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Part 0. Introduction

The integers Z = {· · · ,�2,�1,0,1,2 · · · }.

• The natural numbers are

N = {: 0,1,2. · · · }.

N>0 = {1,2,3. · · · } = N r {0}.

• (N,0,+} is an additive semigroup with unit 0.

(N>0,1, ·) is a multiplicative semigroup with unit 1.
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The Question

Vague Question. “Do addition and multiplication get along?”

Intent of Question. There is some incompatibility between the
two arithmetic operations. For example, they act on di↵erent
scales. Can one quantify this?

• Irreducible elements of additive semigroup: there is a
unique irreducible element {1}.

• Irreducible elements of multiplicative semigroup: there are
infinitely many, the prime numbers
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Answers

• Answer 0. “They get along, using the distributive law.”

• Answer 1. They don’t get along, in terms of a mismatch of
additive and multiplicative structures.

• Answer 2. They sort of get along: a detente.
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Part 1. Logic and Complexity Theory

• The first order theory Th(N,=,+,0,1) is called Presburger
arithmetic.

Theorem (Presburger 1929)
Presburger arithmetic is a decidable theory.

[Proof by quantifier elimination, one adds 0,1, <n .]

• The first order theory Th(N>0,=,⇥,1, pj) is called Skolem
arithmetic.

Theorem (Skolem 1930; Mostowski 1952)
Skolem arithmetic is a decidable theory.

[Proof by quantifier elimination.]
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Logic-2

First order theory Th(N,+,⇥,0,1) (with distributive laws),
both addition and multiplication, is called Peano arithmetic.

Theorem (Gödel 1931) Peano arithmetic is incomplete theory
(if it is consistent). That is, certain sentences and their
negations are not provable in the theory. Also, it is an
undecidable theory.

Gödel’s original incompleteness formulation was much more
general. It applies to a large class of theories, besides Peano
arithmetic.

Conclusion from LOGIC: Addition and multiplication do not
completely get along.
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Complexity Theory -1

Theorem. (Fischer and Rabin 1974 )
(1) (Upper Bound) There is a decision procedure for

Presburger arithmetic that takes double exponential

deterministic space complexity O
✓
exp(exp cn))

◆
to decide if a

formula of length n is a theorem.

(2) (Lower Bound) Any decision procedure for Presburger

arithmetic requires at least double exponential time complexity.

There is a similar complexity result for Skolem arithmetic:
upper bound: triple exponential space complexity
lower bound: triple exponential time complexity.
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Complexity Theory-2

• The order relation < is definable in Presburger arithmetic.
(Not so for Skolem arithmetic !)

• The definable sets in Presburger arithmetic have a nice
description found by Kevin Woods (2005, 2012) [Student
of A. Barvinok (Michigan)).

• The description of definable sets is in terms of sets of
lattice points in cones and polyhedra in Rn, n varying.

There is a nice connection with linear and integer
programming!
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Complexity Theory-3

“Finite Complexity theory”: This topic is being investigated by
my graduate student Harry Altman.

• The integer complexity of n is the smallest number of 1’s
needed to represent n using the operations of addition,
multiplication, with parentheses. Denote it: ||n||.

• Computation tree is a binary tree with operations + or ⇥ at
each vertex, and with 1’s at the leaf nodes. Convention:
Leaf nodes can be combined using + operation only.

There are finitely many trees for each n. Here ||n|| is
minimal number of leaves across all such trees.
(The maximum number is n leaves.)
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Complexity Theory-4

• Theorem. (K. Mahler & J. Popken 1953) The maximum
number m representable using exactly n 10s depends on
n (mod 3) and m = 3n if n ⌘ 0 (mod 3).

• Their result implies that for all n � 1,

||n|| � 3 log3 n,

and equality holds exactly for n = 3j, j � 1.

• It is easy to show that

||n||  3 log2 n.
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Complexity Theory-5

• Definition: The complexity defect of an integer is

�(n) := ||n||� 3 log3(n).

• Mahler-Popken bound implies

�(n) � 0.

Here �(3k) = 0, all k � 1.

Here �(1) = 1.

Here �(2) = 2� 3 log3 2 ⇡ 0.107.

Here �(56) = 29� 18 log3 5 = 2.6304....
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Complexity Theory-6

• It seems hard to compute ||n||; known algorithms take
exponential time.

• Conjecture. ||2n|| = 2n.

It is immediate that ||2n||  2n.

[Equality in Conjecture has been verified by Altman and
Zelinsky for all n  21. This problem is seriously hard.]
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Complexity Theory-7

• The defect value set D is the set of allowable values for the
defect: D := {�(n) : n � 1}

The defect value partitions N>0 into equivalence classes.
Two numbers can have the same defect only if one of them
is a power of 3 times the other (This is necessary but not
su�cient condition).

• Well-Ordering Theorem. (Altman 2012+)
The defect value set D ⇢ R�0 is well-ordered with respect to
the real number ordering. It has order type the ordinal !!.

For each n � 1 the set of values in the defect set having
� < n is of order type the ordinal !n.
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Part 2: Measure Theory and Ergodic
Theory

Measure theory: Ongoing work with V. Bergelson.

Starting point: The semigroup (N,+) does not have any
translation-invariant probability measure.
Similarly, the semigroup (N, ·) has no translation-invariant
probability measure.

But both semigroups are amenable. That is, they have
(a lot of) translation-invariant finitely additive measures. These
measures are called invariant means.

An invariant mean can be constructed using a family of
exhausting sequences (Følner sets), along with a choice of
ultrafilter.
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Measure Theory-2

• Question. How orthogonal are additive and multiplicative
structures with respect to these invariant means?

• The upper (additive) Banach density d⇤(S) of any set S ⇢ N
is

d⇤(S) := lim sup
N!1

✓
sup
M�N

1

N
|S \ [M,M +N � 1]|.

◆

• Proposition. The upper (additive) Banach density d⇤(S)
is the supremum of m(S) taken over all additive invariant
means m. It is a translation-invariant quantity, but is not a
finitely-additive measure.
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Measure Theory -3

• Theorem.(*) There exists a subset S1 ⇢ N>0 with upper

additive Banach density 1 and upper multiplicative Banach

density 0.

• Theorem. (*)There exists a subset S2 ⇢ N>0 with upper

multiplicative Banach density 1 and upper additive Banach

density 0.

• Moral: Additive and Multiplicative structures are fairly
othogonal in this weak measure theory sense.
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Ergodic Theory -1

(Joint work with Sergey Neshveyev (Oslo); on arXiv:1211.3256)

This work relates to the program of Alain Connes to understand
the Riemann hypothesis in terms of noncommutative geometry.

Connes studies a peculiar space, the quotient space AQ/Q⇤ of
the adeles by the multiplicative group Q⇤.

The space of adeles AQ over the number field Q is an additive
construction. It is the restricted direct product over the real
place and all nonarchimedean (prime) places of the completion
of Q at these places. The field Q embeds additively on the
diagonal in AQ as a discrete subgroup of the form
r = p/q 7! (r, r, r, r, ...) and the quotient AQ/Q is compact.
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Ergodic Theory -2

The multiplicative action of r 2 Q⇤also acts on the diagonal.
Multiplication by r acts by sending

↵ = (a1, a2, a3, a5, · · · ) 7! r↵ := (ra1, ra2, ra3, · · · )

The quotient is not compact.

Theorem. (Connes 1995) The action of Q⇤ on AQ is ergodic.
That is, if ⌦ is a subset of positive Haar measure on AQ that is
invariant under the Q⇤-action, i.e. r⌦ = ⌦ for ALL r 2 Q⇤, then
AQ r⌦ has additive Haar measure 0.

This result says that measure-theoretically the space AQ/Q⇤

acts like a point. In this sense additive and multiplicative
structures don’t match.
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Ergodic Theory -3

Theorem. (L-Neshveyev 2012+) The ergodicity result is valid

for adeles over an arbitrary global field K, either a number field

or an algebraic function field over a finite field, acted on by K⇤.

This gives a new proof of ergodicity even for K = Q, and works
in both the number field and function field cases.

This proof uses averaging over all Hecke characters
(grössencharacters) including the infinite order characters. On
the analytic level, this proof essentially seems equivalent to
existence of no zeros on the line Re(s) = 1 for all the Hecke
L-functions.
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Round 3: Diophantine Equations

Consider the ABC equation A+B = C. It is sometimes written

A+B + C = 0.

It is a homogeneous linear Diophantine equation.
This equation imposes an additive restriction on A,B,C.

Heuristic. This linear equation imposes conditions on the
multiplicative properties of the allowed solutions (A,B,C).
The shapes of the prime factorizations of (A,B,C) cannot be
arbitrary. They are restricted in some fashion.

Various di�cult conjectures in number theory make this
assertion quantitative.
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Part 3: Diophantine Equations-2

Some measures of multiplicative complexity of (A,B,C):

• The height of a triple (A,B,C) is

H := H(A,B,C) = max{|A|, |B|, |C|}

• The radical of a triple (A,B,C) is

R := R(A,B,C) =
Y

p|ABC

p

• The smoothness of a triple (A,B,C) is

S := S(A,B,C) = max{p : p divides ABC}.
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Diophantine Equations-3

• Example. (A,B,C) = (2401,�2400,�1)

• 2401 = 74

2400 = 25 · 3 · 52
1 = 1

• The height is H = 2401.

• The radical is R = 2 · 3 · 5 · 7 = 210.

• The smoothness is S = 7.
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Diophantine Equations-4

The ABC Conjecture concerns the relation of the height and
the radical of relatively prime triples (A,B,C)
(That is, we require gcd(A,B,C) = 1.)

ABC Conjecture. For each ✏ > 0 there are only finitely many
relatively prime solutions (A,B,C) with radical

R  H1�✏.

Shinichi Mochizuki (RIMS) has announced a proof of the ABC
Conjecture. If his proof holds up, this will be the theorem of
the century! (It implies results of several previous Fields Medal
winners.) Some doubts at the moment...
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Diophantine Equations-5

• ABC measure of quality is:

Q(A,B,C) :=
logH(A,B,C)

logR(A,B,C)

• ABC Conjecture says for each ✏ > 0 only finitely many
(relatively prime) triples (A,B,C) have quality
Q(A,B,C) > 1+ ✏.

• Current World Record:

2 + 310 · 109 = 235.

It has largest known quality Q(2,310 · 109,�235) = 1.6299...
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Diophantine Equations-6

(Joint work with K. Soundararajan (Stanford).

Consider a di↵erent problem: the relation of the height and the
smoothness of relatively prime triples.

Basic Problem. How small can be the smoothness S be as a
function of the height H,

so that:

There are (still) infinitely many relatively prime triples (A,B,C)
with these values satisfying A+B + C = 0?

We formulate the XYZ Conjecture concerning this relation.
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Diophantine Equations-7

• To avoid confusion with ABC Conjecture, we define the
XY Z equation to be:

X + Y + Z = 0.

• XYZ Conjecture. There is a positive constant ↵0 such that
for any positive ✏ the XY Z equation X + Y + Z = 0 has
finitely many solutions to

S  (logH)↵0�✏.

and infinitely many solutions to

S  (logH)↵0+✏.
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Diophantine Equations-8

• Definition. Given a solution (A,B,C) to the ABC equation,
assign it the smoothness exponent

↵0(A,B,C) :=
logS(A,B,C)

log logH(A,B,C)
(This is analogous to

1

Quality
.)

• The limiting exponent in the XY Z Conjecture is:

↵0 := lim inf
H(X,Y,Z)!1

↵0(X,Y, Z)

• The XY Z Conjecture asserts ↵0 is positive and finite.
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Diophantine Equations-9

• Probabilistic Heuristic: Best constant is ↵0 = 3/2.

• This is predicted using the distribution of numbers having
only small prime factors. Counting function for this is
denoted  (x, y). It counts numbers below x, all prime
factors below y.

The study of this function is called  (x, y)-ology. Need to
solve the equation

 (x, y) = x1/3.

One finds that

y = (logx)3/2+o(1).
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Diophantine Equations-10

Example Revisited: (A,B,C) = (2401,�2400,�1).

height H(A,B,C) = 2401

smoothness S(A,B,C) = 7

The smoothness exponent is:

logS(A,B,C)

log logH(A,B,C)
=

log7

log log2401
= 0.94828...

This is an unusually “lucky” example. The heuristic for
X + Y = 1 predicts limiting value ↵⇤

0 = 2.
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Diophantine Equations -11

• Alphabet Soup Theorem (L + Sound. 2011, 2012 )
ABC + GRH implies XY Z.

This is a conditional result:

Lower Bound Theorem
ABC Conjecture =) the XY Z constant ↵0 � 1.

Upper Bound Theorem
Generalized Riemann Hypothesis (GRH) =)
the XY Z constant ↵0  8.
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Diophantine Equations-12

• The exact constant ↵0 is not determined by the Alphabet
Soup Theorem, only its existence is asserted.

• Lower Bound Theorem assuming ABC Conjecture: This is
Easy Part.

• Upper Bound Theorem assuming GRH:
This is Harder Part.

Stronger result: Get asymptotic formula for number of
primitive solutions, valid for ↵0 > 8. Proof uses
Hardy-Littlewood method (circle method).
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Diophantine Equations-13

Mysterious Example: Singular moduli (of elliptic curves)

• Let ⌧ = x+ iy 2 C lie in the upper half plane H. Set
q = e2⇡i⌧ so that |q| < 1 lies in the unit disk.

• The elliptic modular function j(⌧) generates the field of
rational functions on the modular surface H/PSL(2,Z). It
has a Fourier expansion

j(⌧) =
1

q
+744+ 196884q +21493760q2 + · · ·
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Diophantine Equations-14

Definition. A singular modulus is a value ⌧ that is an algebraic
number in an imaginary quadratic field Q(

p
�d) , that lives in

the upper half plane.

H/PSL(2,Z) is moduli space parametrizing elliptic cuves.
A singular modulus ⌧ corresponds to an elliptic curve having
complex multiplication by an order Z[1, ⌧ ] in Q(

p
�d).

Theorem. (Kronecker, Fueter, Weber, ...)
The value j(⌧) of a singular modulus ⌧ is an algebraic integer
generating an abelian extension of Q(

p
�d). When ⌧

corresponds to the full ring of integers in Q(
p
�d), then this

field is the Hilbert class field of Q(
p
�d).
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Diophantine Equations-15

• If Q(
p
�d) has class number one, which happens exactly for

d = 3,4,7,8,11,19,43,67,163, then:
j(⌧) is an ordinary integer.

• The di↵erences of singular moduli j(⌧1)� j(⌧2) have
remarkable properties!

• Gross and Zagier (1985) showed that the di↵erences of
singular moduli have norms (as algebraic integers) that
factorize completely into products of small primes. They
gave an explicit formula for the factorization.
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Diophantine Equations-16

• We obtain an ABC equation using di↵erences of three
singular moduli:

(j(⌧1)� j(⌧2)) + (j(⌧2)� j(⌧3)) + (j(⌧3)� j(⌧1)) = 0.

If these come from imaginary quadratic fields of class
number one, get integers!

• Example Take

⌧1 =
1+

p
�3

2
, ⌧2 =

1+
p
�67

2
, ⌧3 =

1+
p
�163

2
.
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Diophantine Equations-17

• Then

j(⌧1)� j(⌧2) = 215 · 33 · 53 · 113

j(⌧2)� j(⌧3) = 215 · 35 · 53 · 72 · 13 · 139 · 331

j(⌧3)� j(⌧1) = �218 · 33 · 53 · 233 · 293

• Removing the common factor 215 · 33 · 53, we get a
smooth solution

(A,B,C) = (1331,2373926373,�2373927704)

to A+B + C = 0.
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Diophantine Equations-18

This solution has height H = 2373927704, smoothness
S = 331.

Its smoothness exponent is:

↵0(A,B,C) =
log331

log log2373927704
⇡ 1.88863.

This example has radical

R = 184312146018,

which is rather larger than H. Not so good for the ABC

Conjecture.
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Diophantine Equations-19

• Ongoing work: Reformulation of XY Z Conjecture in terms
of elliptic curves. (with J. Weigandt )

• Definition: The smoothness of an elliptic curve (over Q) is
the largest prime at which it has bad reduction.
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Conclusion-1

The primes are the generators of the semigroup (N>0,⇥).

Fact. The density of primes, and their location, is influenced
by the additive structure. Namely, each arithmetic progression

P (a, b) = {an+ b : n 2 Z}

for which greatest common divisor (a, b) > 1, can contain
at most one prime, and this occurs only when gcd(a, b) = p.

This fact is the basis of sieve methods in number theory.

Question. Does this fact encode the essential di�culty behind

the Riemann hypothesis?
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Conclusion-2

Heuristic. To avoid all these arithmetic progressions,
the set of primes is forced to be thin (density ⇠ x/ logx),
and also to haveirregular fluctuations.

Summary. Addition and multiplication do not quite get along;
in some remarkable way addition forces irregular behavior in
multiplication.

Thank You!
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