Dilated Floor Functions and Their Commutators

Jeff Lagarias, University of Michigan Ann Arbor, MI, USA

(December 15, 2016)

Einstein Workshop on Lattice Polytopes 2016

- Einstein Workshop on Lattice Polytopes
- Thursday Dec. 15, 2016
- FU, Berlin
- Berlin, GERMANY

Topics Covered

- Part I. Dilated floor functions
- Part II. Dilated floor functions that commute
- Part III. Dilated floor functions with positive commutators
- Part IV. Concluding remarks

• Takumi Murayama, Jeffrey C. Lagarias and D. Harry Richman, Dilated Floor Functions that Commute, American Math. Monthly 163 (2016), No. 10, to appear. (arXiv:1611.05513, v1)

• J. C. Lagarias and D. Harry Richman, Dilated Floor Functions with Nonnegative Commutators, preprint.

• J. C. Lagarias and D. Harry Richman,

Dilated Floor Functions with Nonnegative Commutators II: Third Quadrant Case, in preparation.

• Work of J. C. Lagarias is partially supported by NSF grant DMS-1401224.

Part 1. Dilated Floor Functions

- We start with the floor function $\lfloor x \rfloor$.
- The *floor function* discretizes the real line, rounding a real number x down to the nearest integer:

 $x = \lfloor x \rfloor + \{x\}$

where $\{x\}$ is the fractional part function, i.e. x (modulo one).

• The *ceiling function* which rounds up to the nearest integer is conjugate to the floor function:

 $\lceil x \rceil = -\lfloor -x \rfloor \qquad [= R \circ \lfloor \cdot \rfloor \circ R(x)]$

using the conjugacy function R(x) = -x.

Dilated Floor Functions-1

• The dilations for $\alpha \in \mathbb{R}^*$ act on the real line as

 $D_{\alpha}(x) = \alpha x,$

They act under composition as the multiplicative group $GL(1,\mathbb{R}) = \mathbb{R}^*$.

• A dilated floor function with real dilation factor α is defined by

$$f_{\alpha}(x) := \lfloor \alpha x \rfloor \qquad [= \lfloor \cdot \rfloor \circ D_{\alpha}(x)]$$

• We allow negative α , so we are able to build ceiling functions.

Dilated Floor Functions-2

- Dilated floor functions encode information on the Riemann zeta function.
- Its Mellin transform is given when $\alpha > 0$, for Re(s) > 1, by

$$\int_0^\infty \lfloor \alpha x \rfloor x^{-s-1} dx = \alpha^s \frac{\zeta(s)}{s}$$

Also for 0 < Re(s) < 1,

$$\int_0^\infty \{\alpha x\} x^{-s-1} dx = -\alpha^s \frac{\zeta(s)}{s}$$

These two integrals are related via a (renormalized) integral which converges nowhere: $\int_0^\infty \alpha x \cdot x^{s-1} dx := 0$.

• Dilations are compatible with the Mellin transform. The Mellin transform preserves the GL(1) scaling since $\frac{dx}{x}$ is unchanged by dilations.

Dilated Floor Functions -3

- Dilated floor functions can be used in describing data about lattice points in lattice polytopes, in the recently introduced notion of intermediate Ehrhart quasi-polynomials of the polytope. (Work of Baldoni, Berline, Köppe and Vergne, Mathematika 59 (2013), 1–22, and sequel with de Loera, Mathematika 62 (2016), 653–684).
- Their definition 23: For integer $q \ge 1$, let $\lfloor n \rfloor_q := q \lfloor \frac{1}{q}n \rfloor$ and let $\{n\}_q := n \pmod{q}$ (least nonnegative residue), so that

$$n = \lfloor n \rfloor_q + \{n\}_q.$$

• Their Table 2 gives examples of representing intermediate Ehrhart quasipolynomials in terms of such functions, in which the dilated functions $(\{4t\}_1)^2$ and $\{-5t\}_2$ appear.

Dilated Floor Functions -4

• Dilated functions without the discretization: *linear functions*

$$\ell_{\alpha}(x) = \alpha x.$$

 Fact. Linear functions commute under composition, and satisfy for all α, β ∈ ℝ,

$$\ell_{\alpha} \circ \ell_{\beta}(x) = \ell_{\beta} \circ \ell_{\alpha}(x) = \ell_{\alpha\beta}(x).$$

for all $x \in \mathbb{R}$.

• General Question. Discretization destroys the convexity of linear functions. It generally destroys commutativity under composition. What properties remain?

Part II. Dilated Floor Functions that Commute

- **Question:** When do dilated floor functions commute under composition of functions?
- The question turns out to have an interesting answer.

Main Theorem

• **Theorem.** (L-M-R (2016)) (Commuting Dilated Floor Functions) The set of (α, β) for which the dilated floor functions commute

 $\lfloor \alpha \lfloor \beta x \rfloor \rfloor = \lfloor \beta \lfloor \alpha x \rfloor \rfloor \quad \text{for all} \quad x \in \mathbb{R},$

consists of:

(i) Three one-parameter continuous families: $\alpha = 0$ or $\beta = 0$, or $\alpha = \beta$. (ii) A two-parameter discrete family: $\alpha = \frac{1}{m}$ and $\beta = \frac{1}{n}$ for all integers $m, n \ge 1$.

Remark. In case (ii), setting $T_m(x) := \lfloor \frac{1}{m}x \rfloor$ we have

 $\mathbf{T}_m \circ \mathbf{T}_n(x) = \mathbf{T}_n \circ \mathbf{T}_m(x) = \mathbf{T}_{mn}(x)$ for all $x \in \mathbb{R}$.

for all $m, n \ge 1$. (These are same relations as for linear functions.)

The Discrete Commuting Family

• Claim: Suppose $m, n \ge 1$ are integers. Then $\lfloor \frac{1}{m} \lfloor \frac{1}{n} x \rfloor \rfloor = \lfloor \frac{1}{mn} x \rfloor$.

• Exchanging m and n, the claim implies $\lfloor \frac{1}{m} \lfloor \frac{1}{n} x \rfloor \rfloor = \lfloor \frac{1}{n} \lfloor \frac{1}{m} x \rfloor \rfloor$, which gives the commuting family.

• To prove the claim: The functions are step functions and agree at x = 0. We study where and how much the functions jump. The right side $\lfloor \frac{1}{mn}x \rfloor$ jumps exactly at x an integer multiple of mn, and the jump is of size 1.

• For the left side $\lfloor \frac{1}{m} \lfloor \frac{1}{n} x \rfloor \rfloor$, the inner function $\lfloor \frac{1}{n} x \rfloor$ is always an integer, and it jumps by 1 at integer multiples of n. Now the outer function jumps exactly when the k-th integer multiple of n (of the inner function) has k divisible by m. So it jumps exactly at multiples of mn and the jump is of size 1. QED.

Proof Method: Analyze Upper Level Sets

• **Definition.** The upper level set $S_f(y)$ of a function $f : \mathbb{R} \to \mathbb{R}$ is

$$S_f(y) := \{x : f(x) \ge y\}.$$

• It is a closed set for the floor function (but not for the ceiling function).

Example. For the composition of dilated floor functions $f_{\alpha} \circ f_{\beta}(x) = \lfloor \alpha \lfloor \beta x \rfloor \rfloor$ we use notation: $S_{\alpha,\beta}(y) := \{x : \lfloor \alpha \lfloor \beta x \rfloor \rfloor \ge y\}.$

• Key Lemma. For $\alpha > 0, \beta > 0$ and n an integer, the upper level set at level y = n is the closed set

$$S_{\alpha,\beta}(n) = \left[\frac{1}{\beta} \left\lceil \frac{1}{\alpha} n \right\rceil, +\infty\right).$$

12

Upper Level Sets-2

x

Key Equivalence: For *y* equal to an *integer n* the upper level set is

$$\begin{array}{ll} \in S_{\alpha,\beta}(n) & \Leftrightarrow & \lfloor \alpha \lfloor \beta(x) \rfloor \rfloor \geq n & (\text{the definition}) \\ & \Leftrightarrow & \alpha \lfloor \beta x \rfloor \geq n & (\text{the right side is in } \mathbb{Z}) \\ & \Leftrightarrow & \lfloor \beta x \rfloor \geq \frac{1}{\alpha}n & (\text{ since } \alpha > 0) \\ & \Leftrightarrow & \lfloor \beta x \rfloor \geq \lceil \frac{1}{\alpha}n \rceil & (\text{the left side is in } \mathbb{Z}) \\ & \Leftrightarrow & \beta x \geq \lceil \frac{1}{\alpha}n \rceil & (\text{the right side is in } \mathbb{Z}) \\ & \Leftrightarrow & x \geq \frac{1}{\beta} \lceil \frac{1}{\alpha}n \rceil & (\text{ since } \beta > 0). \end{array}$$

Proof Ideas-1

- First quadrant case $\alpha > 0, \beta > 0$. Now change variables to $1/\alpha, 1/\beta$.
- Using **Key Lemma**, for commutativity to hold for (new variables) $\alpha, \beta > 0$ we need the ceiling function identities:

 $\beta \lceil n\alpha \rceil = \alpha \lceil n\beta \rceil$ holds for all integer n.

For $n \neq 0$ rewrite this as:

$$\frac{\alpha}{\beta} = \frac{\lceil n\alpha \rceil}{\lceil n\beta \rceil}.$$

If α, β integers this relation clearly holds for all nonzero n, the floor functions have no effect.

• We have to check that if $\alpha \neq \beta$ and if they are not both integers, then commutativity fails. All we have to do is pick a good *n* to create a problem, if one is not integer. (Not too hard.)

Proof Ideas-2

• There is a **Key Lemma** for upper level sets of each of the other three sign patterns of α and β . (Other three quadrants). Sometimes the upper level set obtained is an open set, the finite endpoint is omitted.

• **Remark.** The discrete commuting family was used by J.-P. Cardinal (Lin. Alg. Appl. 2010) to relate the Riemann hypothesis to some interesting algebras of matrices with rational entries.

Part III. Dilated Floor Functions with Nonnegative Commutator

• The commutator function of two functions f(x), g(x) is the difference of compositions

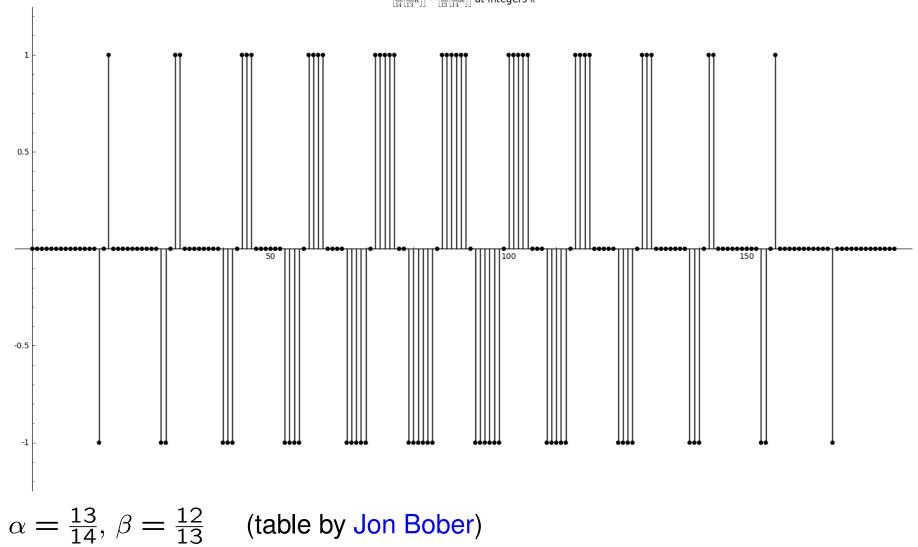
$$[f,g](x) := f(g(x)) - g(f(x)).$$

Question: Which dilated floor function pairs (α, β) have nonnegative commutator

$$[f_{\alpha}, f_{\beta}] = \lfloor \alpha \lfloor \beta x \rfloor \rfloor - \lfloor \beta \lfloor \alpha x \rfloor \rfloor \ge 0$$
⁽¹⁾

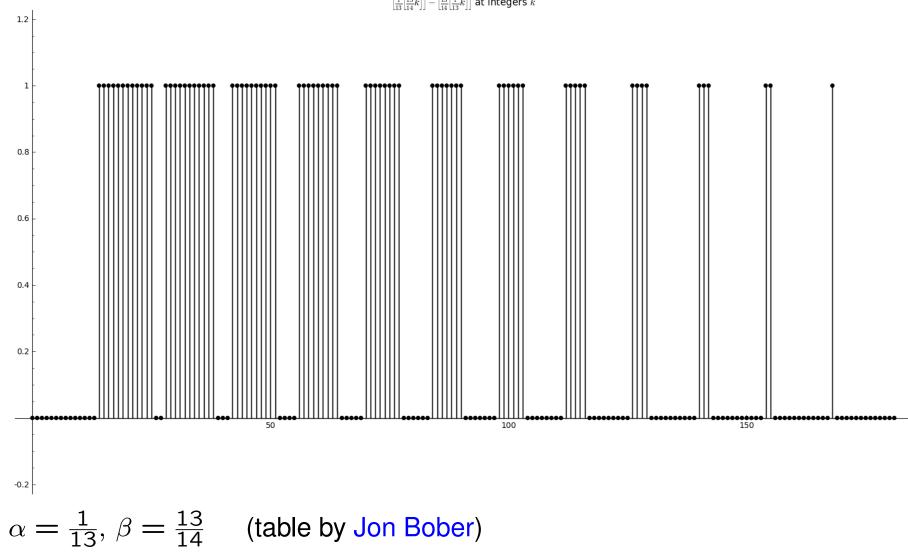
for all real x?

• We let S denote the set of all solutions (α, β) to (1).



 $\lfloor rac{13}{14} \lfloor rac{12}{13} k
floor
floor - \lfloor rac{12}{13} \lfloor rac{13}{14} k
floor
floor$ at integers k

17



 $\lfloor \frac{1}{13} \lfloor \frac{13}{14} k \rfloor \rfloor - \lfloor \frac{13}{14} \lfloor \frac{1}{13} k \rfloor \rfloor$ at integers k

Commutator Function-2

- Reasons to study dilated floor commutators:
 - 1. They measure deviation from commutativity, and are "quadratic" functions.
 - 2. Non-negative commutator parameters might shed light on commuting function parameters, which are the intersection of S with its reflection under the map $(\alpha, \beta) \mapsto (\beta, \alpha)$.
- For dilated floor functions the commutator function is a bounded function. It is an example of a *bounded generalized polynomial* in the sense of Bergelson and Leibman (Acta Math 2007). These arose in distribution modulo one, and in ergodic number theory.

Warmup: "Partial Commutator" Classification-1

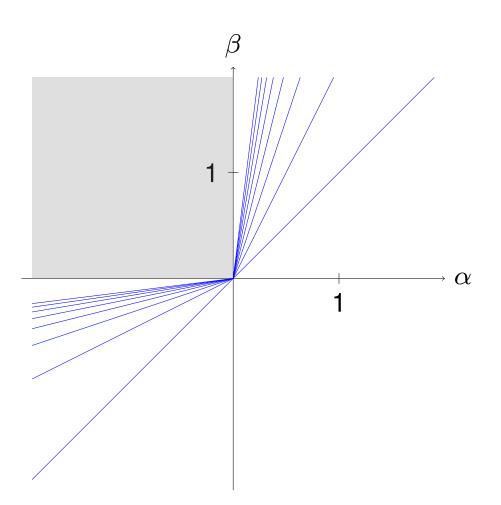
• **Theorem.** (Partial commutator inequality classification) The set S_0 of parameters $(\alpha, \beta) \in \mathbb{R}^2$ that satisfy the inequality

 $\alpha \lfloor \beta x \rfloor \geq \beta \lfloor \alpha x \rfloor \quad \text{for all } x \in \mathbb{R}$

are the two coordinate axes, all points in the open second quadrant, no points in the open fourth quadrant, and:

- (i) (First Quadrant) For each integer $m_1 \ge 1$ S_0 contains all points with $\alpha > 0$ that lie on the oblique line $\beta = m_1 \alpha$ of slope m_1 through the origin, i.e. $\{(\alpha, m_1 \alpha) : \alpha > 0\}$.
- (iii) (Third quadrant) For each integer $m_1 \ge 1$ S_0 contains all points with $\alpha < 0$ that lie on the **oblique line** $\alpha = m_1\beta$ of slope $\frac{1}{m_1}$ through the origin, i.e. $\{(\alpha, \frac{1}{m_1}\alpha) : \alpha < 0\}$.

"Partial Commutator" Set S_0



Features of "Partial Commutator" Set S_0

- The partial commutator solution set S_0 has various symmetries.
 - 1. The set S_0 is reflection-symmetric around the line $\alpha + \beta = 0$.
 - 2. The set S_0 is invariant under positive dilations: If $(\alpha, \beta) \in S_0$ then $(\lambda \alpha, \lambda \beta) \in S_0$ for each real $\lambda > 0$.
- Feature. The partial commutator solution set S_0 lies above or on the anti-diagonal line $\alpha = \beta$ except for parts of the two coordinate axes.
- In particular, the only solutions $(\alpha, \beta) \in S_0$ that commute are the three "trivial" continuous families: $\alpha = 0, \beta = 0$ and $\alpha = \beta$.

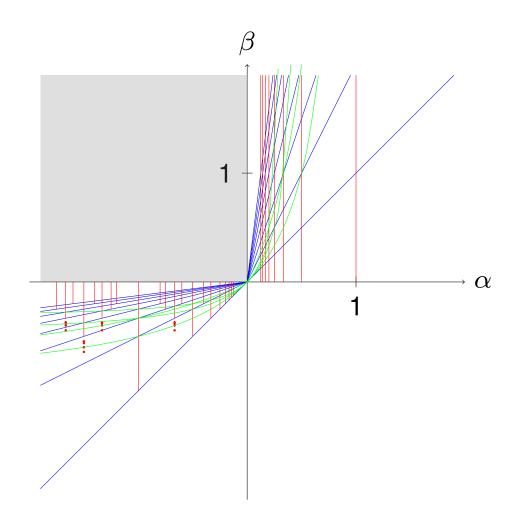
Main Result: Classification of Nonnegative Commutator Parameters

• The main result classifies the structure of the set S of (α, β) for which

 $\lfloor \alpha \lfloor \beta x \rfloor \rfloor - \lfloor \beta \lfloor \alpha x \rfloor \rfloor \ge 0 \quad \text{for all} \quad x \in \mathbb{R}.$

- The set *S* contains 2-dimensional, 1-dimensional and 0-dimensional components. These components are real semi-algebraic sets.
- The set S contains the set S_0 .
- The set S has some discrete internal symmetries and also some "broken" symmetries that hold for most components but not all.
- The existence of the discrete family of solutions to the commuting dilated floor functions requires "broken" symmetries.

Classification Theorem: The Set ${\cal S}$



Main Theorem-1: Second and Fourth Quadrant

Theorem. (Classification Theorem-1) (L & Harry Richman (2017+))

The set *S* of all parameters $(\alpha, \beta) \in \mathbb{R}^2$ that satisfy the inequality

 $\lfloor \alpha \lfloor \beta x \rfloor \rfloor - \lfloor \beta \lfloor \alpha x \rfloor \rfloor \ge 0 \quad \text{for all} \quad x \in \mathbb{R}$

consists of the coordinate axes $\{(\alpha, 0) : \alpha \in \mathbb{R}\}$ and $\{(0, \beta) : \beta \in \mathbb{R}\}$ together with

(*ii*) All points in the open second quadrant,

(iv) No points in the open fourth quadrant,

and the following points in the open first quadrant and third quadrant:

Main Theorem-2: First Quadrant

• **Theorem** (Classification Theorem-2)

(*i*) (First Quadrant Case) Here $\alpha > 0$ and $\beta > 0$. Points in *S* fall into three collections of one-parameter continuous families.

(i-a) For each integer $m_1 \ge 1$ all points with $\alpha > 0$ on the oblique line $\beta = m_1 \alpha$ of slope m_1 through the origin, i.e. $\{(\alpha, m_1 \alpha) : \alpha > 0\}$.

(*i-b*) For each integer $m_2 \ge 1$ all points with $\beta > 0$ on the vertical line $\alpha = \frac{1}{m_2}$ i.e. $\{(\frac{1}{m_2}, \beta) : \beta > 0\}.$

(i-c) For each pair of integers $m_1 \ge 1$ and $m_2 \ge 1$, all points with $\beta > 0$ on the rectangular hyperbola

$$m_1\alpha\beta + m_2\alpha - \beta = 0.$$

Main Theorem-3-Third Quadrant

• **Theorem** (Classification Theorem-3)

(*iii*) (Third Quadrant Case) Here $\alpha, \beta < 0$. All solutions have $|\alpha| \ge |\beta|$. They include three collections of one parameter continuous families.

(iii-a) For each integer $m_1 \ge 1$ all points with $\alpha < 0$ on the oblique line $\alpha = m_1\beta$ of slope $\frac{1}{m_1}$ through the origin, i.e. $\{(\alpha, \frac{1}{m_1}\alpha) : \alpha < 0\}$.

(iii-b) For each positive rational $\frac{m_1}{m_2}$ given in lowest terms, all points $\left(-\frac{m_1}{m_2}, -\beta\right)$ on the vertical line segment $0 < \beta \leq \frac{1}{m_2}$.

(iii-c) For each pair of integers $m_1 \ge 1$ and $m_2 \ge 1$, all points having $\alpha < 0$ on the rectangular hyperbola

$$m_1\alpha\beta + \alpha - m_2\beta = 0.$$

Main Theorem-4-Third Quadrant

• **Theorem** (Classification Theorem-4) In addition there are sporadic rational solutions in the third quadrant.

(iii-d) For each positive rational $\frac{m_1}{m_2}$ in lowest terms satisfying $m_1 \ge 2$, there are infinitely many **sporadic rational solutions** $\left(-\frac{m_1}{m_2}, -\beta\right)$. All such sporadic solutions have $\frac{1}{m_2} < -\beta < \frac{2}{m_2}$, and the only limit point of such solutions is $\left(-\frac{m_1}{m_2}, -\frac{1}{m_2}\right)$. There are no sporadic rational solutions having $m_1 = 1$.

• The set of all **sporadic rational solutions** having $m_2 = 1$ consists of all $(\alpha, \beta) = (-m_1, -\frac{m_1 r}{m_1 r - j})$, with integer parameters (m_1, j, r) having $1 \le j \le m_1 - 1$, with $m_1 \ge 2$ and with $r \ge 1$. These solutions comprise all sporadic solutions having $\beta < -1$.

Classification Theorem-Discussion-1

• Compared to the "partial commutator case" or the "commuting dilations case", the first and third quadrant solutions include new continuous families of solutions. These families are parts of **straight lines** and parts of **rectangular hyperbolas**.

• rectangular hyperbola means: its asymptotes are parallel to the coordinate axes.

• The rectangular hyperbolas are related to *Beatty sequences*. The non-existence of first quadrant sporadic rational solutions is related to *two-dimensional Diophantine Frobenius problem*.

Interlude: Beatty Sequences

• Given a positive real number u > 1, its associated **Beatty sequence** is

$$\mathcal{B}(u) := \{ \lfloor nu \rfloor : n \ge 1 \}.$$

It is a set of positive integers.

• "Beatty's Theorem." Two Beatty sequences $\mathcal{B}(u)$ and $\mathcal{B}(v)$ partition the positive integers, i.e.

$$\mathcal{B}(u) \cup \mathcal{B}(v) = \mathbb{N}^+, \quad \mathcal{B}(u) \cap \mathcal{B}(v) = \emptyset,$$

if and only if u and v lie on the rectangular hyperbola

$$\frac{1}{u} + \frac{1}{v} = 1$$

and u is irrational (whence v is also irrational.)

Classification Theorem-Discussion-2

• Scaling Symmetries. The set *S* is mapped into itself by some discrete families of linear maps, scaling symmetries, restricted to each quadrant. In the first quadrant, for integers $m, n \ge 1$:

$$(\alpha,\beta) \in S \quad \Rightarrow \quad (\frac{1}{n}\alpha,\frac{m}{n}\beta) \in S.$$

• **Birational Symmetries.** The set S is mapped into itself by certain birational maps, restricted to each quadrant. In the first quadrant,

$$(\alpha,\beta) \in S \quad \Leftrightarrow \quad (\frac{\alpha}{\beta},\frac{1}{\beta}) \in S.$$

• There are additional partially broken symmetries.

Partially Broken Symmetries

• Broken Symmetry I. The "Partial commutator" solutions have nothing below the anti-diagonal line $\alpha = \beta$ except the α -axis and β -axis. The Classification Theorem breaks this restriction in first quadrant case (i-b). It adds some vertical lines which extend into region $\alpha > \beta$. These extra solutions in *S* were necessary to get the two-parameter discrete family where dilated floor functions commute.

• Broken Symmetry II. There is a partial reflection symmetry around the diagonal line $\alpha + \beta = 0$. This was perfect for the "partial commutator" case which covers oblique line cases (i-a) matching (iii-a). It also has all the hyperbolas in case (i-c) matching hyperbolas in case (iii-c). However it is broken for straight lines in case (i-b) not matching (iii-b), and the sporadic rational solutions have no counterpart at all.

\boldsymbol{S} is a Closed Set

• Corollary of Classification Theorem. Let *S* denote the set of all solutions (α, β) to (1). Then *S* is a closed set in \mathbb{R}^2 .

• This fact is not obvious a priori because the functions $f_{\alpha}(x)$ are discontinuous in the *x*-variable. It was proved using the classification.

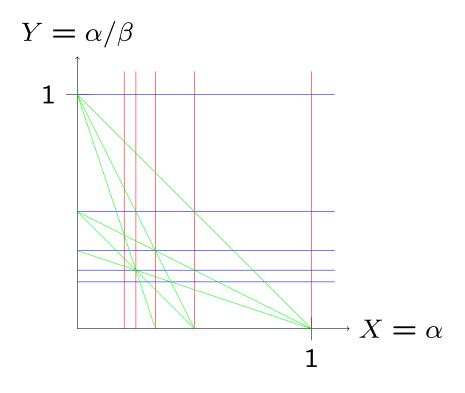
Proof Ideas-1

• Symmetries of *S* suggested birational changes of variables that simplify analysis. For example, using the change of variable $(X, Y) = (\alpha, \frac{\alpha}{\beta})$ makes all 1-dimensional solution curves linear. (See the next slide)

• Many equivalent conditions to (1) were found which helped analyze different parameter domains. (See two later slides)

• The connection with Beatty sequences (in a suitable coordinate system) allowed known machinery to analyze them to be used, going back to Thoralf Skolem (1957). Used topological dynamics of iterates of a point $\{k(\gamma, \delta) : k \ge 1\}$ on the unit square (modulo one), a torus.

X - Y Coordinates: First Quadrant Solutions



35

First Quadrant Equivalences-1

The following conditions on (α, β) in the first quadrant, are successively shown to be equivalent:

- (1) original inequality: $\lfloor \alpha \lfloor \beta x \rfloor \rfloor \ge \lfloor \beta \lfloor \alpha x \rfloor \rfloor$ for all $x \in \mathbb{R}$
- (2) upper level set inclusions: $S_{\alpha,\beta}(n) \supseteq S_{\beta,\alpha}(n)$ for all $n \in \mathbb{Z}$
- (3) rounding function inequalities $r_{\alpha}(n) \leq r_{\beta}(n)$ for all $n \in \mathbb{Z}$

(4) rescaled rounding function inequality $r_1(x) \leq r_v(x)$ for all $x \in u\mathbb{Z}$.

First Quadrant Equivalences-2

(5) disjoint residual set intersection conditions:

$$u\mathbb{Z} \cap R_v^{\pm} = \emptyset \quad \Leftrightarrow \quad R_u^{\pm} \cap R_v^{\pm} = \emptyset$$

(6) reduced Beatty sequence empty intersection condition.

(7) dual Beatty sequence empty intersection condition.

(8) All solutions with real vectors (X, Y) with 0 < X, Y < 1 satisfy some integer dependence of form $m_1X + m_2Y = 1$ with nonnegative integers m_1, m_2 . Solutions with $X \ge 1$ or $Y \ge 1$ are accounted for separately.

Part IV. Concluding Remarks

- Why care about this problem?
- This result found is structural about fundamental functions. The answer could not be guessed in advance.
- One-sided inequalities are potentially valuable in number theory estimates.

Thank you

Thank you for your attention!