
Math 775, Homework 2-part 1

Large Sieve Problems

0. (Warm-up Brain Teaser) Let ||α|| = min{|α − n| : n ∈ Z} be the distance to the

nearest integer. Show that for all real α,

| sin πα| ≥ 2||α||.

(Find a proof by picture.)

1. (Brun-Titchmarsh Theorem)

Take A to be the set of primes in [M,M +N ].

(i) Deduce from the large sieve inequality that

π(M +N)− π(M) ≤ N +O(Q2
logQ)

�
q≤Q

µ(q)2

ϕ(q)

where ϕ(q) is Euler’s totient function.

(ii) Prove that

�

q≤Q

µ(q)2

ϕ(q)
= logQ+O(1).

(iii) Taking Q =

√
N

logN , conclude that

π(M +N)− π(M) ≤
�
2 + o(1)

� N

logN
.

[This result says that primes in short intervals can contain at most twice the number of

primes that occur in the initial interval [1, N ]. What would be the constant that replaces

2 + o(1), in the corresponding lower bound?]

2. (Brun-Titchmarsh Theorem for Arithmetic Progressions) Construct a similar argu-

ment to prove the a similar result for primes in arithmetic progressions:

π(x+ y; q, a)− π(x; q, a) ≤
�
2 + o(1)

� y

ϕ(q) log(y/q)

3. (*) (Improved Brun-Titchmarsh Theorem- A consequence) Suppose that one can

prove a version of the Brun-Titchmarsh theorem in which the constant 2 (on the right

side in the inequality of problem 2) is replaced with 1.99.

Deduce from this improved theorem that the Dirichlet L-functions of real characters

have no exceptional zeros! That is, deduce a good lower bound on how close the real

zero can be to s = 1.
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4. (Large Sieve and Quadratic Residues) Suppose that A is a set of integers in [1, N ]

such that each a ∈ A is for each prime p, either divisible by p, or is a quadratic residue

(mod p). Prove that

|A| �
�
N logN.

[This is a “large sieve” inequality because we are sieving out a large number of residue

classes–namely, half the residue classes for each prime p. A more detailed argument can

show the stronger result |A| �
√
N , which is optimal (up to a multiplicative constant)

by taking A = {k2
: k ≤

√
N}.]

Interlude. For the next two problems, let Φ be a vector in an inner product space

V and suppose that ϕ1, ..., ϕN are orthonormal vectors in this space. Note that for any

ui ∈ C,
||Φ−

�

i

uiϕi||2 ≥ 0.

from which it follows that

||Φ||2 − 2Re(

N�

i=1

�Φ, uiϕi�+
N�

i=1

|ui|2 ≥ 0.

Choosing ui = �Φ, ϕi� we deduce Bessel’s inequality

||Φ||2 ≥
N�

i=1

|�Φ, ϕi�|2

If the ϕi span the space, then we deduce Parseval’s equality.

5. (Selberg’s inequality) Now suppose that the ϕi in V are not necessarily orthogonal.

Then using in the above argument the bound

N�

i=1

N�

j=1

uiūj�ϕi, ϕj� ≤ 1

2

n�

i=1

n�

j=1

(|ui|2 + |uj|2)|�ϕi, ϕj�|

=

n�

i=1

|ui|2
� N�

j=1

|�ϕi, ϕj�|
�
,

deduce Selberg’s inequality: For all Φ ∈ V there holds

N�

i=1

|�Φ, ϕi�|
�N

j=1 |�ϕi, ϕj�|
≤ ||Φ||2.

Note. This reviews an inequality proved in class.

6. (Large Sieve-Additive Form) Use Selberg’s inequality to derive an alternative proof

of the large sieve bound in a weak additive form:

|
R�

r=1

|
M+N�

M+1

ane(nαr)|2 ≤ (N +O(
1

δ
logR)(

M+N�

n=M+1

|an|2).

Here the αr are assumed δ-well spaced modulo one.
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