Math 775, Homework 2-part 2

7. (An Integral Inequality) Let f(x) be a complex-valued function in C'([0,1]).
(a) Using
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(b) Deduce from (a) that for fixed positive § < 3 and any « with § < o < 1—§ there

holds
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Note. Compare (b) with the fact that if f(x) were a convex (real-valued) function

then
1 a+%5
fay <5 [0 Fujdu

1
a—30

These inequalities give pointwise estimates in terms of integral estimates over an interval.

8. (Gallagher Version of Large Sieve) Let S(a) = Zﬁ/[ﬁ\]fﬂ ape(na). Let {a, : 1 <r <R
be a set of d-well-spaced points in the interval [0, 1] viewed as a torus mod 1.

(a) Apply Problem 7 with f(a) = S(«)? to deduce
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(b) Observe that the integration intervals in (a) do not overlap (why?), and deduce
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(c) Bound the first integral on the right side of (b) by Parseval formulaas  »_  |a,|*.
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Then bound the second integral on the right side of (b) using Cauchy’s inequality by
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Applying Parseval identity to both terms, deduce
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Next shift interval M = —1(N +1)] so |n| < N (without changing left side of (b)) and
deduce the second integral on the right side of (b) is

(e) Conclude from (c) the Gallagher large sieve inequality
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Note. The Gallagher method can be used with many functions f(«) so is flexible.

9. (An inverse Mellin transform)
(a) Let ¢ > 0. Show that for each integer k& > 1, and for real y > 0 that
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Note that the integral I(c,y) converges absolutely, unlike the conditionally convergent
case k = 0.
(b) What is the value of this integral when y = 17

(c) What happens if we allow the line of integration to be a value ¢ < 0?7 What can
you say about the value of I;(c,y) , in the different cases above?

10. (Sum of inverse Euler totient values) Prove or disprove that there is a positive
constant C' such that for all X > 2,
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11. (Minimal order of Euler totient function) Prove that
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where 7 is Euler’s constant.
Note. Compare this problem with Math 675, Problem 37.



