Math 775, Homework 2-part 1

Large Sieve Problems
0. (Warm-up Brain Teaser) Let ||a|| = min{|a — n| : n € Z} be the distance to the
nearest integer. Show that for all real «,

|sinmar| > 2||a].

(Find a proof by picture.)

1. (Brun-Titchmarsh Theorem)
Take A to be the set of primes in [M, M + NJ.

(i) Deduce from the large sieve inequality that

2
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where ¢(q) is Euler’s totient function.

(ii) Prove that

% ,z;((qq); =log@Q + O(1).

(iii) Taking @ = %, conclude that

lo

M+ N)—n(M) < (2 1 :
m(M + N) = (M) < (24 o) oo
[This result says that primes in short intervals can contain at most twice the number of
primes that occur in the initial interval [1, N|. What would be the constant that replaces
2 4 0o(1), in the corresponding lower bound?]

2. (Brun-Titchmarsh Theorem for Arithmetic Progressions) Construct a similar argu-
ment to prove the a similar result for primes in arithmetic progressions:

Y

m(w+yiq,a) —w(rig,0) < (2+ 0(1))%0(61)10%(?//61)

3. (*) (Improved Brun-Titchmarsh Theorem- A consequence) Suppose that one can
prove a version of the Brun-Titchmarsh theorem in which the constant 2 (on the right
side in the inequality of problem 2) is replaced with 1.99.

Deduce from this improved theorem that the Dirichlet L-functions of real characters
have no exceptional zeros! That is, deduce a good lower bound on how close the real
zero can be to s = 1.



4. (Large Sieve and Quadratic Residues) Suppose that A is a set of integers in [1, V]
such that each a € A is for each prime p, either divisible by p, or is a quadratic residue

(mod p). Prove that
|A| < y/Nlog N.

[This is a “large sieve” inequality because we are sieving out a large number of residue
classes—namely, half the residue classes for each prime p. A more detailed argument can
show the stronger result |A| < v/N, which is optimal (up to a multiplicative constant)
by taking A = {k?: k <N}/

Interlude. For the next two problems, let ® be a vector in an inner product space
V' and suppose that ¢, ..., oy are orthonormal vectors in this space. Note that for any
u; € C,
1 = > wpi|]” > 0.

from which it follows that

N N
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Choosing u; = (®, ¢;) we deduce Bessel’s inequality

N
1] = > [(®
i=1

If the ¢; span the space, then we deduce Parseval’s equality.

5. (Selberg’s inequality) Now suppose that the ¢; in V' are not necessarily orthogonal.
Then using in the above argument the bound
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deduce Selberg’s inequality: For all ® € V' there holds

= et (@i 95)]

Note. This reviews an inequality proved in class.

6. (Large Sieve-Additive Form) Use Selberg’s inequality to derive an alternative proof
of the large sieve bound in a weak additive form:

R M+N M+N
\Z| Z ane(na,)|? < (N + 0(5 log R)( Z lan|?).
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Here the «, are assumed d-well spaced modulo one.



