτ) belongs toM1(Γ0(p)), where p is prime.

12.5 Prove Theorem 12.2.

12.6 Apply the proof of Theorem 1 to the function f(τ) = ϑ00(0; τ) to obtain the func-
tional equation for the Riemann zeta function.

12.7 Prove that for any f =
∑
anq

n ∈Mk(Γ(1)) one has |an| ≤ O(n2k−1).

12.8 Show that the discriminant modular form ∆ ∈ M6(Γ) ⊂ M6(Γ0(N)) is an eigen-
function for all Hecke operators from T′N but not for all Hecke operators from TN (unless
N = 1).

12.9 Describe the decomposition of M1(Γ1(33))0 into the old and new subspaces by
verifying assertions (i)-(iii) below.

(i) dimM1(Γ1(33))0 = 21, dimM1(Γ1(11))0 = 1, andM1(Γ1(3))0 = 0;

(ii) dimM1(Γ1(33))0
old = 2;

(iii) dimM1(Γ0(33);χ)0
new = 2 for each nontrivial character χ.

(iv) Show that eachM1(Γ0(33;χ))0
new is spanned by T33-eigenfunctions.



Lecture 13

The Shimura-Tanyama-Weil
Conjecture

13.1 In the previous lecture we have attached a Dirichlet series to a cuspidal modular
form with respect to the group Γ0(N). In this lecture we will attach a Dirichlet series to
an elliptic curve over Q. The conjecture from the title of the lecture tells that the latter
Dirichlet series always coincides with the former one for an appropriate modular form.

Let E be an elliptic curve. We assume that it can be given by homogeneous equations
with coefficients in Q and the set of points of E(Q) with rational projective coordinates
is not empty. We say in this case that E is an elliptic curve over Q. One can show that the
set E(Q) is independent of the choice of a system of algebraic equations over Q defining
E.

Lemma 13.1. Let E be an elliptic curve over Q. Then E is isomorphic to a plane cubic
curve with equation

Y 2Z −X3 − c2XZ
2 − c3Z

3 = 0 (13.1)

with integer coefficients c2, c3.

Proof. We use the Riemann-Roch Theorem from Lecture 8. LetD =
∑
nPP be a divisor

which is a linear combination of points from E(Q). Let L(D)Q denote the Q-subspace
of L(D) which consists of rational functions on E with coefficients in Q. Once can show
that dimQ L(D)Q = dimC L(D). Fix a point Q ∈ E(Q) and apply the Riemann-Roch
Theorem to obtain that dimQ L(nQ) = n. Let x be a non-constant function in L(2Q)
and let y ∈ L(3Q) which is not a linear combination of 1 and x. Since the functions
1, x, x2, x3, y, y2, xy belong to the space L(6Q) and the latter is of dimension 6 over Q,
we obtain a linear relation

a0 + a1x+ a2x
2 + a3x

3 + b0y + b1xy + b2y
2 = 0

159
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with coefficients in Q. Replacing xwith ax+b and y with cy+dx+e for some appropriate
coefficients a, b, c, d, e ∈ Q we may assume that the linear relation has the form

b3 + b2x+ x3 − y2 = 0,

where b0, b1 ∈ Q (see Example 6.4). Multiplying x by α−2 and y by α−3 for an appro-
priate integer α, we can change b2 to b2α4 and b3 to b3α6. Choosing an appropriate α
this makes we can assume that the coeffients c2 = b2α

4 and c3 = b3α
6 to be integers.

Using the argument from the second half of the proof of Corollary 8.5 we obtain that the
functions x, y define an isomorphism from E \ {Q} → C \ {∞}, where C is the plane
cubic given by the equation (13.1), and∞ is its point (X,Y, Z) = (0, 1, 0). This can be
extended to an isomorphism E ∼= C.

Observe that E can be given in many ways by an equation of the form (13.1). We can
make it almost unique if we require some additional property. Let

∆ = 4c3
2 + 27c2

3 (13.2)

be the discriminant of the polynomial t3 + c2t + c3. We call it the discriminant of the
equation (13.1). For every prime p let νp(∆) be the highest power of p which divides ∆.
We say that the equation (13.1) is a minimal Weierstrass equation of E if for any other
equation of the form (13.1) defining E with discriminat ∆′ we have, for any prime p,

νp(∆) ≤ νp(∆′)

One can prove that a minimal Weierstrass equationt always exists and is unique (see [Sil-
verman]).

Definition. Let E be an elliptic curve over Q and let (13.1) be its minimal Weierstrass
equation with discriminant ∆. Let p be a prime number. We say

(a) E has good reduction (resp. bad reduction) modulo p if p 6 |∆ (resp. p|∆),

(b) E has multiplicative reduction modulo p if p|∆ but p 6 | c2c3,

(c) E has an additive reduction modulo p if p|c2 and p|c3.

Let us explain the terminology. Since the coefficients c2 and c3 are integers we can
reduce them modulo p to obtain an algebraic curve over the finite field Fp. This curve is a
singular curve (i.e. the formal partial derivatives of the polynomial defining the equation
has a common zero over the algebraic closure F̄p of Fp) if and only if p|∆. If p|c2 and
p|c3 the equation over Fp becomes Y 2Z −X3 = 0. Its singular point is (0, 1, 0), and its
nonsingular solutions (x, y, 1) over F̄p are of the form (t2, t3), t ∈ F̄p. The addition law
in F̄p defines the addition law on the set of nonsingular solutions equipping this set with
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the structure of an abelian group isomorphic to the additive group of F̄p. Finally, if E has
multiplicative reduction modulo p, then after reducing the coefficients c2 and c3 modulo
p we obtain an algebraic curve over Fp which is isomorphic over F̄p to the curve

Y 2Z −X2(X − αZ) = 0 (13.3)

with α 6= 0. The point (0, 0, 1) is its singular point. Any nonsingular solution over F̄p
has the form (t0(t21 + αt20), t1(t21 + αt20), t0), where (t0, t1) ∈ P1(F̄p) and t2 + αt20 6= 0.
The linear transformation u0 = t0 +

√
α, u1 = t0 −

√
α allows one to identify the set of

nonsingular solutions with the subset P1(F̄p) \ {0,∞} = F̄∗p. So this set carries a natural
structure of an abelian group isomorphic to the multiplicative group of the field F̄p.

13.2 Now we are ready to define the L-function L(E, s) of an elliptic curve over Q. It
is given as an infinite product

L(E, s) =
∏

p prime

Lp(E, s), (13.4)

where

(a) if E has a good reduction modulo p

Lp(E, s) =
1

1− a(p)p−s + p1−2s
,

where
a(p) = p+ 1−#E(Fp),

and E(Fp) = {(x, y, z) ∈ P2(Fp) : y2z = x3 + c2xz
2 + c3z

3}.

(b) if E has multiplicative reduction modulo p

Lp(E, s) =
1

1− a(p)p−s
,

where a(p) = 1 if α in (13.3) belongs to Fp and A(p) = −1 otherwise.

(c) if E has additive reduction modulo p

Lp(s) = 1.

The next lemma shows that L(E, s) is a Dirichlet series.

Lemma 13.2. The infinite product
∏
p(1 − cpp

−s)−1 with |cp| ≤ pα for some real α
defines an absolutely convergent Dirichlet series for Re s > c+ 1.
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Proof. Let cn be a multiplicative complex-valued function on N with the value at a prime
p equal to cp. We have a formal identity

∞∑
n=1

cn
ns

=
∏
p

1

1− cpp−s
.

Since |cp| ≤ pα, we have |cn| ≤ nα for all n. We know from Lecture 12 that this implies
that the Dirichlet series is absolutely convergent for Re s > c+ 1.

Corollary 13.1. The infinite product L(E, s) converges for Re s > 2 and is given there
by an absolutely convergent Dirichlet series.

Proof. Let ap be the coefficient from the definition of L(E, s). If p is a prime defining a
bad reduction of E, then |ap| ≤ 1. If p defines a good reduction, then E(Fp) consists of
the infinity point and a points (x, y, 1), where x, y ∈ Fp and y2 = x3 + c2x + c3. This
gives #E(Fp) ≤ 2p+1 and hence |ap| = |#E(Fp)−p−1| ≤ p. We can write the factor
Lp(E, s) for “good” primes in the form

Lp(E, s) =
1

(1− rpp−s)(1− r′pp−s)
,

where
1− apX + pX2 = (1− rpX)(1− r′pX).

The roots rp, r′p are equal to 1
2(ap ±

√
a2
p − 4p) and clearly satisfy |rp| ≤ |ap| ≤ p. Thus

we can write down the infinite product L(E, s) as the product L1(s)L2(s), where each
factor satisfies the assumption of the previous lemma with c = 1. The assertion follows
from the lemma.

In fact, we can do better and prove the convergence of the L-series for Re s > 3
2 . For

this we invoke the following

Theorem 13.1. (H.Hasse) In the above notation

|p+ 1−#E(Fp)| < 2
√
p.

Proof. We refer to [Knapp] for an elementary proof of this theorem due to Yu. Manin.
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13.3 Now we are familiar with two Dirichlet functions both absolutely convergent for
Re s > 2. One is the Dirichlet series Zf (s) associated to a cusp form f of weight 1 with
respect to Γ0(N) and L(E, s). The next conjecture relates these two functions:

Conjecture. (Hasse-Weil) Let E be an elliptic curve over Q. Define the conductor of E
to be

N =
∏
p

pap ,

where p runs in the set of primes for which E has a bad reduction, and ap = 1 if the
reduction is of multiplicative type, and Ap = 2 otherwise. There exists a unique f ∈
M1(Γ0(N))0 such that

Zf (s) = L(E, s),Re s > 2.

Moreover, f is an eigenvector of all the Hecke operators and also an eigenvector for the
operator WN .

Notice that according to Remark 12.3, the form f must be a newform. Applying
Corollary 12.2, we obtain the following:

Corollary 13.2. Assume the above conjecture is true. ThenL(E, s) admits a holomorphic
extension to the entire complex plane and satisfies the following functional equation:

N
s
2 (2π)−sΓ(s)L(E, s) = ±N

2−s
2 (2π)−s+2Γ(2− s)L(E, 2− s).

In fact, the previous conjecture was motivated by this assertion. It turns out that the
latter corollary is almost equivalent to the Hasse-Weil conjecture. One observes first that
Zf (s) satisfies the following additional property. Let

χ : Z→ C

be a Dirichlet character modulo m. Recall that it means that χ(n) = 0 if (n,m) 6= 1 and
the induced function on (Z/mZ)∗ is a homomorphism to C∗. We say that χ is a primitive
character if χ is not a Dirichlet character modulo any proper divisor of m. Let us modify
the zeta function Zf (s) =

∑ an
ns associated to a modular form by setting

Zf (s;χ) =
∞∑
n=1

χ(n)an
ns

.

There is an analog of Corollary 12.2:

Theorem 13.2. Let f ∈ Mk(Γ0(N))0 satifying WNf = εf . For any primitive Dirichlet
character χ modulo m, where (m,N) = 1, set

Rf (s;χ) = (m2N)s/2(2π)−sΓ(s)Zf (s;χ).
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Then
Rf (s;χ) = ε(−1)km−1G(χ)2χ(N)Rf (2k − s; χ̄).

Here χ̄ denotes the conjugate Dirichlet character defined by χ̄(n) = ¯χ(n) and G(m,χ)
is the Gauss sum defined by

G(χ) =

m−1∑
s=0

e2πis/mχ(s).

Proof. Let

Mk(Γ0(N), χ) = {f ∈Mk(Γ0(N)) : f |k
(
α β
γ δ

)
= χ(δ)f}

Clearly,Mk(Γ0(N), χ) ⊂Mk(Γ1(N)), where

Γ1(N) = {
(
α β
γ δ

)
∈ Γ0(N) : α ≡ δ ≡ 1 modulo N}

We can apply Theorem 12.1 to any cusp form f ∈ Mk(Γ0(N), χ). Now we use the
following “shift trick”:

f =
∞∑
n=1

cnq
n ∈Mk(Γ0(N);ψ) =⇒ fχ =

∞∑
n=1

χ(n)cnq
n ∈Mk(Γ0(M);χ2ψ),

where ψ is a primitive Dirichlet character modulo a divisor s ofN , χ is a primitive charac-
ter modulo some number m, and M is the least common multiple of N,m2, and ms. The
proof of this fact is a straightforward check using some known properties of the Gauss
sums. Taking ψ ≡ 1, we obtain that

Rf (s;χ) = Rg(s),

where g ∈M(Γ(Nm2);χ2). Now we apply Theorem 12.1 toRg(s), previously checking
that

WNm2fχ = εχ(N)G(χ)2m−1fχ̄. (13.5)

Theorem 13.3. (Weil’s Converse Theorem) LetL(s) =
∑∞

n=1 cnn
−s be a Dirichlet series

with |cn| = O(na) for some a > 0. Let N, k be positive integers and ε = ±1. Suppose

(i) the function R(s) = N s/2(2π)−sΓ(s)L(s) extends to a holomorphic function on
the entire complex plane, is bounded in every vertical strip, and satisfies the func-
tional equation

R(s) = ε(−1)kR(2k − s);
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(ii) for every integer m coprime with N , and every primitive Dirichlet character χ
modulo m, set

Lχ(s) =

∞∑
n=1

cnχ(n)n−s

and assume that the function

Rχ(s) = (m2N)s/2(2π)−sΓ(s)Lχ(s)

extends holomorphically to the entire complex plane, is bounded in every vertical
strip, and satisfies

Rχ(s) = ε(−1)km−1G(χ)2χ(N)Rχ(2k − s);

(iii) the series L(s) converges absolutely at s = 2k − δ for some δ > 0.

Then there exists f ∈Mk(Γ0(N))0 such that

L(s) = Zf (s).

We are skipping the proof referring to [Ogg] or [Miyake].

13.4 Let us check the Hasse-Weil conjecture in the case when E = X0(N). Using the
formula for the genus of a modular curve from Lecture 8, it is not difficult to see that N
must belong to the set

{11, 14, 15, 17, 19, 20, 21, 24, 32, 36, 49}. (13.6)

We shall use the theory of Hecke operators for Γ = Γ0(N). In Lecture 11 we considered
only the case Γ = Γ(1), so we have to rely on Exercises 11.7-11.9 instead. Let σp =(
p 0
0 1

)
, where p is a prime number. According to Exercise 11.7, the matrix αp defines a

correspondence on H/Γ0(N) which we denote by T (p). We can use the same matrix to
define a Hecke operator on the space of modular formsMk(Γ0(N)) (see Exercise 11.9).
The following is a simple description of the Hecke correspondences T (p) in the case
(p,N) = 1. We know that each point ofH/Γ0(N) can be interpreted as the isomorphism
class of a pair (E,H), where E is an elliptic curve and H is its subgroup of order N .
Equivalently, the pair (E,H) can be viewed as the pair of numbers (j(E), j(E′)), where
E′ = E/H . Let S0, S1, . . . , Sp be the set of subgroups of order p in pE ∼= (Z/pZ)2. We
have

T (p)(j(E), j(E′)) = {(j(E/Si), j(E′/S̄i)), i = 0, . . . , p}, (13.7)

Assume p is prime of a good reduction for X0(N). Let X̄0(p) denote the corresponding
reduction. This is an elliptic curve (= a curve of genus 1) defined over the field Fp. The
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reduction of the affine partH/Γ0(N) of X0(N) modulo p is an affine curve V0(N)p over
Fp. Its points over a field K of characteristic p correspond to isomorphism classes of
pairs (E,H) as above defined over K. There is one important difference between elliptic
curves over a field of characteristic 0 and over a field of characteristic p > 0. In the former
case the group of p-torsion points consists of p2 elements. In the latter case, it consists of
p elements or it is trivial (see Exercise 13.2). So, the degree of the correspondence T̄ (p)
obtained from T (p) by reduction modulo p must be equal to one.

In characteristic p > 0 there are regular maps of algebraic varieties which are bijective
on the set of point but nevertheless are not isomorphisms. An example of such a map is
the Frobenius map. It is induced by the map of projective space defined by the formula:

Fp : (x0, . . . , xn)→ (xp0, . . . , x
p
n).

Let X be a projective algebraic subvariety in Pn defined by equations with coefficients in
a field K of characteristic p > 0. Let X(p) be the variety whose equations are obtained
from those of X when its coefficients are raised in p-th power. Then Fp restricts to a
regular map Fp : X → X(p) of algebraic varieties. In the special case when K = Fp
we have X = X(p) so F is a map of X to itself. Although it is the identity on the set
X(Fp) of points with coordinates in Fp, it is not the identity on the set X(F̄p) of points
with coordinates in the algebraic closure of Fp. When X = E is an elliptic curve over
Fp the map F is a homomorphism of groups E(F̄p) → E(F̄p). One can show that the
endomorphism [p] : x → xp of the group E(F̄p) factores through Fp. Let [p] = F ′p ◦ Fp.
We have the following:

Theorem 13.4. (Eichler-Shimura) Let p be a prime of good reduction for X0(N). Then
we have the following equality in the ring Corr(V0(N)p(F̄p)):

T̄ (p) = Fp + F ′p.

Proof. (following [Milne]). We will only sketch it. Let us show that the two corre-
spondences agree on a certain open subset of points of V0(N). Consider a point P ∈
V0(N)(F̄p) and lift it to a point P ′ ∈ X0(N)(Q̄), where Q̄ is the algebraic closure of
Q. The point P ′ can be represented as the isomorphism class of a pair (E,H), where
E is an elliptic curve H is a cyclic subgroup of order N of E(Q̄). Equivalently, we can
view this point as an isogeny E → E′ with kernel H . The reduction modulo p defines a
homomorphism pE(Q̄)→ pẼ(F̄p) whose kernel is a cyclic group A0 of order p. Here we
assume that Ẽ is an ordinary elliptic curve, i.e. pẼ(F̄p) is of order p. Let A0, . . . , Ap be
the subgroups of order p of E. Then each Ai, i 6= 0 is mapped to the subgroup of order p
in Ẽ. Let Ẽi denote the reduction modulo p of the elliptic curve Ei = E/Ai. Let Ẽ′i be
the similar notation for the curve E′i. The multiplication map x→ px of Ẽ factors as

Ẽ → Ẽi → Ẽ.
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When i = 0, the first map is purely inseparable of degree p, and the second map is
separable of degree p. When i 6= 0 the first map is separable and the second one is
inseparable, both are of degree p. We have, in both cases,

Ẽ(p) ∼= Ẽ0, Ẽ′i
(p) ∼= Ẽ′i, i > 0.

One can show that
(Ẽ(p), Ẽ′(p)) = Fp(Ẽ, Ẽ

′).

Thus Fp(P̃ ) = (Ẽ0, Ẽ
′
0 and Fp(Ẽi, Ẽ′i) = P̃ , i > 0. This implies that T̄ (p) = Fp +

F ′p.

LetE be an elliptic curve defined over a fieldK of characteristic p > 0. One can show
that for any prime l 6= p the group lnE(K̄) of points of order dividing ln defined over the
algebraic closure K̄ ofK is is isomorphic to (Z/lnZ)2. Of course we know this fact when
K = C. Since for any m ≥ n we have a canonical homomorphism lmE(K̄) → lnE(K̄)
defined by multiplication by lm−n. Passing to the projective limit we obtain a rank 2 free
modulle Tl(E) over the ring of l-adic numbers Zl. It is called the Tate module of E.

Let α be an endomorphism α of E (= a map of algebraic varieties which induces
a homomorphism of groups E(K) → E(K)). It defines a homomorphism of groups
lnE(K) → lnE(K). Passing to the projective limit we obtain an endomomorphism of
the Tate module

ρl(α) : Tl(E)→ Tl(E).

It is called the l-adic representation of α.
We shall apply this to the case when K = Fp and α = Fp is the Frobenius endomor-

phism.

Theorem 13.5. Let ap = p + 1 − #E(Fp) and rp, r′p are the roots of the polynomial
p − apT + T 2. Then rp, r′p are algebraic integers, and considered as elements of the
algebraic closure of the field Ql of l-adic numbers they coincide with the eigenvalues of
the l-adic representation of Fp on Tl(E).

Proof. We refer to the proof to [Silverman].

Remark 13.1. One should compare this result with the well-known Lefschetz formula
in topology. If one interprets Tl(E) as the first cohomology H1 group of E, then the
Lefschetz formula says that for any map f the set of fixed points of f (i.e. points x
such that f(x) = x) is equal to the sum

∑
(−1)Trace(f∗|H i). In our situation f is equal

to the Frobenius map, and its fixed points are obviously the points x = (a0, . . . , an)
satisfying api = ai, or equivalently x ∈ E(Fp). We have Trace(f∗|H1) is equal to the
sum of eigenvalues of Fp in Tp(E). Also H0 = H2 = Zl and Trace(f∗|H0) = 1,
Trace(f∗|H2) = p, the degree of the Frobenius map.
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Now everything is ready to verify the Hasse-Weil conjecture for elliptic modular curve
X0(N). Consider the characteristic polynomial of ρl(Fp). It is equal to

P (T ) = T 2 − apT + det(ρl(Fp)).

We know that det(ρl(Fp)) = rpr
′
p is an algebraic integer, and by Hasse’s theorem |rp +

r′p| ≤ p1/2. This easily implies that rpr′p = p. Thus

P (t) = T 2 − apT + p.

Since Fp ◦ F ′p = p, we see that ρl(Fp) + ρl(F
′
p) acts on Tl(E) as the multiplication

by ap. This implies that Fp + F ′p is equal to ap as an element of Corr(V0(N)p). By
Eichler-Shimura’s Theorem, the Hecke correspondence T̄ (p) = ap. From this we obtain
that T (p) = ap as a correspondence on XH/Γ0(N). It follows from Corollary 8.4 that
dimM1(Γ0(N))0 is one-dimensional. Let f be a non-zero parabolic form from this space
normalized in such a way that its Fourier expansion is of the form q+

∑∞
n=2 cnq

n. Clearly,
f is an eigenfunction for all the Hecke operators T (n). By Lemma 11.3, T (p)f = cnf .
Comparing with the above, we obtain cp = ap. Thus the infinite product expansion for
Zf (s) coincides with the infinite product for L(X0(N), s), up to a finitely may factors
corresponding to prime p of bad reduction for X0(N). Using Weil’s Convese Theorem it
is not hard to deduce from this that the Dirichlet series of f coincides with the L-series of
X0(N).

13.4 Let E be an elliptic curve over Q and G = Gal(Q̄/Q) be the Galois group of the
algebraic closure of Q. It acts naturally on the group of E(Q̄) of Q̄-points of E. This
action defines a linear representation of G in the Tate module of E:

ρE,l : G→ GL(Tl(E)⊗Ql) ∼= GL(2,Ql).

Now for any prime number p the group G contains a distinguished element Frobp, called
theFrobenius element. It is defined as follows. Let σp ∈ Gal(Q̄p/Qp) be the pre-image of
the Frobenius automorphism of the residue field Fp. Choose an embedding Q̄→ Q̄p and
define Frobp as the image of σp under the inclusion Gal(Q̄/Q)→ Gal(Q̄p/Qp). Assume
E has a good reduction modulo p and p 6= l. Then, one proves that

ρE,l(Frobp) = ρĒ,l(Fp),

where Ē is the reduction of E modulo p. Thus we have

det(1− ρE,l(Frobp)T ) = det(1− ρĒ,l(Fp)T ).

In particular, if L(s, E) = Zf (s) for some modular form f ∈M1(Γ0(N))0, then

det(1− ρE,l(Frobp)T ) = p− apT + T 2,
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where ap are the Fourier coefficients of f . Here we assume that f is an eigenvector for
all the Hecke operators and a1 = 1. We shall refer to such modular forms as normalized
eigenforms.

Now let f ∈Mk(Γ0(N), χ)0 be any cuspidal modular form with a Dirichlet character
which has the previous properties. Let K be an extension of Q generated by the Fourier
coefficients of f . We know that K is a finite extension. For any finite place λ of K let Kγ

be the completion of K at λ. Deligne constructed a representation

ρf,l : G→ GL(2,Kγ)

such that for each prime p we have

ρf,l((Frobp) = p− apT + T 2.

This representation is irreducible and is uniquely defined. Conjugating by a matrix from
GL(2,Kγ) we may assume that the matrices defining this representation have coefficients
in the ring of integers Oγ of Kγ . Reducing them modulo the maximal ideal, we obtain a
representation

ρ̄f,l : G→ GL(2,F),

where F is a finite field.

Definition. Let F be a finite field. A representation ρ : Gal(Q/Q)→ GL(2,F) is called
a modular representation if it arises from a normalized eigenform f ∈ Mk(Γ0(N), χ)0

for some N, k, and χ.

Note the modular representation has the property that ρ(c) = −1, where c is the
complex conjugation automorphism of Q̄. Representations Gal(Q/Q)→ GL(2,F) with
this property are called odd.

Conjecture. (J.-P. Serre) Any odd irreducible representation Gal(Q/Q) → GL(2,F)
is modular unless F is of characteristic p ≤ 3 and ρ is induced by a character of
Gal(Q̄/Q(

√
−1)) if p = 2 and by a character of Gal(Q̄/Q(

√
−3)) if p = 3.

In fact, Serre gives a conjectural recipe for finding an appropriate (N, k, χ). For
example, it predicts (N, k, χ) for representations arising by reduction modulo p from the
p-adic representations ρE,p associated to an elliptic curveE over Q with whose reductions
are all either good or of multiplicative type (we say then that E has stable reductions).
Then N is equal to the product of all primes l 6= p such that the discriminant ∆E of E
has order at l not divisible by p; k = p + 1 if νp(∆E) is not divisible by p and equals 1
otherwise; χ ≡ 1.

Theorem 13.6. Serre’s conjecture implies Fermat’s Last Theorem.
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Proof. Let (a, b, c) be a non-trivial solution of xn + yn = zn. It is known that without
loss of generality we may assume that n = p ≥ 5 is prime and p does not divide a and b.
Also we may assume that a ≡ −1 (mod 4) and that b is even. Consider the elliptic curve
E given by the Weierstrass equation

y2 = x(x− ap)(x+ bp).

It can be verified that E has semi-stable reductions and

∆E = −28(abc)2p.

In particular p|νp(∆E). Consider the representation ρE,p and it reduction modulo p. It
can be checked that this representation is irreducible and odd. If Serre’s Conjecture is
true, then ρE,p is a modular representation and Serre’s recipe gives N = 2, k = 1, χ ≡ 1.
However,M1(Γ0(2))0 = {0}.

13.5 For the following we shall use the notion of the Jacobian variety of a compact
Riemann surface X . It is defined as a complex torus J(X) = Cg/Λ, where g is equal to
the genus of X and Λ is the lattice in C9 spanned by the vectors

Πi = (

∫
γ1

ωi, . . . ,

∫
γ2g

ωi), i = 1 . . . , g

for some basis ω1, . . . , ωg of the space of holomorphic differentials on X and a basis
γ1, . . . , γ2g of homology 1-cycles on X . Fixing a point p0 ∈ X we obtain a natural
holomorphic map ip0 : X → J(X) defined by the formula:

p→ (

∫ p

p0

ω1, . . . ,

∫ p

p0

ωg) modulo Λ.

It is an isomorphism when g = 1. This map extends to a map from the group of divisors
Div(X) by the formula

ĩp0(
∑

npp) =
∑

npip0(p),

where the addition in J(X) is the addition in the factor group of the additive group of
Cg. By Abel’s theorem this map defines an isomorphism from the group of diviors on X
modulo linear equivalence onto the group J(X).

Let Z be a finite holomorphic correspondence on X , i.e. Z is a subvariety of X ×X
defining a finite correspondence on the set of points of X . As we saw in Lecture 11, Z
defines a homomorphism from Div(X) to itself. It is easy to check that it sends principal
diviors to principal divisors, and hence defines an endomorphism of the Jacobian variety
J(X). We shall apply this to the case when X is a modular curve and a correspondence
is a Hecke correspondence on it.
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Although we defined the Jacobian variety as a complex torus, one can develope a
purely algebraic theory for J(X) valid for nonsingular projective curves X defined over
an arbitrary field K. In this theory J(X) is a projective algebraic variety whose set of
points J(X)(K ′) over any extension K ′ of K has a natural structure of an abelian group.
Also, for any point p0 in X(K) there is a regular map ip0 : X → J(X) defined over
the field K. It induces an isomorphism from the group of K-divisors on X modulo linear
equivalence onto the group ofK-points of J(X). There is an analogue of the Tate module
Tl(J(X)) for J(X) and of the l-adic representation of Gal(K̄/K) in it.

13.6 We know that the Hasse-Weil conjecture is true for an elliptic curve of the form
X0(N). Let E be an elliptic curve over Q, assume that, for some N , there exists a
nonconstant regular map defined over Q from X0(N) to E. We say that E is a modular
elliptic curve or a Weil elliptic curve.

Theorem 13.7. Let E be a Weil curve. Then it satisfies the Hasse-Weil conjecture. Con-
versely, if E is an elliptic curve over Q satisfying the Hasse-Weil conjecture, then E is a
Weil elliptic curve.

Proof. We shall only sketch a proof. Suppose E satisfies the Hasse-Weil conjecture.
Then L(E, s) = Zf for some newform f ∈ M1(Γ0(M)))0

new. For any prime p not
dividing NE , the characteristic polynomial of Frobp coincide with respect to the l-adic
representations ρE,l and ρf,l. Using the continuity of the l-adic reprsentation and the
fact that the Frobenius elements form a dense subset in the Galois group G of Q (the
Chebotarev theorem) we obtain that ρE,l = ρf,l. Now let us consider f as a holomorphic
differential form on X0(M). Since f is an eigenfunction for the the Hecke ring TM , we
have a character θ : TM → Q defined by the eigenvalues. Let T be the kernel of θ. The
Hecke ring acts on X0(M) via correspondences, and hence acts on its Jacobian variety
J0(M) via endomorphisms. Let A = J0(M)/TJ0(M). This an abelian variety and its
tangent space is naturally isomorphic to Cf . In particular, A is a elliptic curve. Applying
the Eichler-Shimura theorem, we can show that the characteristic polynomial of Frobp in
the l-adic representation of A is expressed in terms of the Hecke operators:

det(ρA,l(Frobp)− tI2) = t2 − θ(T (p)t+ pθ(T (p, p)).

This allows us to verify that L(E, s) = L(A, s). By a theorem of G. Faltings, the elliptic
curves E and A are isogeneous over Q, and in particular their conductors are equal. This
will imply that NE = M , and there exists a regular map over Q from J0(N) to E.
Composing it with an embedding of X0(N) in J0(N) we obtain that E is modular.

Now assume that E is a Weil elliptic curve and let X0(N) → E be a regular map
over Q. The space of holomorphic differential forms on E is one-dimensional over C.
By constructing a certain “Neron model” of E over Z one produces a certain 1-form,
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whose pre-image onX0(N) is a holomorphic differential form such that, after identifying
it with a cusp form f of weight 1, its Fourier coefficients at infinity are rational numbers.
Again by the Eichler-Shimura theorem one can check that f is an T(N)-eigenform with
eigenvalues λp of T (p) satisfying λp = p + 1 − #E(Fp) for all prime p not dividing
N . Projecing it to the subspace ofM1(Γ0(N))0

new we find a newform f . Applying some
results of Deligne-Langlands-Carayol one can show that L(E, s) = Zf (s).

We now see that the Hasse-Weil conjecture is equivalent to the following:

Conjecture. (Shimura-Taniyama-Weil) an elliptic curve over Q is a Weil elliptic curve.

We have seen already that Serre’s Conjecture implies Fermat’s Last Theorem. It was
shown by K. Ribet and B. Mazur, that the fact that the elliptic curve used for the proof of
Ferma is modular implies the Ferma Theorem. Let us sketch the proof of the following:

Theorem 13.8. The Shimura-Taniyama-Weil conjecture implies Fermat’s Last Theorem.

Proof. We apply the STW-conjecture to the elliptic curve E from the proof of Theorem
13.6. It is easy to compute its conductorNE : it is equal to the product of primes divisors of
abc
16 . Consider, as in the proof of Theorem 13.6, the representation ρ̄E,p : G→ GL2(Fp).

If E is a Weil elliptic curve, the representation ρ̄p is an irreducible modular representation
of level N and weight 1 with trivial character χ. Let l be a prime divisor of NE . We know
that p|νl(∆E) if l 6= 2. This implies that the representation ρ̄E,p is finite at l. When l 6= p
this means that the restriction of ρ̄E,p to Gal(Q̄l/Ql) is unramified (i.e. factors through a
representation of the Galois group of a finite unramified extension of Q). When p = l, the
definition is a little more technical, and we omit it. Now we apply a theorem of Mazur-
Ribet which implies that ρ̄E,p is modular of level N/l. Here we use the assumptions that
l|N but p2, l2 6 |NE and l 6≡ 1 mod p. After applying this theorem several times, we find
that ρ̄E,p is modular of level 2. Now we end as in the proof of Theorem 13.6 by finding
contradiction with absence of parabolic modular form of level 1 for the group Γ0(2).

Theorem 13.9. (A. Wiles) An elliptic curve over Q with semi-stable reductions for each
prime number is a Weil curve.

Corollary 13.3. Fermat’s Last Theorem is true.

Proof. Observe that the elliptic curveE used in the proof of theorem 13.8 has semi-stable
reductions at each prime p.
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Exercises
13.1 Let E be an elliptic curve over a field K. Define the group law on the set of E(K)
of points of E with coordinates in K as follows. View a point P as a divisor of degree
1. Assume that E(K) 6= ∅. Fix a point 0 ∈ E(K). For any two points P,Q the space
L(P +Q− 0) is of dimension 1 over K (the Riemann-Roch Theorem). Thus there exists
a unique postive divisor of degree 1 linearly equivalent to P + Q − 0. This divisor is
denoted by P ⊕Q and is called the sum of the points P and Q.

(i) Show that the the binary law of composition on E(K) defined by P ⊕ Q is a
commutative group.

(ii) Show that, when K = C, the group law agrees with the group law on the complex
torus E(C).

13.2 Let E be an elliptic curve over an algebraically closed field K with the group law
defined in the previous exercise. Let f0, . . . , fn−1 be a basis of the space L(nO). Show
that

(i) the map φ : E \ {O} → Pn−1, P → (f0(P ), . . . , fp−1(P ), has the image an
algebraic curve C of degree n.

(ii) Let C̄ be the closure of C in the projective space. Show that for any n-torsion point
P there exists a hyperplane in Pn−1 which intersects C̄ at one point equal to φ(P ).

(iii) Let n = 3. Fix a line L in P2 which is not a tangent to C̄ and consider the map
from C̄ to L which assigns to a point x ∈ C the intersection point of the tangent of
C̄ at x with L. Use the Hurwitz formula to show that C̄ has exactly nine 3-torsion
points if K is of characteristic 0.

(iv) Assuming that n = 3 and E has at least 3 torsion points of order 3, show that the
equation of C̄ can be chosen in the Hesse form x3 + y3 + z3 + λxyz = 0.

(v) Show that in the case K is of characteristic 3, there are at most 3 points of order 3
on E.

13.3 Let χ be a Dirichlet character modulo m. Define the Dirichlet series Lm(s;χ) =∑∞
n=1 χ(n)n−s. Show that

(i) Lm(s;χ) is absolutely convergent for res > 0 and admits an infinite product ex-
pansion

Lm(s;χ) =
∏
p 6|m

(1− χ(p)p−s)−1.
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(ii) Show that Lm(s;χ) admits a holomorphic extension to the entire complex plane
which satisfies the functional equation

Lm(1− s; χ̄) = Lm(s, χ)(m/2π)sΓ(s)(eπis/2 + χ(−1)e−πis/2G(χ)−1,

where G(χ) is the Gauss sum of χ.
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