
Math 775, Homework 2-part 2

7. (An Integral Inequality) Let f(x) be a complex-valued function in C1([0, 1]).

(a) Using
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deduce that
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and, for 0 ≤ x ≤ 1,
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(b) Deduce from (a) that for fixed positive δ ≤ 1
2 and any α with δ ≤ α ≤ 1− δ there

holds
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Note. Compare (b) with the fact that if f(x) were a convex (real-valued) function

then

f(x) ≤ 1

δ

� α+ 1
2 δ
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f(u)du.

These inequalities give pointwise estimates in terms of integral estimates over an interval.

8. (Gallagher Version of Large Sieve) Let S(α) =
�M+N

n=M+1 ane(nα). Let {αr : 1 ≤ r ≤ R
be a set of δ-well-spaced points in the interval [0, 1] viewed as a torus mod 1.

(a) Apply Problem 7 with f(α) = S(α)2 to deduce
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(b) Observe that the integration intervals in (a) do not overlap (why?), and deduce

R�
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|S(αr)|2 ≤
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(c) Bound the first integral on the right side of (b) by Parseval formula as

M+N�
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|an|2.

Then bound the second integral on the right side of (b) using Cauchy’s inequality by
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Applying Parseval identity to both terms, deduce
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.

Next shift interval M = −1
2(N +1)] so |n| ≤ 1

2N (without changing left side of (b)) and

deduce the second integral on the right side of (b) is

≤ πN
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(e) Conclude from (c) the Gallagher large sieve inequality
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Note. The Gallagher method can be used with many functions f(α) so is flexible.

9. (An inverse Mellin transform)

(a) Let c > 0. Show that for each integer k ≥ 1, and for real y > 0 that

Ik(c, y) :=
1

2πi

� c+i∞

c−i∞
ys

ds

sk+1
=

� 1
k! (log y)

k if y > 1,
0 if 0 < y < 1.

Note that the integral Ik(c, y) converges absolutely, unlike the conditionally convergent

case k = 0.

(b) What is the value of this integral when y = 1?

(c) What happens if we allow the line of integration to be a value c < 0? What can

you say about the value of Ik(c, y) , in the different cases above?

10. (Sum of inverse Euler totient values) Prove or disprove that there is a positive

constant C such that for all X ≥ 2,

X�

n=1

1

ϕ(n)
≤ C logX.

11. (Minimal order of Euler totient function) Prove that

lim inf
n→∞

ϕ(n)
log log n

n
= e−γ,

where γ is Euler’s constant.

Note. Compare this problem with Math 675, Problem 37.
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