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Part I. Lerch Zeta Function: History and
Objectives

• The Lerch zeta function is:

⇣(s, a, c) :=
1X

n=0

e2⇡ina

(n+ c)s

• The Lerch transcendent is:

�(s, z, c) =
1X

n=0

zn

(n+ c)s

• Thus

⇣(s, a, c) = �(s, e2⇡ia, c).
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Special Cases-1

• Hurwitz zeta function (1882)

⇣(s,0, c) = ⇣(s, c) :=
1X

n=0

1

(n+ c)s
.

• Periodic zeta function (Apostol (1951))

e2⇡ia⇣(s, a,1) = F (a, s) :=
1X

n=1

e2⇡ina

ns
.
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Special Cases-2

• Fractional Polylogarithm

z�(s, z,1) = Lis(z) =
1X

n=1

zn

ns

• Riemann zeta function

⇣(s,0,1) = ⇣(s) =
1X

n=1

1

ns
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History-1

• Lipschitz (1857) studied general Euler-type integrals
including the Lerch zeta function

• Hurwitz (1882) studied Hurwitz zeta function, functional
equation.

• Lerch (1883) derived a three-term functional equation.
(Lerch’s Transformation Formula)

⇣(1� s, a, c) = (2⇡)�s�(s)
✓
e
⇡is
2 e�2⇡iac⇣(s,1� c, a)

+ e�
⇡is
2 e2⇡ic(1�a)⇣(s, c,1� a)

◆
.
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History-2

• de Jonquiere (1889) studied the function

⇣(s, x) =
1X

n=0

xn

ns
,

sometimes called the fractional polylogarithm, giving
integral representations and a functional equation.

• Barnes (1906) gave contour integral representations and
method for analytic continuation of functions like the Lerch
zeta function.
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History-3

• Further work on functional equation: Apostol (1951),
Berndt (1972), Weil 1976.

• Much work on value distribution: Garunkštis (1996),
(1997), (1999), Laurinčikas (1997), (1998), (2000),
Laurinčikas and Matsumoto (2000). Work up to 2002
summarized in L. & G. book on the Lerch zeta function.
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Objective 1: Analytic Continuation

• Objective 1. Analytic continuation of Lerch zeta function
and Lerch transcendent in three complex variables.

• Kanemitsu, Katsurada, Yoshimoto (2000) gave a
single-valued analytic continuation of Lerch transcendent in
three complex variables: they continued it to various large
simply-connected domain(s) in C3.

• [L-L-Part-II] obtain a continuation to a multivalued
function on a maximal domain of holomorphy in 3 complex
variables. [L-L-Part-III] extends to Lerch transcendent.
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Objective 2: Extra Structures

• Objective 2. Determine e↵ect of analytic continuation on
other structures: di↵erence equations (non-local), linear
PDE (local), and functional equations.

• Behavior at special values: s 2 Z.

• Behavior near singular values a, c 2 Z; these are
“singularities” of the three-variable analytic continuation.
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Objectives: Singular Strata

• The values a, c 2 Z give (non-isolated) singularities of this
function of three complex variables.There is analytic
continuation in the s-variable on the singular strata (in
many cases, perhaps all cases).

• The Hurwitz zeta function and periodic zeta function lie on
“singular strata” of real codimension 2. The Riemann zeta
function lies on a “singular stratum” of real codimension 4.

• What is the behavior of the function approaching the
singular strata?
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Objectives: Automorphic Interpretation

• Is there a representation-theoretic or automorphic
interpretation of the Lerch zeta function and its relatives?

• Answer: There appears to be at least one. This function
has both a real-analytic and a complex-analytic version in
the variables (a, c), so there may be two distinct
interpretations.
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Part II. Basic Structures

Important structures of the Lerch zeta function include:

1. Integral Representations

2. Functional Equation(s).

3. Di↵erential-Di↵erence Equations

4. Linear Partial Di↵erential Equation
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Integral Representations

• The Lerch zeta function has two di↵erent integral
representations, generalizing integral representations in
Riemann’s original paper.

• Riemann’s two integral representations are Mellin transforms:

(1)
Z 1
0

e�t

1� e�t
ts�1dt = �(s)⇣(s)

(2)
Z 1
0

#(0; it2)ts�1dt “ = ” ⇡�
s
2�(

s

2
)⇣(s),

where #(0; ⌧) =
P

n2Z e⇡in
2⌧ is a (Jacobi) theta function.
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Integral Representations

• The generalizations to Lerch zeta function are

(1
0
)

Z 1
0

e�ct

1� e2⇡iae�t
ts�1dt = �(s)⇣(s, a, c)

(2
0
)

Z 1
0

e⇡c
2t2#(a+ ict2, it2)ts�1dt = ⇡�

s
2�(

s

2
)⇣(s, a, c).

using the Jacobi theta function

#(z, ⌧) = #3(z, ⌧) :=
X

n2Z
e⇡in

2⌧e2⇡inz.
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Four Term Functional Equation-1

• Defn. Let a and c be real with 0 < a < 1 and 0 < c < 1. Set

L±(s, a, c) := ⇣(s, a, c)± e�2⇡ia⇣(s,1� a,1� c).

Formally:

L+(s, a, c) =
1X

�1
e2⇡ina

|n+ c|s.

• Defn. The completed function

L̂+(s, a, c) := ⇡�
s
2�(

s

2
)L+(s, a, c)

and the completed function

L̂�(s, a, c) := ⇡�
s+1
2 �(

s+1

2
)L�(s, a, c).
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Four Term Functional Equation-2

• Theorem (Weil (1976))

Let 0 < a, c < 1 be real. The completed functions L̂+(s, a, c)
and L̂�(s, a, c) extend to entire functions of s and satisfy
the functional equations

L̂+(s, a, c) = e�2⇡iacL̂+(1� s,1� c, a)

and

L̂�(s, a, c) = i e�2⇡iacL̂�(1� s,1� c, a).

• Remark. These results “extend” to boundary a = 0,1
and/or c = 0,1. If a = 0,1 then L̂+(s, a, c) is a
meromorphic function of s, with simple poles at s = 0,1.
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Functional Equation Zeta Integrals

• [L-L-Part-I] obtained a generalized functional equation for
Lerch-like zeta integrals containing a test function.
(This is in the spirit of Tate’s thesis.)

• These equations relate a integral with test function f(x) at
point s to integral with Fourier transform f̂(⇠) of test
function at point 1� s.

• The self-dual test function f0(x) = e�⇡x2 yields the function
L̂+(s, a, c). The eigenfuctions fn(x) of the oscillator
representation yield similar functional equations: Here
f1(x) = xe�⇡x2 yields 1p

2⇡
L̂�(s, a, c).
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Di↵erential-Di↵erence Equations

• The Lerch zeta function satisfies two di↵erential-di↵erence
equations.

• (Raising operator) @+L := @
@c

@

@c
⇣(s, a, c) = �s⇣(s+1, a, c).

• Lowering operator) @�L :=
⇣

1
2⇡i

@
@a + c

⌘

✓ 1

2⇡i

@

@a
+ c

◆
⇣(s, a, c) = ⇣(s� 1, a, c)
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Linear Partial Di↵erential Equation

• Canonical commutation relations

@+L @
�
L � @�L @

+
L = I.

• The Lerch zeta function satisfies a linear PDE: The
(formally) skew-adjoint operator

�L =
1

2
(@+L @

�
L + @�L @

+
L ) =

1

2⇡i

@

@a

@

@c
+ c

@

@c
+

1

2
I

has

�L⇣(s, a, c) = �(s� 1

2
)⇣(s, a, c).
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Part III. Analytic Continuation for Lerch
Zeta Function

• Theorem. [L-L-Part-II] ⇣(s, a, c) analytically continues to a
multivalued function over the domain

M = (s 2 C)⇥ (a 2 C r Z)⇥ (c 2 C r Z).
It becomes single-valued on the maximal abelian cover of
M.

• The monodromy functions giving the multivaluedness are
computable. For fixed s, they are built out of the functions

�n(s, a, c) := e2⇡ina(c� n)�s, n 2 Z.

 n0(s, a, c) := e2⇡c(a�n0)(a� n0)s�1 n0 2 Z.
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Analytic Continuation-Features

• Fact. The manifold M is invariant under the symmetries of
the functional equation: (s, a, c) 7! (1� s,1� c, a).

• Fact. The four term functional equation extends to the
maximal abelian cover Mab by analytic continuation. It
expresses a non-local symmetry of the function.
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Lerch Analytic Continuation: Proof

• Step 1. The first integral representation defines ⇣(s, a, c) on
the simply connected region

{0 < Re(a) < 1}⇥ {0 < Re(c) < 1}⇥ {0 < Re(s) < 1}.
Call it the fundamental polycylinder.

• Step 2a. Weil’s four term functional equation extends to
fundamental polycylinder by analytic continuation. It leaves
this polycylinder invariant.

• Step 2b. Extend to entire function of s on fundamental
polycylinder in (a, c)-variables, together with the four-term
functional equation.
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Lerch Analytic Continuation: Proof -2

• Step 3. Integrate single loops around a = n, c = n0 integers,
using contour integral version of first integral representation
to get initial monodromy functions

Here monodromy functions are di↵erence (functions)
between a function and the same function traversed around
a closed path. They are labelled by elements of ⇡1(M).

• Step 4. The monodromy functions themselves are
multivalued, but in a simple way: Each is multivalued
around a single value c = n (resp. a = n0). They can
therefore be labelled with the place they are multivalued.
(This gives functions �n, n0)
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Lerch Analytic Continuation: Proof -3

• Step. 5. Iterate to the full homotopy group in
(a, c)-variables by induction on generators; use fact that
a-loop homotopy commutes with c-loop homotopy.

• Step. 6. Explicitly calculate that the monodromy functions
all vanish on the commutator subgroup [⇡1(M),⇡1(M)] of
⇡1(M). This gives single-valuedness on the maximal abelian
covering of M.
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Exact Form of Monodromy Functions-1

• At points c = m 2 Z,

M[Ym](Z) = c1(s)e
2⇡ima(c�m)�s

in which

c1(s) = 0 for m � 1,

c1(s) = e2⇡is � 1 for m  0.

Also

M[Ym]�1(Z) = �e2⇡isM[Ym](Z).

M[Ym]±k(Z) =
e±2⇡iks � 1

e±2⇡is � 1
M[Ym]±1(Z).
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Exact Form of Monodromy Functions-2

• At points a = m 2 Z,

M[Xm](Z) = c2(s)e
2⇡ic(a�m)(a�m)s�1

where

c2(s) = �(2⇡)se
⇡is
2

�(s)
.

Also

M[Xm]�1(Z) = �e2⇡isM[Xm](Z)

M[Xm]±k(Z) =
e⌥2⇡iks � 1

e⌥2⇡is � 1
M[Xm]±1(Z).
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“Toy Model”: interpretation?

• The original Lerch zeta function is the “ground state”.

• Each homotopy class of loops encoded by integer “charge” at
each [Xn] and at each [Yn]. The “charge” can be positive or
negative. There are finitely many nonzero “charges”.

• The “charge” at [Xn] is localized near [X = n], sitting on a
one-dimensional lattice. Same for [Yn] sitting on a second copy
of the lattice.

• This model is a memory aid to keep track of the monodromy
structure. But does it have a physics interpretation?
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Extended Lerch Analytic Continuation

• Theorem. [L-L-Part-II] ⇣(s, a, c) analytically continues to a

multivalued function over the (larger) domain

M] = (s 2 C)⇥ (a 2 C r Z)⇥ (c 2 C r Z0).

Here the extra points c = 1,2,3, ... are glued into M. The

extended function is single-valued on the maximal abelian

cover of M].

• The manifold M] is not invariant under the four term Lerch
functional equation. There is a broken symmetry between a

and c variables.
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Part IV. Consequences: Other Properties

We determine the e↵ect of analytic continuation on the other
properties

(1) Functional Equation. This is inherited by analytic
continuation on M but not on M].

(2) Di↵erential-Di↵erence Equations. These equations lift to
the maximal abelian cover of M. However they are not
inherited individually by the monodromy functions.
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Consequences: Other Properties

(3) Linear PDE. This lifts to the maximal abelian cover. That
is, this PDE is equivariant with respect to the covering map.
The monodromy functions are all solutions to the PDE.

For fixed s the monodromy functions give an infinite
dimensional vector space of solutions to this PDE.
(View this vector space as a direct sum.)
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Consequences: Special Values

• Theorem. [L-L-Part-II]
The monodromy functions vanish identically when
s = 0,�1,�2,�3, .... That is: for these values of s the value
of the Lerch zeta function is well-defined on the manifold
M, without lifting to the maximal abelian cover Mab.

• It is well known that at the special values s = 0,�1,�2, ...
the Lerch zeta function simplifies to a rational function
of c and e2⇡ia.

• At nonnegative integer values of s = 1,2, ... monodromy
partially degenerates: the monodromy functions satisfy
extra linear dependencies.
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Approaching Singular Strata

• [L-L-Part-I] There are (sometimes!) discontinuities in the
Lerch zeta function’s behavior approaching a singular
stratum: these depend on the value of the s-variable.

Observation. The location of discontinuities depends only
on the real part of the s-variable. Three regimes:

Re(s) < 0; 0  Re(s)  1; Re(s) > 1.
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Part V. Lerch Transcendent

[L-L-Part III] determines the e↵ect of analytic continuation on
the Lerch transcendent

�(s, z, c) :=
1X

n=0

zn

(n+ c)s
.

We make the change of variable z = e2⇡ia so that

a =
1

2⇡i
log z.

This introduces extra multivaluedness: a is a multivalued
function of z.
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Polylogarithm

• The Lerch transcendent (essentially) specializes to the m-th
order polylogarithm at c = 1, s = k 2 Z>0.

Lim(z) :=
1X

m=1

zm

mk
= z�(k, z,1).

• The m-th order polylogarithm satisifes an (m+1)-st order
linear ODE in the complex domain. This equation is
Fuchsian on the Riemann sphere, i.e. it has regular singular
points. These are located at {0,1,1}.

• The point c = 1 is on a regular stratum. This uses the
extended analytic continuation, which is not invariant under
the functional equation.
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Analytic Continuation for Lerch
Transcendent

• Theorem. [L-L-Part III] �(s, z, c) analytically continues to a

multivalued function over the domain

N = (s 2 C)⇥ (z 2 P1 r {0,1,1})⇥ (c 2 C r Z).

It becomes single-valued on a two-fold solvable cover of N .

• The monodromy functions giving the multivaluedness are
explicitly computable, but complicated.
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Monodromy Functions for Lerch
Transcendent

For fixed s, the monodromy functions are built out of the
functions

�n(s, z, c) := zn(c� n)�s, n 2 Z.

and

fn(s, z, c) := e⇡i(s�1)e2⇡inc z�c(n� 1

2⇡i
Log z)s�1 if n � 1.

fn(s, z, c) := e2⇡inc z�c(
1

2⇡i
Log z � n)s�1 if n  0.

taking z�c = e�cLogz. where Log z denotes a branch of the
logarithm cut along the positive real axis.
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Functional Equations: Lerch Transcendent

• Fact. The Lerch transcendent satisfies four term functional
equations inherited from the Lerch zeta function. They are
multivalued, relate di↵erent sheets of covering. They
“break down” at the integer points c 2 Z, including all the
polylogarithm values.

• Fact. Polylogarithms satisfy various “new” functional
equations, of a completely di↵erent kind, some related to
physics.
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Hilbert’s Problem List-after Problem 18

• Functions that satisfy algebraic di↵erential equations are
“significant functions.”

• “The function of two variables s and x defined by the infinite
series

⇣(s, x) = x+
x2

2s
+

x3

3s
+

x4

4s
+ · · ·

which stands in close relation with the function ⇣(s), probably
satisfies no algebraic di↵erential equation. In the investigation
of this question the functional equation d⇣(s,x)

dx = ⇣(s� 1, x) will
have to be used.”

• No algebraic di↵erential equation proved by Ostrowski (1920).
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Di↵erential-Di↵erence Equations: Lerch
Transcendent

• The Lerch transcendent satisfies two di↵erential-di↵erence
equations. These operators are non-local in the s-variable.

• (Raising operator) D+
L = @

@c

@

@c
�(s, z, c) = �s�(s+1, z, c).

• Lowering operator) D�
L =

⇣
z @@z + c

⌘

✓
z
@

@z
+ c

◆
�(s, z, c) = �(s� 1, z, c)
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Linear Partial Di↵erential Equation: Lerch
Transcendent

• As with Lerch zeta function, the Lerch transcendent
satisfies a linear PDE:

✓
z
@

@z
+ c

◆
@

@c
�(s, z, c) = �s�(s, a, c).

• The (formally) skew-adjoint operator

�̃L :=
✓
z
@

@z
+ c

◆
@

@c
+ c

@

@c
+

1

2
I

has

�̃L�(s, z, c) = �(s� 1

2
)�(s, z, c).
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Specialization to Polylogarithm-1

• For positive integer value s = m, and c as a parameter, the
function z�(m, z, c) gives a deformation of the
polylogarithm in c-variable:

Lim(z, c) :=
1X

n=0

zn

(n+ c)m
.

• Viewing c as fixed, it satisfies the Fuchsian ODE
DcLim(z, c) = 0 where the di↵erential operator is:

Dc := z2
d

dz
(
1� z

z
)(z

d

dz
+ c� 1)m.

• The singular stratum points are c = 0,�1,�2,�3, ....
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Specialization to Polylogarithm-2

• A basis of solutions for each regular stratum point is

{Lim(z, c), z1�c(log z)m�1, z1�c(log z)m�2, · · · , z1�c}.
• The monodromy of the loop [Z0] on this basis is:

0

BBBBBBB@

1 0 0 · · · 0 0

0 e�2⇡ic e�2⇡ic2⇡i
1! · · · e�2⇡ic(2⇡i)m�2

(m�2)! e�2⇡ic(2⇡i)m�1

(m�1)!
... ... ... ... ...
0 0 0 · · · e�2⇡ic e�2⇡ic2⇡i

1!
0 0 0 · · · 0 e�2⇡ic

1

CCCCCCCA

.

• The monodromy of the loop [Z1] is unipotent and is
independent of c.
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Specialization to Polylogarithm-3

• A basis of solutions for each singular stratum point is

{Li⇤m(z, c), z1�c(log z)m�1, z1�c(log z)m�2, · · · , z1�c}
• The monodromy of the loop [Z0] in this basis is unipotent:

0

BBBBBBBBBBBB@

1 2⇡i
1!

(2⇡i)2
2! · · · (2⇡i)m�1

(m�1)!
(2⇡i)m

m!

0 1 2⇡i
1! · · · (2⇡i)m�2

(m�2)!
(2⇡i)m�1

(m�1)!

0 0 1 · · · (2⇡i)m�3

(m�3)!
(2⇡i)m�2

(m�2)!
... ... ... ... ...
0 0 0 · · · 1 2⇡i

1!
0 0 0 · · · 0 1

1

CCCCCCCCCCCCA

.

• The monodromy of the loop [Z1] is also unipotent and
independent of c.
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Specialization to Polylogarithm-4

Observations:

• The monodromy representation (of ⇡1 of the Riemann
sphere minus 0,1,1) is upper triangular, and is unipotent
exactly when c is a positive integer (regular strata) or c is a
nonpositive integer (singular strata).

• The di↵erential equation makes sense on the singular
strata, and remains Fuchsian (i.e. regular singular points).
The monodromy representation continues to be unipotent,
paralleling the positive integer case (polylogarithms at
c = 1). However it takes a discontinuous jump at these
points.
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Part VI. Further Work (in preparation)

• [L-L-Part IV] studies two-variable “Hecke operators”

Tm(F )(a, c) :=
1

m

m�1X

j=0
F (

a+ k

m
,mc).

• These operators mutually commute, and also commute with
�L. Operators dilate in the c-direction while contract and shift
in the a-direction.

• For fixed s the LZ function is a simultaneous eigenfunction of
these operators, with eigenvalue m�s for Tm.

• Show generalization of Milnor’s 1983 result (to LZ function)
characterizing the Hurwitz zeta function ⇣(s, z) as a
simultaneous eigenfunction of “Kubert operators”:
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Automorphic Interpretation-1 ([L])

• Automorphic Representation. The Lerch zeta function, or
rather the functions L±(s, a, c), [in real-analytic version ] may
be viewed as a (non-holomorphic) “Eisenstein series” attached
to the four dimensional solvable Lie group
HJ = GL(1,R) nHeis(R) acting on a space of functions on the
Heisenberg group, with GL(1,R)-action (a, c, b) 7! (ta, t�1c, b).

• The representation corresponds to the standard
infinite-dimensional Schrödinger representation on
Heis(Z)\Heis(R) having Planck constant ~ = 1.
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Automorphic Interpretation-2

• The space L2(Heis(Z)\Heis(R)) = �n2ZHn where n 2 Z
corresponds to the value of Planck constant. The discete group

� = GL(1,Z) nHeis(Z).

acts separately on all the spaces Hn. There is a “Laplacian” �
acting on Heis(R) and two-variable Hecke operators acting on
all Hn (n 6= 0).

• The action of � is pure continuous acting on all spaces
n 6= 0. The continuous spectrum for H1 is parametrized by
L±(12 + it, a, c). Action for Hn parametrized by Lerch functions
twisted by various Dirichlet characters. The action is not
semisimple. Also Hn is not irreducible for |n| � 2, there are
“superselection sectors”.
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Summary

• The Lerch zeta function carries many extra algebraic and
analytic structures, in its real-analytic and complex-analytic
versions. The former assigns it a role as an “Eisenstein
series” attached to a solvable Lie group.

• Observation. The analytic continuation of Lerch zeta
function fails at values a, c integers, which are the most
interesting values: the Hurwitz and Riemann zeta functions
appear. These are singular points. Understanding the
behavior as the singular points are approached might shed
interesting new light on these limit functions.
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Summary-2

• Question. Does the Lindelöf hypothesis hold for the Lerch
zeta function? (Possibility raised by Garunkštis-Steuding).

Our results imply: If so, Lindelöf hypothesis will hold for all
the multivalued branches as well, because the monodromy
functions are all of slow growth in the t-direction.

50



Thank You!
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