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1. History and Problem Formulation

• Solving Diophantine equations is a long-standing goal of

number theorists.

• Focus on possible special role of Diophantine equations from

genus zero plane curves.
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Diophantus of Alexandria-1

• Diophantus of Alexandria is believed to have lived circa AD

250.

(Error bounds: he lived between BC 150 and AD 350).

• He wrote a collection of thirteen books called together:

Arithmetica. Six books known in Greek, include books I, II, III.

Four more books in Arabic rediscovered in 1970’s, these are

books IV, V, VI, VII. Remaining three Greek books fall

somewhere among books VIII-XIII.
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Diophantus of Alexandria-2

• The Arithmetica consisted of a collection of problems to be

solved in rational numbers. These equations reduce to

polynomial equations in several indeterminates. These now

include over 300 problems.

• Such equations–to solve in rational numbers or integers– are

now called Diophantine equations.
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Diophantus of Alexandria-3

• From Book IV: “To divide a given number into two numbers
such that their product is a cube minus its side.”

• Call all the given number a. Diophantus considers the case
a = 6. The problem is then to find (x, y) such that

y(a− y) = x3 − x.

Diophantus’s solution: Set x = ky − 1, which gives

6y − y2 = k3y3 − 3k2y2 + 2ky

Take k = 3 to kill the coefficient of y, obtain: 27y3 − 26y2 = 0.
The three roots are y = 0,0, 2627. We get the rational solution
(x, y) = (179 , 2627). Thus Diophantus divides a = 6 into 17

9 + 37
9 .

• This problem involves an elliptic curve. At least one example
of a hyperelliptic curve occurs (Probem VI.17).
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Diophantus of Alexandria-4

• Diophantus Problem III.19. Find four numbers, such that the
sum of the squares of all four, plus or minus any one of the
numbers, is a square.”

• This requires eight conditions to be satisfied:

(x1+x2+x3+x4)
2+(−1)kx2i = (y4k+i)

2, k = 1,2; i = 1,2,3,4.

• Diophantus’s solution:

(x1, x2, x3, x4) = (
17136600

163021824
,
12675000

163021824
,
15615600

163021824
,

8517600

163021824
)

• Diophantus uses integer Pythagorean triples and may well
have known the group law on the genus zero projective curve
x2 + y2 = z2.
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Diophantus of Alexandria-5

• Diophantus Problem II.8. Partition a given square into two

squares.

• Famous marginal note of Fermat in Bachet’s Diophantus

(1621) “Cubum autem in duos cubos, aut quadratoquadratem

in duos quadratoquadratos & generaliter nullam in infinitam

ultra quadratum potestatem in duos eiusdem nominis fas est

diuidere cuius rei demonstrationem mirabelem sane detexi.

Hanc marignis exiguitas non caperet.”

• An earlier reader’s (13-th Century) marginal note on the same

problem: “cursed be Diophantus for the difficulty of this text.”
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Diophantine Problems

• Instance: A finite system of Diophantine equations S

Fi(x1, .., xn) = 0, Fi ∈ Z[x1, x2, ..., xn].

• Question 1. Does S have infinitely many (nonzero) integer

solutions?

• Question 2. Does S have a nonnegative integer solution?

• Question 3. Does S have an integer solution in a specified

box?
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Diophantine Problems: Integer Solutions

• Example. Is there a solution to x3 + y3 + z3 = 29?

Answer. Yes. (x, y, z) = (3,1,1).

• Example. Is there a solution to x3 + y3 + z3 = 30?

Answer. Yes.
(x, y, z) = (−283059965,−2218888517, 2220422932).
(Discovered 1999 by E. Pine, K. Yarbrough, W. Tarrant, M.
Beck, approach suggested by N. Elkies.)

• Example. Is there a solution to x3 + y3 + z3 = 33?

Answer. Unknown
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Diophantine Problems: Rational Solutions

• One can ask exactly the same questions for solutions in
rational numbers.

• Example x2 + y2 = 1 has infinitely many rational solutions.

• Example x2 + y2 = 3 has no rational solutions.

• Homogenize: x2 + y2 = z2 has infinitely many nonzero
integer solutions.

• Homogenize: x2 + y2 = 3z2 has no nonzero integer
solutions.
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Thesis

• Solving Diophantine equations is an important, long-standing

goal of number theorists.

• Solving Diophantine equations motivated important problems

in computability theory. (see below)

• David Hilbert’s dictum: “We must know. We will know.”

• Thesis: The P-NP problem does not seem to fit very well

with Diophantine equations. How come?
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2. Hilbert’s 10-th Problem (1900)

• 10. DETERMINATION OF THE SOLVABILITY OF A

DIOPHANTINE EQUATION

• Given a Diophantine equation with any number of unknown

quantities and with rational integral numerical coefficients:

to devise a process according to which it can be determined

by a finite number of operations whether the equation is

solvable in rational integers.
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Hilbert’s 10-th Problem-2

• A k-ary set D = {(m1,m2, ..,mk) : mi ≥ 0} ⊂ Nk is

Diophantine if there is a system S of Diophantine equations

fj(x1, ..., xk, y1, ..., yl) = 0, 1 ≤ j ≤ l

such that (m1, ..,mk) ∈ D if and only if there exists some

(y1, ..., yl) ∈ Nl for which the equations have a solution.

• Note: Only consider non-negative integer solutions.

• Note: Definition ignores the structure of all other integer

solutions to S (which may be complicated).
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Hilbert’s 10-th Problem-3

• Reduction. Can reduce to case of one Diophantine

equation.

Add sum of squares of equations.

• Reduction. Can reduce integer solution case to nonnegative

integer solution case. (zi = xi − xi+1).
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Hilbert’s 10-th Problem-4

• Theorem(M. Davis (1949)) Any recursively enumerable set

S of the natural numbers N has the form

S = {m : ∃y ∀k≤y ∃ y1, y2, ..., yl | p(a, k, y1, ..., yl) = 0.}

for some polynomial

p(x1, x2, y, y1, y2, ..., yl) ∈ Z[x1, x2, y, y1, y2, ..., yl].

• Uses Gödel encoding with the Chinese Remainder Theorem.

It has a single bounded universal quantifier.
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Hilbert’s 10-th Problem-5

• An exponential Diophantine equation is one that allows

terms that are of form c
∏
i x

di
i

∏
j(nj)

xj in its variables xi, in

which c, di, nj are all nonnegative integers.

• A k-ary set D = {(m1,m2, ..,mm) : mi ≥ 0} ⊂ Nm is

exponential Diophantine if there is a system of exponential

Diophantine equations

gj(x1, ..., xk, y1, ..., yl) = 0, 1 ≤ j ≤ l

such that (x1, .., xm) ∈ D if and only if there exists some

(y1, ..., yn) ∈ Nl for which the equations have a solution.
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Hilbert’s 10-th Problem-6

• Theorem(Davis, Putnam, J. Robinson) Hilbert’s 10-th

problem is undecidable for exponential Diophantine sets.

• Julia Robinson reduction(1950) : if there exists a

Diophantine set D such that (m,n) ∈ D implies n < mm,

and for every k > 1 there exists (m,n) ∈ D with n > mk,

then every recursively enumerable set is Diophantine.

• Her proof uses the Pell equation x21 −Dx22 = n.
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Hilbert’s 10-th Problem-7

• Theorem(Matiyasevich (1970))

(1) Every recursively enumerable set D of nonnegative

integers is Diophantine.

(2) Therefore, Hilbert’s 10-th problem is undecidable.

• Method. Matiyasevich showed one can encode the

exponentially growing sequence (n, F2n), where Fn = the

n-th Fibonacci number, as solutions to a Diophantine

equation (having additional variables).
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Hilbert’s 10-th Problem-Developments

• Hilbert’s 10-problem is known to be solvable over local fields:

C, R, Qp, finite fields Fp.

• Hilbert’s 10-th problem over the rationals Q is unsolved!

• Even this (important) special case of Hilbert’s 10th problem

over Q is unsolved:

Problem. Determine whether an elliptic curve y2 = x3 − Ax−B
defined over Q has a rational point.

• Observation: Note the use of Pell type equations in

encodings the undecidability proof, both by Julia Robinson and

by Matiyasevich.
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3. Diophantine Properties of Curves

• The “geometry” of the curve affects its integer and rational

solutions.

• Principle of Diophantine Geometry: The complex geometry

of a curve defined over an algebraic number field K restricts

the structure of algebraic points on a curve.

(Actually, all local fields contribute: real and p-adic points

influence arithmetic.)
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Diophantine Geometry of Curves-1

• Parameter 1. The (topological) genus of a curve C.

• Note: We will allow curves with singular points; they are then

not normal. The genus of such a curve is the genus of a

normalization.

(This is well defined, via Riemann, viewing curve as a Riemann

surface. Also Hurwitz, Clebsch, Max Noether...

• Genus is a birational invariant of the curve.
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Diophantine Geometry of Curves-2

• “Diophantus’s Theorem”: If a curve over Q has genus
g = 0 the number of rational points on it can be very large:
it can be infinite and infinitely generated as a group.

(*) Furthermore there will always exist a number field K
where this holds.

• Mordell’s Theorem (1922)) If a curve over Q has genus
g = 1, then over an algebraic number field K the set of
K-points can be infinite, but is always finitely-generated.

• Mordell’s Conjecture = Falting’s Theorem (1983) If a curve
over Q has genus g ≥ 2, then over an algebraic number field
K, the set of K-points on it is always finite.
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Curves of Genus g ≥ 2

• Finding All Solutions. There is no known effectively

computable procedure for locating the finite number of rational

solutions to a curve of genus g ≥ 2 defined over Q.

• Finding One Solution. Moreover, there is no known bound on

the “height” of such a point, in terms of height information on

the original curve (viewed inside a family of such curves.)

• As far as we know, there could be occasional gigantic

“sporadic” solutions to such an equation.”
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Mordell’s Conjecture (regarding Mordell
(1922))

• “I was very unfortunate with this paper. It was rejected by

the London Mathematical Society; I really don’t know why.

Perhaps they did not approve of my style...”

• L. J. Mordell, Reminiscences of an octogenarian

mathematician, Amer. Math. Monthly 78 (1971), 952–961.
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Low Genus Curves

• Leave genus g = 1 curves for other speaker(s).

• Fact. (Rational Points) Every genus 0 curve defined over Q

has infinitely many K-rational points on it, for some algebraic

number field K.
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Plane Curves-1

• A plane curve is a curve in the affine plane cut out by a single
polynomial equation F(x, y) = 0 with F(x, y) ∈ C[x, y].

• An irreducible curve is one for which F(x, y) is irreducible over
C[x, y].

• Parameter 2. Another invariant is the (total) degree of
F(x, y).

(It is a projective invariant, not a birational invariant.)

• There are formulas for computing the genus of a plane curve
in terms of its degree n and multiplicities of its singular points.

g =
(n− 1)(n− 2)

2
−

∑

i

ri(ri − 1)

2
+ (correction).
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Plane Curves-2

• The property of a curve being a plane curve puts further

restrictions on its Diophantine geometry.

• Theorem. (Integer Points) (Runge 1887) Any genus 0 plane

curve, that has at least three distinct branches at ∞, has only

finitely many integer solutions.

• In addition, there is an algorithm to effectively can determine

the integer solutions. See Hilliker and Straus, TAMS 280

(1983), 637–657.
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Smale’s 5-th Problem

• Smale’s list of “Mathematical Problems for the Next

Century” ( Mathematics: Frontiers and Perspectives, AMS:

Providence, RI 2000; Also: Wikipedia)

• Smale’s 5th Problem: Height bounds for Diophantine curves

Can one decide if a diophantine equation f(x, y) = 0 (input

f ∈ Z[u, v] has an integer solution (x, y) in time 2s
c
, where c is a

universal constant? That is, can the problem be decided in

exponential time?

Here s(f) is the size of f , which is (roughly) the degree plus

sum of the logarithms of the coefficients of f .
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Smale’s 5-th Problem-2

• Smale also asks if curves of genus one or above have a

solution of polynomially bounded height.

• Genus 0 is excluded for reasons to be described below.

• Cucker, Koiran, Smale (1999) show solving one-variable

Diophantine equations is in P with sparse representation input

(in Turing model of computation.)

(Ref. J. Symbolic Computation 27 (1999), 21–29.)
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4. Complexity of Binary Quadratic
Diophantine Equations (BQDE)

• Binary Quadratic Diophantine Equations are

AX2 +BXY + CY 2 +DX + EY + F = 0

• They cut out a genus zero curve.

• These curves may have infinitely many integer points
(Runge’s theorem does not apply.)

• One may reduce to the case of separated variables
G(X) = H(Y ) by “completing the square” (and treating
several cases instead of one case.)
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Binary Quadratic Diophantine Equation
Problem

• Problem: Binary Quadratic Diophantine Equation(BQDE)

• Instance: (A,B,C,D,E, F ) ∈ Z6 specifying a binary

quadratic Diophantine equation.

• Question: Does the BQDE have a nonnegative integer

solution (x, y) ∈ N× N?
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Factoring and BQDE

• Example (X +2)(Y +2) = N .

Answering this solution requires testing if N is composite, a
problem which is in complexity class P.

• Example (X + k)(Y + k) = N

Testing for nonnegative integer solutions requires
recognizing N having factorization with all factors ≥ k.

If BQDE were in complexity class P , for composite N could
solve a succession of problems of this kind, varying k by
“bisection”, to locate the smallest factor of N in polynomial
time. Thus factoring would be in complexity class P .
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BQDE Solvability

• Solvability. After earlier work of Euler and Legendre, a

complete theory developed by Gauss (1801), giving an

effective method of finding all integer solutions. Gauss

treated the case B = 2B′ is even, but this restriction is

removable.
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BQDE-Exponential Complexity Bound

• Complexity analysis of Gauss’s algorithms (Lagarias, J.

Algorithms 1980) can be used to show:

• Theorem. If a BQDE has an integer solution, then it can be

found in exponential time.

• This gives positive answer to Smale’s Problem 5 in this

restricted case.
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Discriminant-1

• The discriminant

∆ = B2 − 4AC

determines the behavior of the BQDE.

• Three cases, values of ∆ determine the geometry of the

BQDE:

∆ < 0,

∆ > 0, not a square,

∆ = n2.
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Discriminant-2

• Case 1. (Nonsplit -Definite Torus Gm)

∆ < 0,

The real curve is an ellipse.

• Case 2. (Nonsplit-Indefinite Torus Gm)

∆ > 0,

with ∆ not a perfect square. The real curve is a hyperbola,
with irrational slope asymptotes

• Case 3. (Split Torus Gm)

∆ = m2

The real curve is hyperbola with rational slope asymptotes
(m ̸= 0) or two straight lines (m = 0).
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BQDE is in NP

• Main Theorem (L-1979++) The problem BQDE is in the
complexity class NP.

• Strengthened Result The problem is still in NP if one
imposes additional congruence side conditions:

(x, y) ≡ (a, b) (mod N),

with (a, b,N) given as extra input data.

Extended Abstract in 1979 FOCS outlining proof.

• References: L, 1979 FOCS; L., Succinct certificates for
solutions to BQDE’s, arXiv:math/0611209
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BQDE Difficulty-1

• Major Difficulty. The minimal integer solution (x0, y0) of a

BQDE may be too large to write down in PSPACE, in the

standard binary encoding!

• Example. (negative Pell equation)

x2 −Dy2 = −1.

• Solvability of this problem has long complicated history: see

E. Fouvry and J. Klüners, “On the negative Pell equation,”

Annals of Math. 172 (2010), 2035–2104.

39



BQDE Difficulty-2

• Example 1. One can show that

X2 −DY 2 = −1

with D = 52k+1 has minimal nonnegative solution

x0 + y0
√
5 = (2+

√
5)5

k

• It follows that

log x0 >> 5k >>
√
D.

Since input size is logD = log5k ≈ 2k, this number requires
exponential space to write down in binary.

• Reference: L., Trans. Amer. Math. Soc. 260 (1980),
485–508.

40



BQDE Difficulty-3

• Example 2. (Other large solutions) The Cohen-Lenstra

heuristics for real quadratic fields predict that over 75

percent of real quadratic fields with prime discriminant

D = p ≡ 1 (mod 4), have class number h(D) = 1.

The Brauer-Siegel theorem says h(D) log ϵD = D1/2+o(1)

which implies that their fundamental unit ϵD = x0 + y0
√
D

is large:

log ϵD ≥ D1/2−ϵ

These units always have norm −1, and give the minimal

solution to the negative Pell equation above.
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BQDE Difficulty-4

• Major Difficulty Resolved. We express solution with a
succinct certificate. This encodes (x0, y0) by a process of
repeated exponentiation and twisting. In effect, it is
representable by a short straight line program.

• Basic idea comes from the infrastructure of Dan Shanks.

• Infrastructure treated by L. (1981), Hendrik Lenstra, Jr.
(1982), Buchmann-Williams (1988).

• Modern form of inftrastructure: Arakelov class group, see
Schoof (2008).

42



Straight Line Programs

• Straight Line Program. Start with x0 = 0, x1 = 1, and then

the m-th line of the program computes xm = xk ∗ xl with

1 ≤ k, l < n and the operation ∗ at each line can be addition,

subtraction or multiplication (+,−,×). The length of a

program is the number of lines.

• Example. One can encode repeated squaring by a

straight-line program. Take x2 = 1+ 1 = 2 and, for n ≥ 3 take

xk = xk−1 × xk−1.

This straight line program for n steps (n ≥ 3) computes

xn = 22
n−2

.
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BQDE Difficulty-5

• Toy Analogue: Repeated Exponentiation. Consider
computing the Fibonacci number F2n (which is
doubly-exponentially large in n).

Use for Fibonacci and Lucas numbers Fm,Lm that:

(
1 +

√
5)

2
)m =

Lm + Fm
√
5

2
.

This gives quadratic identities to compute (F2m,L2m) from
(Fm,Lm), namely

L2m =
1

2
((Lm)2 + 5(Fm)2)

F2m = FmLm.

These can be implemented by a straight line program.
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BQDE Difficulty-6

• Actual Method for Straight Line Program. More complicated

• Use composition of binary quadratic forms for the “doubling

step”, and continued fraction reductions for the “twisting

substep.”

• Second Difficulty Testing if a solution given by straight line

program is nonnegative. Not legal to multiply out the straight

line program.
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BQDE Difficulty-7

• Second Difficulty Resolved. Can determine nonnegativity of

the solution using calcuations directly involving the succinct

certificate for (x0, y0).

• Idea: Either we can compute the solution using a floating

point calculation and get enough accuracy. Must rule out

floating point underflow.

Show: The floating point calculation can fail only the

solution (x0, y0) is sufficiently small that it can be written

down and directly checked in polynomial time.
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5. Complexity Problems

• What can we learn from the BQDE example? What are open

problems?

• Open Problem 1.Is BQDE in complexity class P?

• This does not seem likely to be settled soon since it would

require FACTORING to be in P .
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Is BQDE an NP-complete problem?

• Open Problem 2.Is the problem BQDE NP -complete?

• There is no evidence for this problem being NP-complete.

• This problem might be a candidate for a problem of

intermediate complexity inside NP , neither in P nor

NP -complete.

• It shows the (possible) mismatch of “natural” Diophantine

problems with the P versus NP question.
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BQDE in the Blum-Shub-Smale (BSS)
model

• Open Problem 3. In the BSS-model, is the problem BQDE in

NPK for some field K?

• One might choose K = R. Perhaps one wants to consider a

number field like k = Q instead.

• This problem might be easy to resolve, since the current

solution involves a straight line program.

• This may provide indirect motivation for studying BSS model

for number fields.
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BQDE in the Blum-Shub-Smale (BSS)
model-2

• Open Problem 4. In the BSS-model, is the problem BQDE a

complete problem in a natural BSS-complexity class, e.g. NPR?
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Straight Line Program Questions

• Do integers generated by short straight-line programs have

restrictions on their additive arithmetic structure (solving

Diophantine equations), or on their multiplicative arithmetic

structure (factorization properties)?
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Shub-Smale Conjecture and Valiant
Conjecture

• Conjecture. (Shub and Smale, Duke Math. J. (1994)) There

is no short straight-line program that computes a sequence of

numbers f(n) = ann!, of length << (logn)c, for any fixed c ≥ 1.

• Proposition. Shub-Smale (1994) The truth of the Conjecture

above implies that the BSS complexity class PC ̸= NPC.

• Theorem (Bürgisser) If the Valiant Conjecture is false, then

the Pochhammer polynomial pn(X) =
∏n
i=j(X − j) can be

computed by a straight line program of length (logn)c.

Therefore f(n) = n! can be computed by a straight line

program of polylog length.
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BQDE Straight Line Programs-Questions

• The results on BQDE indicate that certain

doubly-exponentially large integer solutions of a BQDE can be

computed by straight-line programs of polynomial length in the

input size.

• Question. Is there a possible converse, whether such numbers

necessarily must satisfy some unusually simple Diophantine

equation?

• This seems unlikely. But if one believes the Tau Conjecture,

such integers must avoid “well-structured” numbers containing

all small primes as factors.
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BQDE Straight Line Programs-Questions-2

• Some number-theory questions suggested by analogy:

• Question. Is there a possible converse, whether numbers

computed by short straight line programs necessarily must

satisfy some unusually simple Diophantine equation?

• Question. Another purely number-theoretic direction is

whether Diophantine equations can have solutions all having

unusually small prime factors.
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Smooth Solutions to A+B = C

• Consider the linear Diophantine equation A+B = C. Define
the height of a solution as

H(A,B,C) := max(|A|, |B|, |C|).

• One can measure the smoothness of a solution (A,B,C) by
the maximal size of a prime dividing ABC. How small can this
be made? Define the smoothness

S(A,B,C) := max{p : p divides ABC}.

• Theorem (L-Soundararajan (2011)) There are only finitely
many solutions A+B = C having

S ≤ (3− ϵ) log logH
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Smooth Solutions to A+B = C (cont.)

• XYZ Conjecture There is a positive constant c such that the
equation A+B = C has infinitely many relatively prime integer
solutions with

S(A,B,C) ≤ (logH)c.

• Theorem. (L-Soundararajan (2011)) Under the Generalized
Riemann Hypothesis (GRH), this conjecture is true for any
c > 8.

• Theorem. (L- Soundararajan (2011)) Assuming the
ABC-conjecture, one cannot take c < 1.

• A heuristic argument suggests that the optimal exponent is
c = 3

2.
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Thank You!
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