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1. Exordium (Contents of Talk)-1

• The talk first discusses Apollonian circle packings. Then it
discusses integral Apollonian packings - those with all
circles of integer curvature.

• These integers are describable in terms of integer orbits of
a group A of 4⇥ 4 integer matrices of determinant ±1, the
Apollonian group, which is of infinite index in O(3,1,Z), an
arithmetic group acting on Lorentzian space. [Technically
A sits inside an integer group conjugate to O(3,1,Z).]
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Contents of Talk-2

• Much information on primality and factorization theory of
integers in such orbits can be read o↵ using a sieve method
recently developed by Bourgain, Gamburd and Sarnak.

• They observe: The spectral geometry of the Apollonian
group controls the number theory of such integers.

• One notable result: integer orbits contain infinitely many
almost prime vectors.
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Contents of Talk-3

• The talk next considers Fibonacci numbers and related
quantities. These can be obtained an orbit of an integer
subgroup F of 2⇥ 2 matrices of determinant ±1, the
Fibonacci group. This group is of infinite index in GL(2,Z),
an arithmetic group acting on the upper and lower half
planes.

• Factorization behavior of these integers is analyzable
heuristically. The behavior should be very di↵erent from the
case above. In contrast to the integer Apollonian packings,
there should be finitely many almost prime vectors in each
integer orbit! We formulate conjectures to quantify this,
and test them against data.
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2. Circle Packings

A circle packing is a configuration of mutually tangent circles in
the plane (Riemann sphere). Straight lines are allowed as
circles of infinite radius. There can be finitely many circles, or
countably many circles in the packing.

• Associated to each circle packing is a planar graph, whose
vertices are the centers of circles, with edges connecting
the centers of touching circles.

• The simplest such configuration consists of four mutually
touching circles, a Descartes configuration.

8



Descartes Configurations

Three mutually touching circles is a simpler configuration than
four mutually touching circles.

However...

any such arrangement “almost” determines a fourth circle.
More precisely, there are exactly two ways to add a fourth circle
touching the other three, yielding two possible Descartes
configurations.
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Descartes Circle Theorem

Theorem (Descartes 1643) Given four mutually touching circles
(tangent externally), their radii d, e, f, x satisfy

ddeeff + ddeexx+ ddffxx+ eeffxx =
+ 2deffxx + 2deeffx+2deefxx
+ 2ddeffx + 2ddefxx+2ddeefx.

Remark. Rename the circle radii ri, so the circles have
curvatures ci =

1
ri
. Then the Descartes relation can be rewritten

c21 + c22 + c23 + c24 =
1

2
(c1 + c2 + c3 + c4)

2.

“The square of the sum of the bends is twice the sum of the
squares” (Soddy 1936).
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Beyond Descartes: Curvature-Center
Coordinates

• Given a Descartes configuration D, with circle Ci of radius
ri and center (xi, yi), and with dual circle C̄i of radius r̄i,
obtained using the anti-holomorphic map z ! 1/z̄. The
curvatures of Ci and C̄i are ci = 1/ri and c̄i = 1/r̄i.

• Assign to D the following 4⇥ 4 matrix of (augmented)
curvature-center coordinates

MD =

2

6664

c1 c̄1 c1x1 c1y1
c2 c̄2 c2x2 c2y2
c3 c̄3 c3x3 c3y3
c3 c̄4 c4x4 c4y4

3

7775
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Curvature-Center Coordinates- 1

• The Lorentz group O(3,1,R) consists of the real automorphs
of the Lorentz form QL = �w2 + x2 + y2 + z2. That is
O(3,1,R) = {U : UTQLU = QL}, where

QL =

2

6664

�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3

7775 .

• Characterization of Curvature-center coordinates M : They
satisfy an intertwining relation

MTQDM = QW

where QD and QW are certain integer quadratic forms
equivalent to the Lorentz form. (Gives: moduli space!)
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Curvature-Center Coordinates-2

• Characterization implies: Curvature-center coordinates of
all ordered, oriented Descartes configurations are identified
(non-canonically) with the group of

Lorentz transformations O(3,1,R)!

Thus: “Descartes configurations parametrize the Lorentz
group.”

• The Lorentz group is a 6-dimensional real Lie group with
four connected components. It is closely related to the
Möbius group PSL(2,C) = SL(2,C)/{±I}. (But it allows
holomorphic and anti-holomorphic transformations.)
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Apollonian Packings-1

• An Apollonian Packing PD is an infinite configuration of
circles, formed by starting with an initial Descartes
configuration D, and then filling in circles recursively in
each triangular lune left uncovered by the circles.

• We initially add 4 new circles to the Descartes
configuration, then 12 new circles at the second stage, and
2 · 3n�1 circles at the n-th stage of the construction.

14



15



Apollonian Packings-2

• An Apollonian Packing is unique up to a Möbius
transformation of the Riemann sphere. There is exactly one
Apollonian packing in the sense of conformal geometry!
However, Apollonian packings are not unique in the sense of

Euclidean geometry: there are uncountably many di↵erent
Euclidean packings.

• Each Apollonian packing PD has a limit set of uncovered
points. This limit set is a fractal. It has Hausdor↵
dimension about 1.305686729 (according to physicists).
[Mathematicians know fewer digits.]
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Apollonian Packing Characterizations

• Geometric Characterization of Apollonian Packings An
Apollonian packing has a large group of Möbius
transformations preserving the packing. This group acts
transitively on Descartes configurations in the packing.

• Algebraic Characterization of Apollonian Packings The set
of Descartes configurations is identifiable with the real
Lorentz group. O(3,1,R). There is a subgroup, the
Apollonian group, such that the set of Descartes
configurations in the packing is an orbit of the Apollonian
group!
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• Holographic Characterization of Apollonian Packings For
each Apollonian packing there is a geometrically finite
Kleinian group acting on hyperbolic 3-space H3, such that
the circles in the Apollonian packing are the complement of
the limit set of this group on the ideal boundary Ĉ of H3,
identified with the Riemann sphere.



Apollonian Packing Characterization-1

Geometric Characterization of Apollonian Packings

(i) An Apollonian packing PD is a set of circles in the Riemann

sphere Ĉ = R [ {1}, which consist of the orbits of the four

circles in D under the action of a discrete group GA(D) of

Möbius transformations inside the conformal group Mob(2).

(ii) The group GA(D) depends on the initial Descartes

configuration D.

Note. Möbius transformations move individual circles to
individual circles in the packing. They also move Descartes
configurations to other Descartes configurations.
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Apollonian Packing-Characterization-1a

• The group of Möbius transformations is

GA(D) = hs1, s2, s3, s4i,
in which si is inversion in the circle that passes through
those three of the six intersection points in D that touch
circle Ci.

• The group GA(D) can be identified with a certain group of
right-automorphisms of the moduli space of Descartes
configurations, given in curvature-center coordinates.
These are a group 4⇥ 4 real matrices multiplying the
coordinate matrix MD on the right.
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Apollonian Packing-Characterization-2

Algebraic Characterization of Apollonian Packings

(i) The collection of all (ordered, oriented) Descartes

configurations in the Apollonian acking PD form 48 orbits of a

discrete group A, the Apollonian group, that acts on a moduli

space of Descartes configurations.

(ii) The Apollonian group is contained the group

Aut(QD) ⇠ O(3,1,R) of left-automorphisms of the moduli space

of Descartes configurations given in curvature-center

coordinates.
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Apollonian Packing-Characterization-2a

(1) The Apollonian group A is independent of the initial
Descartes configuration D. However the particular orbit under
A giving the configurations depends on the initial Descartes
configuration D.

(2) The Apollonian group action moves Descartes
configurations as a whole , “mixing together” the four circles
to make a new Descartes configuration.
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Apollonian Packing-Characterization-2b

The Apollonian group is a subgroup of GL(4,Z), acting on
curvature-center coordinates on the left, given by

A := hS1, S2, S3, S4i

• Here

S1 =

2

6664

�1 2 2 2
0 1 0 0
0 0 1 0
0 0 0 1

3

7775 , S2 =

2

6664

1 0 0 0
2 �1 2 2
0 0 1 0
0 0 0 1

3

7775 ,
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S3 =

2

6664

1 0 0 0
0 1 0 0
2 2 �1 2
0 0 0 1

3

7775 , S4 =

2

6664

1 0 0 0
0 1 0 0
0 0 1 0
2 2 2 �1

3

7775 ,

• These generators satisfy

S2
1 = S2

2 = S2
3 = S2

4 = I



Properties of the Apollonian group

• The Apollonian group A is of infinite index in the integer
Lorentz group O(3,1,Z). In particular, the quotient
manifold

X = O(3,1,R)/A
is a Riemannian manifold of infinite volume.

• FACT.([GLMWY]) The Apollonian group is a hyperbolic
Coxeter group.
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Apollonian Packing-Characterization-3

Holographic Characterization of Apollonian Packings

The open disks comprising the interiors of the circles in an

Apollonian packing PD are the complement Ĉ r ⇤D of the limit

set ⇤D of a certain Kleinian group SD acting on hyperbolic

3-space H3, with the Riemann sphere Ĉ identified with the

ideal boundary of H3. The group SD depends on the Descartes

configuration D.
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Apollonian Group and Integer Packings

Theorem. [ Söderberg (1992)]
The circle curvatures of the four circles in all Descartes
configurations in an Apollonian packing PD starting with the
Descartes configuration D with curvatures {c1, c2, c3, c4}
comprise a (vector) orbit of the Apollonian group

OA([c1, c2, c3, c4]
T ) := {A

2

6664

c1
c2
c3
c4

3

7775 : A 2 A}

Consequence: If the initial curvatures are integers, then all
circles in the packing have integer curvatures. Call these
integer Apollonian circle packings.
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Root Quadruples

• To tell integral packings apart, can classify them by the
“smallest” (curvature) Descartes configuration they
contain. We call the resulting curvatures (c1, c2, c3, c4) the
root quadruple of such a packing.

• The root quadruple is unique. One value in the root
quadruple will be negative, and the other three values
strictly positive, with one exception!

• The exceptional configuration is the (0,0,1,1) packing,
which is the only unbounded integer Apollonian packing.
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(0,0,1,1) Pack
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Bounded Integer Packings- Root
Quadruples

The largest bounded packing is the (�1,2,2,3) packing,
enclosed in a bounding circle of radius 1. The next largest is
the (�2,3,6,7) packing, with bounding circle of radius 1/2.
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Root Quadruples and Number Theory

Theorem ( [GLMWY 2003])
(1) For each n � 1 there are finitely many primitive integral

Apollonian circle packings having a root quadruple with

smallest element equal to �n.

(2) The number of such packings Nroot(�n) is given by the

(Legendre) class number counting primitive binary quadratic

form classes of discriminant �4n2 under the action of

GL(2,Z)-equivalence.

Remark. Thus, there is at least one root quadruple for every
such n � 1.
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Counting Curvatures of a Packing

Theorem (A. Kontorovich, H. Oh 2008) Given any bounded

Apollonian circle packing P. The number N(x) of circles in the

packing having curvatures no larger than x satisfies

N(x) ⇠ c(P)x↵0

where ↵0 ⇡ 1.3056 is the Hausdor↵ dimension of the limit set

of the packing, for a constant c(P) depending on the packing.

Remark. For details, attend the talk of A. Kontorovich
tomorrow.
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Counting Curvatures of an Integer Packing

The Kontorovich-Oh result above says that the number of
circles with curvatures smaller than x is proportional to x1.3056.

Since there are only x positive integers smaller than x, that
means: in an integer packing, on average, each integer is hit
many times, about x0.3056 times.

So we might expect a lot of di↵erent integers to occur in a
packing. Maybe all of them, past some point...
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Congruence Conditions

Theorem ( [GLMWY 2003])
Let P be a primitive integer Apollonian circle packing P. Then

all integers in certain congruence classes

(mod 24),

will be excluded as curvatures in such a packing. The excluded

classes depend on P, and there are at least 16 excluded classes

in all cases.

Example. For the packing with (0,0,1,1) root quadruple, the
allowed congruence classes are 0,1,4,9,12,16 (mod 24) and
the remaining 18 residue classes are excluded.
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Density of Integers in Integral Apollonian
Packing

Positive Density Conjecture ( [GLMWY 2003])
Let P be a bounded integer Apollonian circle packing. Then

there is a constant C depending on P such that:

The number of di↵erent integer circle curvatures N
(0)
P (x) less

than x satisfies

N
(0)
P (x) > Cx

for all su�ciently large x.

Note added January 2012: This conjecture has been proved by
J. Bourgain and E. Fuchs, JAMS 24 (2011), no.4, 945–967.

36



Density of Integers in Integral Apollonian
Packings-2

Remarks. (1) Stronger conjecture: every su�ciently large
integer occurs in each allowed congruence class (mod 24).

(2) The stronger conjecture is supported by computer evidence
showing a dwindling number of exceptions in such congruence
classes, with apparent extinction of exceptions in many classes.

(3) Theorem. (Sarnak 2007) There are at least Cx/(logx)
distinct curvatures smaller than x.
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Almost-Prime Descartes Configurations in
an Integer Apollonian Packing

C- almost prime Descartes configurations are those integer
Descartes configurations with curvatures (c1, c2, c3, c4) such
that c1c2c3c4 has at most C distinct prime factors, i.e.

!(c1c2c3c4)  C.

Theorem. (J. Bourgain, A. Gamburd, P. Sarnak 2008) Let P
be an integer Apollonian circle packing. Then:

there is a constant C = C(P), such that the set of

C- almost prime Descartes configurations it contains is infinite.
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Remarks on Proofs

• Spectral gap is used by Bourgain, Gamburd, and Sarnak.
They also use a sieve argument (Brun’s sieve, Selberg
sieve).

• The holographic structure (Kleinian group) is used by
Kontorovich and Oh.
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3. Fibonacci Numbers

• The Fibonacci numbers Fn satisfy Fn = Fn�1 + Fn�2, initial
conditions F0 = 0, F1 = 1, giving

1,1,2,3,5,8,13,21,34,55 · · ·

• The Lucas numbers Ln satisfy Ln = Ln�1 + Ln�2,
L0 = 2, L1 = 1, giving

2,1,3,4,7,11,18,29,47,76, · · ·

• They are cousins:

F2n = FnLn.
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Fibonacci Group

• The Fibonacci Group F is

F = {Mn : n 2 Z}
with

M =

"
1 1
1 0

#

.

• This group is an infinite cyclic subgroup of GL(2,Z). It is of
infinite index in GL(2,Z).
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Fibonacci Group Orbits-1

• Fibonacci and Lucas numbers are given by orbits of the
Fibonacci group:

O([1,0]T ) := {Mn

"
1
0

#

: n 2 Z}

= {
"
Fn+1
Fn

#

n 2 Z}.

O([1,2]T ) := {
"
Ln+1
Ln

#

n 2 Z}
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Fibonacci Group Orbit Divisibility

Problem. Let

O([a, b]T ) = {
"

Gn

Gn�1

#

n 2 Z}

be an integer orbit of the Fibonacci group F. How do the

number of distinct prime divisors !(GnGn�1) behave as n ! 1?

This is an analogue of the problem considered by Bourgain,
Gamburd and Sarnak, for integer orbits of the Apollonian
group, where this number is bounded by C infinitely often.
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Fibonacci Quarterly

• Fibonacci numbers have their own journal: The Fibonacci
Quarterly, now on volume 46.

• P. Erdős was an author or co-author of 4 papers in the
Fibonacci Quarterly, as were Leonard Carlitz (18 papers),
Doug Lind (13), Ron Graham (3) (two with Erdős), Don
Knuth (3), D. H. Lehmer (2) , Emma Lehmer (2), Carl
Pomerance (1) Andrew Granville (1), Andrew Odlyzko (1),
myself (1).
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Binary Quadratic Diophantine Equation
(Non-Split Torus)

• Fibonacci and Lucas numbers (Ln, Fn) form the complete
set of integer solutions to the Diophantine equation

X2 � 5Y 2 = ±4.

with ± = (�1)n.

• This Diophantine equation identifies (Fn, Ln) as integer
points on a anisotropic (non-split) algebraic torus over Q,
that splits over a quadratic extension Q(

p
5).

• “Tori are poison” to the Bourgain-Gamburd-Sarnak theory.
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Fibonacci Divisibility Problems

• Problem 1: What is the extreme minimal behavior of !(Fn),
the number of distinct prime factors of Fn (counted without
multiplicity)?

• Problem 2: What is the extreme minimal behavior of
!(FnFn�1), the number of prime factors of FnFn�1

(counted without multiplicity)?
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Probabilistic Number Theory

Paul Erdős was one of the founders of the subject of
probabilistic number theory.

This is a subject that uses probability theory to answer
questions in number theory. One idea is that di↵erent prime
numbers behave in some sense like independent random
variables. It can also supply heuristics, that suggest answers
where they cannot be proved.
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Fibonacci Prime Heuristic-1

• Fibonacci and Lucas numbers Fn, Ln grow exponentially,
with growth rate c = 1

2(1 +
p
5) ⇠ 1.618.

• The probability a random number below x is prime is ⇡ 1
logx.

Applied to Fibonacci numbers, the heuristic predicts:

Prob[Fn is prime] ⇠ 1

n log c
=

C

n
.
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Fibonacci Prime Heuristic-2

• Since
P 1

n diverges, the heuristic predicts infinitely many
Fibonacci primes (resp. Lucas primes). The density of such
primes having n  x is predicted to grow like

X

nx

1

n
⇠ logx.

• Thus supports: Conjecture 1 :

lim inf
n!1 !(Fn) = 1,

as an answer to Problem 1. [Same heuristic for infinitely
many Mersenne primes Mn = 2n � 1.]
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Expected Number of Prime Factors

Approach to Problem 2: estimate the number of prime divisors
of a random integer.

Theorem (Hardy-Ramanujan 1917) The number of distinct

prime factors of a large integer m is usually near log logm. In

fact for any ✏ > 0 almost all integers satisfy

|!(m)� log logm|  (log logm)1/2+✏
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An Aside: Erdős-Kac Theorem

Erdős-Kac Theorem (1939)

Assign to each integer n the scaled value

xm :=
!(m)� log logmp

log logm

Then as N ! 1 the cumulative distribution function of such

sample values {xm : 1  m  N} approaches that of the

standard normal distribution N(0,1), which is

Prob[x  �] =
1

2⇡

Z �

�1
e�

1
2t

2
dt.
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Erdős Pal
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Fibonacci Product Heuristic-1

• What is the minimal expected number of prime factors
!(FnFn�1)?

• Assume, as a heuristic, that Fn, Fn�1 factor like
independent random integers drawn uniformly from [1,2n].
Want to find that value of � such that

Prob[!(FnFn�1) < � log log(FnFn�1)] ⇠
1

n1+o(1)
.

• This gives the threshold value for infinitely many
occurrences of solutions.
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Fibonacci Product Heuristic-2

• One finds threshold value

� := �2
p
log logx

with �2 ⇡ 0.3734 given as the unique solution with
0 < �2 < 2 to

�2(1 + log2� log�2) = 1.

[Tail of distribution: Erdös-Kac theorem not valid!]

• This suggests: !(FnFn�1) ! 1, with

lim inf
n!1

!(FnFn�1)

log log(FnFn�1)
� �2 ⇡ 0.3734.

as an answer to Problem 2.
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Fibonacci Product Heuristic-3

• The heuristic can be improved by noting that at least one
of n, n+1 is even and F2m = FmLm. Thus
FnFn+1 = FmLmF2m±1 has three “independent” factors.
One now predicts threshold value:

� := �3
p
log logx

with �3 ⇡ 0.9137, given as the unique solution with
0 < �3 < 3 to �3(1 + log3� log�3) = 2.

• This suggests: Conjecture 2: !(FnFn�1) ! 1, with

lim inf
n!1

!(FnFn�1)

log log(FnFn�1)
� �3 ⇡ 0.9137.
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Di�culty of these Problems

• Di�culty of conjectures 1 and 2:
“Hopeless. Absolutely hopeless”.

• What one can do: Test the conjectures against empirical
data.
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Aside: Perfect Numbers

A number is perfect if it is the sum of its proper divisors. For
example 6 = 1+ 2+ 3 is perfect.

Theorem (Euclid, Book IX, Prop. 36)
If 2n � 1 is a prime, then

N = 2n�1(2n � 1)

is a perfect number.

Note. If 2n � 1 is prime, then it is called a Mersenne prime.
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Aside: Perfect Numbers-2

Theorem (Euler, 1732↵)
If an even number N is perfect, then it has Euclid’s form

N = 2n�1(2n � 1),

with 2n � 1 a prime.

• This theorem gives an incentive to factor Mersenne
numbers: those of form 2n � 1. Much e↵ort has been
expended on this.

• Cunningham factoring project. Factoring Fibonacci
numbers is a spino↵.
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Factoring Fibonacci Numbers

• Factoring Fibonacci and Lucas numbers has been carried
out on a large scale. J. Brillhart, P. L. Montgomery, R. D.
Silverman, (Math. Comp. 1988), and much since. Web
pages of current records are maintained by Blair Kelly.

• Fibonacci numbers Fn have been completely factored for
n  1000, and partially factored for n  10000. Fibonacci
primes have been determined up to n  50000 and have
been searched somewhat further, to at least n = 200000,
without rigorous proofs of primality.

• Lucas numbers Ln and primes determined similarly.
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Test Heuristic

Test of !(FnFn+1) = k for n  10000. Empirically there appear
to be cuto↵ values. [Heuristic cuto↵: 0.9137 logn = k.]

• For k = 2, largest solution n = 2 (unconditionally proved).

• For k = 3, largest solution n = 6. [Heuristic: n = 26]

• For k = 4, largest solution n = 22. [Heuristic: n = 79.]

• For k = 5, largest solution n = 226. [Heuristic: n = 238.]

• For k = 6, largest solution n = 586. [Heuristic: n = 711.]

60



Simultaeous Prime Heuristic

• Question 3: How many Fibonacci and Lucas numbers Fn

and Ln are simultaneously primes? (That is, that
⌦(FnLn) = 2.)

• Know that gcd(Fn, Ln) = 1. This leads to similar heuristic
prediction:

lim inf
n!1

!(FnLn)

log log(FnLn)
= �2 ⇡ 0.3734.

This leads to prediction that finitely many Fn, Ln are
simultaneously primes. and heuristic that largest n has
0.3734 logn ⇡ 2 so n ⇡ 220.
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Fibonacci Primes

• For any Fibonacci prime, n must be a prime or a power of
2, up to 4.

• Fibonacci Prime List to n < 50,000 [N=32]

n = 3,4,5,7,11,13,17,23,29,43,47,83,131,137,359,431

31,433,449,509,569,571,2971,4723,5387,9311,9677,

14431,25561,30757,35999,37511,50833,81839

• Probable Fibonacci Primes 50,000 < n < 200,000 [N=5]

n = 81839⇤,104911,130021,148091,201107
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Lucas Primes

• For any Lucas prime, n must be a prime or a power of 2,
up to 16.

• Lucas Prime List to n < 50,000 [N=41]

n = 0,2,4,5,7,8,11,13,16,17,19,31,37,41,47,53,61,71,
79,113,313,353,503,613,617,863,1097,1361,4787,
4793,5851,7741,8467,10691,12251,13963,14449,
19469,35449,36779,44507

• Probable Lucas Primes 50,000 < n < 200,000 [N=10]

n = 51169⇤,56003,81671,89849,94823,140057,148091,
159521,183089,193201
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Simultaneous Fibonacci and Lucas Primes

• The simultaneous Fibonacci and Lucas primes Fn = prime,
Ln = prime, are, for n < 50,000,

n = 2,4,5,7,11,13,47

• This is consistent with the heuristic above, which predicts a
cuto↵ value n ⇡ 220.
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An Outlier!

• The simultaneous Fibonacci and Lucas probable primes
Fn = prime, Ln = prime, are, for n < 200,000 includes an
outlier

n = 148091

Here Fn has 30949 decimal digits, and Ln has 30950 digits.

• These Fn, Ln are not certified to be primes. However they
have both passed many pseudoprimality tests. (Probable
primality for Fn noted by T. D. Noe and Ln by de Water.)
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An Outlier-2

• The heuristic suggests (very roughly) that FnLn should
have about 4.5 prime factors between them.

• This provides some incentive to implement the full Miller
primality test (valid on GRH) on F148091 and L148091.
(Two years of computer time.)

• Should one believe:

(a) These are both primes? or:

(b) Is at least one composite, the Miller test is passed, and
the GRH false?
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Explaining Away the Outlier

• Question. What is the expected size of the maximal n such
that !(FnLn) = 2?

• Probabilistic Model. Draw pairs of integers (xn, yn),
independently and uniformly from 2n  xn  2n+1, for each
n � 1. Estimate the expected value

E[ max{n : !(xnyn)  2} ].

• Answer. For any fixed k � 2,

E[ max{n : !(xnyn)  k} ] = +1!
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3. Peroratio: What is mathematics?

Thesis: Mathematics has a Fractal structure

• There is a ”structural core” of well-organized theories,
illustrating the science of symmetry and pattern.

• On the fringes, the structure dissolves. There are pockets
of order, surrounded by fractal tendrils, easy-to-state,
di�cult (or unsolvable) problems.

• On the fringes, conjectures formulating “unifying
principles” turn out to be false.
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What is mathematics-2?

Number theory is a fertile source of“fringe” problems.

• 3x+1 Problem: Iterate C(n) = n/2 if n even,
C(n) = 3n+1 if n odd. Do all positive numbers n iterate
to 1? [Conjecture: Yes.]

• Aliquot Divisors: Iterate the function

�⇤(n) = �(n)� n,

the sum of proper divisors of n, e.g. �⇤(6) = 1+ 2+ 3 = 6.
Are all iteration orbits bounded?
[Conjecture: Yes. But some say: No]
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What is mathematics-3?

• The “fringe” moves over time.

What was once unfashionable, or disconnected from “core
mathematics”, may become related to it through new
discoveries. New islands of order may emerge.

• Erdös was a leader in bringing several new islands of order
into mathematics. One such island was: ”Probabilistic
Number Theory.” Another was: “Random Graphs”.
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Thank you for your attention!
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