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Summary

This talk reports on work on the Lerch zeta function extending
over many years. Much of it is joint work with Winnie Li.

This talk focuses on:

• Two-variable Hecke operators and their action on function
spaces related to Lerch zeta function. (with Winnie Li).

• Heisenberg group representation theory interpretation of
(generalized) Lerch zeta functions.
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Part I. Lerch Zeta Function:

• The Lerch zeta function is:

⇣(s, a, c) :=
1X

n=0

e2⇡ina

(n+ c)s

• The Lerch transcendent is:

�(s, z, c) =
1X

n=0

zn

(n+ c)s

• Thus

⇣(s, a, c) = �(s, e2⇡ia, c).
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Special Cases-1

• Hurwitz zeta function (1882)

⇣(s,0, c) = ⇣(s, c) :=
1X

n=0

1

(n+ c)s
.

• Periodic zeta function (Apostol (1951))

e2⇡ia⇣(s, a,1) = F (a, s) :=
1X

n=1

e2⇡ina

ns
.

5



Special Cases-2

• Fractional Polylogarithm

z�(s, z,1) = Lis(z) =
1X

n=1

zn

ns

• Riemann zeta function

⇣(s,0,1) = ⇣(s) =
1X

n=1

1

ns
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History-1

• Lipschitz (1857) studies general Euler integrals including
the Lerch zeta function

• Hurwitz (1882) studied Hurwitz zeta function.

• Lerch (1883) derived a three-term functional equation.
(Lerch’s Transformation Formula)

⇣(1� s, a, c) = (2⇡)�s�(s)
✓
e
⇡is
2 e�2⇡iac⇣(s,1� c, a)

+ e�
⇡is
2 e2⇡ic(1�a)⇣(s, c,1� a)

◆
.
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History-2

• de Jonquiere (1889) studied the function

⇣(s, x) =
1X

n=0

xn

ns
,

sometimes called the fractional polylogarithm, getting
integral representations and a functional equation.

• Barnes (1906) gave contour integral representations and
method for analytic continuation of functions like the Lerch
zeta function.
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History-3

• Further work on functional equation: Apostol (1951),
Berndt (1972), Weil 1976.

• Much work on value distribution of Lerch zeta function by
Lithuanian school: Garunkštis (1996), (1997), (1999),
Laurinčikas (1997), (1998), (2000), Laurinčikas and
Matsumoto (2000).

• This work up to 2002 summarized in book of Laurinčikas
and Garunkštis on the Lerch zeta function.
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Lerch Zeta Function and Elliptic Curves

• The Lerch zeta function is a Mellin transform of a Jacobi
theta function containing its (complex) elliptic curve variable z,
viewed as two real variables (a, c). The Mellin transform
averages the elliptic curve data over a particular set of moduli.

• Paradox. The Lerch zeta function “elliptic curve variables”
give it some “additive structure”. Yet the variables specialize
to a “multiplicative object”, the Riemann zeta function.

• Is the Lerch zeta function “modular”? This talk asserts that
it can be viewed as an automorphic form (“Eisenstein series”)
on a solvable Lie group. This group falls outside the Langlands
program.
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Part II. Basic Structures

1. Functional Equation(s).

2. Di↵erential-Di↵erence Equations

3. Linear Partial Di↵erential Equation

4. Integral Representations

5. Three-variable Analytic Continuation
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2.1 Four Term Functional Equation-1

• Defn. For real variables 0 < a < 1 and 0 < c < 1, set

L+(s, a, c) =
1X

�1
e2⇡ina

|n+ c|s, L�(s, a, c) =
1X

�1
sgn(n+

1

2
)
e2⇡ina

|n+ c|s
More precisely,

L±(s, a, c) := ⇣(s, a, c)± e�2⇡ia⇣(s, 1� a, 1� c).

• Defn. The completed functions with gamma-factors are:

L̂+(s, a, c) := ⇡� s
2�(

s

2
)L+(s, a, c)

and

L̂�(s, a, c) := ⇡�s+1
2 �(

s+1

2
)L�(s, a, c).
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2.1 Four Term Functional Equation-2

• Theorem (Weil (1976)) Let 0 < a, c < 1 be real. Then:

(1) The completed functions L̂+(s, a, c) and L̂�(s, a, c)
extend to entire functions of s. They satisfy the
functional equations

L̂+(s, a, c) = e�2⇡iac L̂+(1� s,1� c, a)

and

L̂�(s, a, c) = i e�2⇡iac L̂�(1� s,1� c, a).

(2) These results extend to a = 0,1 and/or c = 0,1.
For a = 0,1 then L̂+(s, a, c) is a meromorphic function of
s, with simple poles at s = 0,1. In all other cases these
functions remain entire functions of s.
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2.1 Functional Equation- Zeta Integrals

• Part I paper obtains a generalized functional equation for
Lerch-like zeta integrals depending on a test function.
(This work is in the spirit of Tate’s thesis.)

• These equations relate a integral with test function f(x) at
point s to integral with Fourier transform f̂(⇠) of test
function at point 1� s.

• The self-dual test function f0(x) = e�⇡x2 yields the function
L̂+(s, a, c). The test function f1(x) = xe�⇡x2 yields
1p
2⇡

L̂�(s, a, c). More generally, eigenfuctions fn(x) of the
oscillator representation yield functional equations with
Zeta Polynomials (local RH of Bump and Ng(1986)).
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Functional Equation- Zeta Integrals-2

• An adelic generalization of the Lerch functional equation,
also with test functions, was found by my student
Hieu T. Ngo in 2014. He uses ideas from Tate’s thesis, but
his results fall outside that framework.

• His results include generalizations to number fields, to
function fields over finite fields, and new zeta integrals for
local fields.
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2.2 Di↵erential-Di↵erence Equations

• The Lerch zeta function satisfies two di↵erential-di↵erence
equations.

• (Raising operator)

@

@c
⇣(s, a, c) = �s⇣(s+1, a, c).

• Lowering operator)
✓ 1

2⇡i

@

@a
+ c

◆
⇣(s, a, c) = ⇣(s� 1, a, c)

• These operators are non-local in the s-variable.
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2.3 Linear Partial Di↵erential Equation

• The Lerch zeta function satisfies a linear PDE:

(
1

2⇡i

@

@a
+ c)

@

@c
⇣(s, a, c) = �s ⇣(s, a, c).

Set

DL :=
1

2⇡i

@

@a

@

@c
+ c

@

@c
.

• The (formally) skew-adjoint operator

�L :=
1

2⇡i

@

@a

@

@c
+ c

@

@c
+

1

2
I

has

�L⇣(s, a, c) = �(s� 1

2
)⇣(s, a, c).
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2.4 Integral Representations-1

• The Lerch zeta function has two di↵erent integral
representations, generalizing two of the integral representations
in Riemann’s 1859 paper.

• Riemann’s first formula is:
Z 1
0

e�t

1� e�t
ts�1dt = �(s)⇣(s)

• Generalization to Lerch zeta function is:
Z 1
0

e�ct

1� e2⇡iae�t
ts�1dt = �(s)⇣(s, a, c)
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2.4 Integral Representations-2

• Riemann’s second formula is: (formally)
Z 1
0

#(0; it2)ts�1dt“ = ”⇡� s
2�(

s

2
)⇣(s),

where

#(0; ⌧) :=
X

n2Z
e⇡in

2⌧ .

• Generalization to Lerch zeta function is:
Z 1
0

e⇡c
2t2#(a+ ict2, it2)ts�1dt = ⇡� s

2�(
s

2
)⇣(s, a, c).

where the Jacobi theta function is

#(z; ⌧) =
X

n2Z
e⇡in

2⌧e2⇡inz.
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2.5 Analytic Continuation

• Paper II (with Winnie Li) showed the Lerch zeta function has
an analytic continuation in three complex variables (s, a, c). It
is an entire function of s but is then multi-valued analytic
function in the (a, c)-variables.

• Analytic continuation becomes single-valued on the maximal
abelian covering of the complex surface (a, c) 2 C⇥ C punctured
at all integer values of a and c. We explicltly computed the
monodromy describing the multivaluedness.

• Paper III (with Winnie Li) extended the analysis to Lerch
transcendent and polylogarithms. More monodromy occurs.

• In the remainder of this talk we will stick to a, c being real
variables.
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Part III. Two-Variable Hecke Operators

• Recall the role of Hecke operators in modular forms on a
homogeneous space �\H, say � = PSL(2,Z).

• Without defining them exactly, Hecke correspondences form
an infinite commuting family of discrete “arithmetic”
symmetries on such a manifold.

• They correspond to a family of Hecke operators acting on
functions, which commute with a Laplacian operator, and that
can be simultaneously diagonalized to give a basis of
simulteous eigenfunctions on spaces of modular forms.

• There are associated L-functions that go with these
diagonalizations, having Euler products. The prime power
coe�cients are “Hecke eigenvalues.”
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Two-Variable Hecke Operators

• Paper IV (with Winnie Li) intoduces the two-variable
“Hecke operators”

Tm(F )(a, c) :=
1

m

m�1X

k=0
F (

a+ k

m
,mc)

• These operators dilate in the c-direction while contract and
shift in the a-direction.

• Domain of definition: Seems to require at least a half-line in
c variable due to dilations. We will view it on domain R⇥ R.
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Two-Variable Hecke Operators-2

• Consider the restriction to functions constant in the
a-direction: then F (c) = F (a, c). Then the operator becomes
the one-variable operator

Tm(F )(c) = F (mc)

• This is the “dilation operator”. It corresponds to the
operator Vm in modular forms which acts on q-expansions as

Vm(
X

n
anq

n) =
X

n
anq

mn.

Take q = e2⇡i⌧ so that f =
P

n anqn =
P

n anee⇡in⌧ . Then indeed:

Vm(f)(⌧) = f(m⌧).
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Two-Variable Hecke Operators-3

• Consider the restriction to functions constant in the
c-direction: F (a) = F (a, c). It becomes one-variable operator

Tm(F )(a) =
1

m

m�1X

k=0
F (

a+ k

m
).

These operators studied under many di↵erent names.

• Atkin (1969) called them “ Hecke operators”. Also called
“Atkin operator” Um, in modular forms, acts on q-expansions as

Um(
X

n
anq

n) =
X

n
amnq

n.

Take q = e2⇡i⌧ and f =
P

n anqn =
P

n ane2⇡in⌧ . Then indeed:

Um(f)(⌧) =
1

m

m�1X

k=0
F (

⌧ + k

m
).
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Milnor’s Theorem for Kubert Functions-1

• In 1983 Milnor proved a result characterizing the Hurwitz
zeta function

⇣(s, z) =
1X

n=0

1

(n+ z)s

as a simultaneous eigenfunction of “Kubert operators”:

Tm(F )(z) =
1

m

m�1X

j=0
F (

z + k

m
)

Here, for Re(s) > 1, plus analytic continuation (except s = 1)

Tm(⇣(s, z)) = ms�1⇣(s, z).
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Milnor’s Theorem for Kubert Functions-2

Theorem. (Milnor (1983)) Let Ks denote the set of
continuous functions f : (0,1) ! C which satisfy for m � 1,

Tmf(x) = m�sf(x) for all x 2 (0,1) .

(1) Ks is a two-dimensional complex vector space and consists
of real-analytic functions.

(2) Ks is an invariant subspace for the involution

J0f(x) := f(1� x)

and decomposes into one-dimensional eigenspaces
Ks = K+

s �K�
s spanned by an even eigenfunction f+s (x) and an

odd eigenfunction f�s (x), respectively, which satisfy

J0f
±
s (x) = ±f±s (x) .
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Milnor’s Theorem for Kubert Functions-3

• Milnor gave an explicit basis for Ks, which for
s 6= 0,�1,�2, . . . is given in terms of the (analytic continuation
in s of the) Hurwitz zeta function

⇣s(x) := ⇣(s,0, x) =
1X

n=0

1

(n+ x)s
,

namely Ks =< ⇣1�s(x), ⇣1�s(1� x) > . He also gave very
interesting basis functions at the exceptional values
s = 0,�1,�2, ..., related to polylogarithms. These s values are
“trivial zeros” of the Dedekind zeta function ⇣Q(i)(s).

• Di↵erentiation @
@x maps Ks to Ks�1, acting as a “lowering

operator”. Because Kubert operators are contracting, this fact
su�ces for Milnor’s proof.
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Two-Variable Hecke Operators-4

• We establish a generalization to the Lerch zeta function.
(A variable change requires replacing m�s by ms�1.)

• We consider a special class of functions F (a, c) on R⇥ R:
those satisfying Twisted Periodicity for the lattice Z⇥ Z.

F (a+1, c) = F (a, c)

F (a, c+1) = e�2⇡iaF (a, c).

• For twisted periodic functions: Given any values F (a, c) on
the open unit square ⇤� = {(a, c) : 0 < a < 1,0 < c < 1}, twisted
periodicity extends it uniquely to R⇥ R (o↵ a set of measure
zero), so two-variable Hecke operators become well defined.
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Two-Variable Hecke Operators-5

• Proposition A. (1) If F (a, c) is twisted-periodic on ⇤�, then
Tm(F )(a, c) is twisted-periodic for all m � 1.

(2) Acting on the space of twisted-periodic functions (allowing
linear discontinuities) the two-variable Hecke operators
{Tm : m � 1} form a commuting family of operators.

• Proposition B. (1) For fixed s with s 2 C the Lerch zeta
function on ⇤� is “naturally” extendable to be
twisted-periodic.

(2) Lerch zeta function ⇣(s, a, c) is then a simultaneous
eigenfunction of two-variable Hecke operators,

Tm(⇣)(s, a, c) = m�s⇣(s, a, c)

(There will be discontinuities at integer a, c when Re(s) < 1.)
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R-operator and J-operator-1

• Throw in some additional operators on functions on ⇤�, use
them to define additional two-variable Hecke operators.

• The R-operator is defined on functions with domain ⇤� by:

R(F )(a, c) := e�2⇡iacF (1� c, a).

It is an operator of order 4, i.e R4 = I.

• The J-operator is J = R2. It is given by

J(F )(a, c) = e�2⇡iaF (1� a,1� c).
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R-operator -2

• Observation. The Lerch functional equation(s) can be put
in a nice form using the R-operator, as

L̂+(s, a, c) = R(L̂+)(1� s, a, c).

and

L̂�(s, a, c) = iR(L̂�)(1� s, a, c).

(This happens because the R-operator intertwines with the
Fourier transform on a suitable space.)

• Lemma. The R-operator acting on functions in the Hilbert

space L2(⇤�) is a unitary operator.
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R-operator and Two-variable Hecke ops.

The operator R does not commute with the two-variable
Hecke operators Tm. It generates three new families of
two-variable Hecke operators under conjugation:

Sm := RTmR�1 , T_
m := R2TmR�2, and S_

m := R3TmR�3,

These are:

Smf(a, c) =
1

m

m�1X

k=0
e2⇡ikaf

✓
ma,

c+ k

m

◆
,

T_
mf(a, c) =

1

m

m�1X

k=0
e2⇡i(

(1�m)a+k
m )f

✓
a+ k

m
,1+m(c� 1)

◆
,

S_
mf(a, c) =

1

m

m�1X

k=0
e2⇡i(m�(k+1))af

 

1+m(a� 1),
c+m� (k +1)

m

!

.
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Commuting Two-variable Hecke operators-1
Theorem 1. (Commuting Operator Families-1)
(1) The four sets of two variable Hecke operators

{Tm,Sm,T_
m,S_

m : m � 1} continuously extend to bounded

operators on each Banach space Lp(⇤, da dc) for 1  p  1.

(Here we view functions on ⇤ as extended to R⇥ R via
twisted-periodicity.)

(2) These operators satisfy Tm = T_
m, Sm = S_

m and

Sm = 1
m(Tm)�1 for all m � 1.
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Commuting Two-variable Hecke operators-2

Theorem 1. (continued)

(3) The C-algebra Ap
0 of operators on Lp(⇤, da dc) generated by

all four sets of operators {Tm,Sm,T_
m,S_

m : m � 1} under
addition and operator multiplication is commutative.

(4) On the Hilbert space L2(⇤, da dc) the adjoint Hecke

operator (Tm)⇤ = Sm, and (Sm)⇤ = Tm. In particular the
C-algebra A2

0 is a ?-algebra.

(5) On the Hilbert space L2(⇤, da dc) each rescaled operatorp
mTm,

p
mSm is a unitary operator on L2(⇤, da dc).
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Lerch eigenspace

• For fixed s 2 C the Lerch eigenspace Es is the vector space
over C spanned by the four functions

Es := < L+(s, a, c), L�(s, a, c),
e�2⇡iacL+(1� s,1� c, a), e�2⇡iacL�(1� s,1� c, a) >,

viewing the (a, c)-variables on ⇤�.

• The gamma factors are omitted from functions in this
definition, since s is constant. These functions satisfy linear
dependencies by virtue of the two functional equations that
L±(s, a, c) satisfy. The resulting space is two-dimensional.
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Operators on Lerch eigenspaces-1
Theorem 2. (Operators on Lerch eigenspaces-1)

(1) For each s 2 C the space Es is a two-dimensional vector
space.

(2) All functions in Es have the following four properties.

(i) (Lerch di↵erential operator eigenfunctions) Each f 2 Es is

an eigenfunction of the Lerch di↵erential operator

DL = 1
2⇡i

@
@a

@
@c + c @

@c with eigenvalue �s, namely

(DLf)(s, a, c) = �sf(s, a, c)

holds at all (a, c) 2 R⇥ R, with both a and c non-integers.
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Operators on Lerch eigenspaces-2

Theorem 2. (Operators on Lerch eigenspaces-2)

(ii) (Simultaneous Hecke operator eigenfunctions) Each f 2 Es
is a simultaneous eigenfunction with eigenvalue m�s of all
two-variable Hecke operators

Tm(f)(a, c) =
1

m

m�1X

k=0
f

✓
a+ k

m
,mc

◆

in the sense that, for each m � 1,

Tmf = m�sf

holds on the domain (R r 1
mZ)⇥ (R r Z).

37



Operators on Lerch eigenspaces-3

Theorem 2 (Operators on Lerch eigenspaces-3)

(iii) (J-operator eigenfunctions) The space Es admits the
involution

Jf(a, c) := e�2⇡iaf(1� a,1� c),

under which it decomposes into one-dimensional eigenspaces
Es = E+

s � E�
s with eigenvalues ±1, that is, E±

s =< F±
s > and

J(F±
s ) = ±F±

s .

(iv) (R-operator action) The R-operator acts: R(Es) = E1�s

R(L±(s, a, c)) = w�1
± �±(1� s)L±(1� s, a, c),

where w+ = 1, w� = i, �+(s) = �R(s)/�R(1� s), and
��(s) = �+(s+1), and �R(s) = ⇡�s/2�(s/2).
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Analytic Properties of Lerch eigenspaces-1
Theorem 3. (1) For s 2 C the functions in the Lerch

eigenspace Es are real-analytic functions of

(a, c) 2 (R r Z)⇥ (R r Z), which may be discontinuous at values

a, c 2 Z.

(2) In addition they have properties:

(i) (Twisted-Periodicity Property) All functions F (a, c) in Es
satisfy the twisted-periodicity functional equations

F (a+1, c ) = F (a, c),

F ( a , c+1) = e�2⇡iaF (a, c).
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Analytic Properties of Lerch eigenspaces-2

Theorem 3. (continued) (ii) (Integrability Properties) (a)-(b)
(a) If <(s) > 0, then for each 0 < c < 1 all functions in Es have
fc(a) := F (a, c) 2 L1[(0,1), da], and all their Fourier coe�cients

fn(c) :=
Z 1

0
F (a, c)e�2⇡inada, n 2 Z,

are continuous functions of c on 0 < c < 1.

(b) If <(s) < 1, then for each 0 < a < 1 all functions in Es have
ga(c) := e2⇡iacF (a, c) 2 L1[(0,1), dc], and all Fourier coe�cients

gn(a) :=
Z 1

0
e2⇡iacF (a, c)e�2⇡incdc, n 2 Z,

are continuous functions of a on 0 < a < 1.
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Generalized Milnor Converse Theorem
Theorem 4. (Lerch Eigenspace Converse Theorem ) Let s 2 C
be fixed. Suppose that F (a, c) : (R r Z)⇥ (R r Z) ! C is a

continuous function that satisfies the following three conditions.

• (Twisted-Periodicity Condition) F (a, c) is twisted periodic.

• (Integrability Condition) L1-condition on a or on c depending

on Re(s) < 1 or Re(s) > 0, as in Theorem 3.

• (Hecke Eigenfunction Condition) For all m � 1,

Tm(F )(a, c) = m�sF (a, c)

Then F (a, c) is the restriction to noninteger (a, c)-values of a

function in the Lerch eigenspace Es.
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V. Lerch Zeta Function and Heisenberg
Group

• The Heisenberg group Heis(R) is a 3-dimensional real Lie
group. It has a one-dimensional center given by z-variable.

• Abstract group law (parameter � 2 R)

[x1, y1, z1]� � [x2, y2, z2]� :=

[x1 + x2, y1 + y2, z1 + z2 + �x1y2 + (1� �)y1x2 ]� .

• 3⇥ 3 Matrix group Representations (for � = 0,1 only.)

[x, y, z]0 =

2

64
1 y z
0 1 x
0 0 1

3

75 and [x, y, z]1 =

2

64
1 x z
0 1 y
0 0 1

3

75 .
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Heisenberg Group-2

• 4⇥ 4 Matrix group representation (general case)

[x, y, z]� =

2

6664

1 x y z
0 1 0 �y
0 0 1 �(1� �)x
0 0 0 1

3

7775 .

• Maximally symmetric case (� = 1
2)

[p, q, z]1/2 =:

2

6664

1 p q 2z
0 1 0 q
0 0 1 �p
0 0 0 1

3

7775 .

43



Sub-Jacobi Group

• The actual group HJ involved with the Lerch zeta function is
a semidirect product of GL(1) with the real Heisenberg group,
which we call the sub-Jacobi group. The Lerch integral
representation is a Mellin transform integrating over the
characters of the GL(1)-action, so the three Heisenberg
variables (a, c, z) remain as parameters in the resulting integral.
The dependence on z is simple, so can be omitted.

• GL(1) is not in the center of the sub-Jacobi group.

• One particular (asymmetric) matrix representation of HJ is:

[c, a, z, t] =

2

66664

1 c a z
0 t 0 ta

0 0 1
t 0

0 0 0 1

3

77775
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Representation Theory of the Heisenberg
Group

• The Heisenberg group N = Heis(R) is one of the eight
three-dimensional geometries of Thurston, called Nil.

• For each real � 6= 0, there exists a unique infinite dimensional
irreducible representation P� on which the central character
takes value �([0,0, z]) = e2⇡i�z. For the parameter � = 0, the
central character is trivial, and there are an uncountable
number of 1-dimensional representations Jµ1,µ2 , parametrized
by (µ1, µ2) 2 R2, with �([a, c,0]) = e2⇡i(µ1a+µ2c).

• All the infinite-dimensional irreducible representations P� are
the “same” in that is an automorphism of Heis(R) taking the
representation P� to P1. The value of � is “Planck’s constant.”
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Schrödinger Representationof the
Heisenberg Group

• This is a model of the infinite dimensional irreducible unitary
representation P1 of Heis(R). It acts on L2(R, dx). (Use the
model [a, c, z]0 for Heis(R).)

• Translation [0, c,0]: f(x) 7! f(x+ c).

• Modulation: [a,0,0] f(x) 7! e2⇡iaxf(x).

• Center [0,0, z]: f(x) 7! e2⇡izf(x)

• Translation and Modulation satisfy canonical commutation
relations (up to a scaling).

• Stone-von Neumann theorem. Repesentation is unique
unitary irreducible representation with given central character.
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Representation Theory of the Heisenberg
Nilmanifold

• The Heisenberg nilmanifold N = Heis(Z)\Heis(R). It is a
compact manifold of volume 1 with respect to Haar measure
dadcdz on Heis(R). The manifold N is a homogeneous space
for the action of the Heisenberg group.

• The space L2(Heis(Z)\Heis(R)) can be decomposed under
the (right) Heisenberg action as

L2(Heis(Z)\Heis(R)) = �N2ZHN,

in which:

(1) For N 6= 0 the space HN consists of |N | copies of the
infinite-diml. repn. PN having central character e2⇡iNz.

(2) For N = 0 the space H0 = �(m1,m2)2Z2 Jm1,m2.
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Representation Theory of the Heisenberg
Nilmanifold-2

• Fact. All the infinite-dimensional spaces HN with N 6= 0
carry a nontrivial action of the sub-Jacobi group.

• The space H0 does not carry such an action, but we show
carries a discrete remnant of this action from analogues of
two-variable Hecke operators (defined on next slide)

• All the spaces HN also carry an action of a “Laplacian”
operator, which is left-invariant but not two-sided invariant. It
is not in the center of the universal enveloping algebra of
Heis(R). This operator is

� :=
1

2⇡i
(
@

@a

@

@c
+ c

@

@c

@

@z
)
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Two-Variable Hecke Operators

• There are two-variable Hecke operators given by

Tm(F )(a, c, z) :=
1

|m|
|m|�1X

j=0
F

✓
a+ j

m
,mc, z

◆
,

• Here Tm : C0
bdd(Heis(R)) ! C0

bdd(Heis(R)), and the two
variables in the operator name refer to variables (a, c), noting
that the action on the z-variable is rather simple.
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Symmetrized Lerch Zeta Functions as
Eisenstein Series

Theorem. (1)The two symmetrized Lerch-zeta functions

L±(s, a, c) = ⇣(s, a, c)± e2⇡ia⇣(s,1� a,1� c)

are “Eisenstein series” for the real Heisenberg group H(R) with

respect to the discrete subgroup given by the integer

Heisenberg group H(Z).

• Eisenstein series (in the theory of reductive Lie groups) are
generalized eigenfunctions a “Laplacian” operator having pure
continuous spectrum, which in arithmetic (adelic) contexts are
also simultaneous eigenfunctions of a family of “Hecke
operators”.
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Symmetrized Lerch Zeta Functions as
Eisenstein Series-2

Theorem. (continued)

(2) The two functions L±(s, a, c) form a family of

eigenfunctions in the s-parameter with eigenvalue s� 1
2 with

respect to a “Laplacian operator” �L = 1
2⇡i

@
@a

@
@c + c @

@c +
1
2. The

operator �L defines a left-invariant vector field on H(R), and

acts on the Hilbert space H1 of the Schrödinger representation

of Heis(R). It is specified with a dense domain W(D1,1) with

respect to which it is skew-adjoint. It has pure continuous

spectum for �L with spectral measure =Lebesgue.
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Lerch L-Functions

• The continuous spectrum result extends to all the spaces HN

for all N � 0 as follows:

• Let � be a (primitive or imprimitive) Dirichlet character
(mod d) with d dividing N , the level of the Heisenberg
representation. The associated Lerch L-function is:

L±
N,d(�, s, a, c) :=

X

n2Z
�(

nd

N
)(sgn(n+Nc))ke2⇡ina|n+Nc|�s,

in which (�1)k� = ± with k = 0 or 1.

• The Lerch L-functions for fixed parameter s on the critical
line Re(s) = 1

2 are (continuous spectrum) eigenfunctions of the
operator �, for those parts of the space HN , when N 6= 0.
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Weil-Brezin Transform-1

• Method of proof: Weil-Brezin transforms.

• The Weil-Brezin map W : L2(R, dx) ! H1 is defined for
Schwartz functions f 2 S(R) by

W(f)(a, c, z) := e2⇡iz

0

@
X

n2Z
f(n+ c)e2⇡ina

1

A .

Under Hilbert space completion this map extends to an
isometry of Hilbert spaces.

• The Weil-Brezin image of the scaled Gaussian function
ft(x) = e�⇡tx2 is closely related to a Jacobi theta function.
Image is ✓t(a, c, z) := e2⇡ize�⇡tc2#3(it, a+ ict). For |x|s (not a
Schwartz function) the image is Lerch L-function.
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Weil-Brezin Transform-2

• The Weil-Brezin transform takes the Schrödinger
representation on L2(R, dx) to H1 ⇢ L2(Heis(R), da dc dz).

• The Hilbert space L2(R, dx) carries a dilation action
D�(f(x)) = |x|�1/2f(�x). This action together with the
Heisenberg action on L2(R, dx) given by the Schrödinger
representation gives a sub-Jacobi group HJ representation on
this space.

• The di↵erential operator corresponding to the infinitesimal
dilation action is x d

dx + 1
2. Under the Weil-Brezin map this

operator maps to �L = 1
2⇡i

@
@a

@
@c + c @

@c +
1
2 on H1.
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Weil-Brezin Transform-3

• The Weil-Brezin map intertwines the Fourier transform on
L2(R, dx) with the Heisenberg analogue of the R-operator on
the space H1.

• The analogue of the R-operator for all spaces HN is

R(F )([a, c, z]) := F ([�c, a, z �Nac]).
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Weil-Brezin Transform-4

• There are generalizations of the Weil-Brezin map to all
infinite-dimensional irreducible representations of the
Heisenberg nilmanifold.

• The twisted Weil-Brezin map WN,d(�) : L2(R, dx) ! HN,d(�)
is defined for Schwartz functions f 2 S(R) by

WN,d(�)(f)(a, c, z) :=
q
CN,de

2⇡iNz
X

n2Z
�

✓
nd

N

◆
f(n+Nc)e2⇡ina

in which we set �(r) := 0 if r 62 Z, and

CN,d :=
N

�(d)

is a normalizing factor. (Note also that �(r) = 0 for those r 2 Z
having (r, d) > 1.)
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Weil-Brezin map-5

• Proposition C. The twisted Weil-Brezin map

WN,d(�) : S(R) ! C1(HN) extends to a Hilbert space isometry

WN,d(�) : L2(R, dx) �! HN,d(�) ✓ HN

whose range HN,d(�) is a closed subspace of HN . The Hilbert

space HN,d(�) is invariant under the action of Heis(R).
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Concluding Remarks

• There are many more details relating to the spectral
decomposition of L2(Heis(Z)\Heis(R)) away from H0.

(1) In the Heisenberg group interpretation, the special case
N = 1 corresponds to results with Winnie Li on the Lerch zeta
function.

(2) The “Laplacian” spectrum is pure continuous on all HN ,
N 6= 0. (But on H0 it is discrete.)

(3) All Dirichlet characters occur, primitive and imprimitive, in
infinitely many levels N . (All characters of GL(1,Q) occur.)
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Thank you for your attention!
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