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Credits

• Ron Graham created and maintained an ideal environment
for mathematics research at Bell Labs for many years. He
continued this at AT&T Labs-Research. He was an
inspiring mentor for me.

• Work reported in this talk was supported by NSF Grant
DMS-1401224.
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Paul Erdős and 3x+1 Problem

• Q. Why did Paul Erdős never study problems like the
3x+1 problem?

• A. He came very close.

• It took place at the University of Reading, UK around 1972.
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1. Contents of Talk

1. Hilton and Crampin: Orthogonal Latin squares (ca 1971)

2. Klarner and Rado: Integer A�ne Semigroups (1971-1972)

3. Erdős work: problem and solution (1972)

4. Complement Covering Problem (1975)

5. Klarner: Free A�ne Semigroups (1982)

6. A�ne Semigroups and the 3x+1 Problem
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1. Orthogonal Latin Squares-1

• Joan Crampin and Anthony J. W. Hilton at the University
of Reading around 1971 studied the problem: For which n

do self-orthogonal latin squares (SOLS) exist?

• A Latin square M of order n is an n⇥ n matrix has integers
1 to n in each row and column.

• Two Latin squares (M,N) are orthogonal if their entries
combined in each square give all n2 pairs (i, j), 1  i, j  n

in some order.
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1. Orthogonal Latin Squares-1

• L. Euler (1782) wrote an 60 page paper [E530] on magic
squares. He found there were no orthogonal Latin squares
of order 2 and 6, and tried to prove there were none of
order 4k +2.

• This conjecture was disproved by:
S. K. Bose, S.S. Shrikande and E. T. Parker (1959, 1960):
They showed orthogonal Latin squares exist for all orders
4k +2 � 10.

• The used various constructions building new size orthogonal
pairs from old, with some extra structure.
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Self-Orthogonal Latin Squares-1

A Latin square is self-orthogonal if the pair (M,M

T ) is
orthogonal. An example for n = 4.

M =

2

6664

1 3 4 2
4 2 1 3
2 4 3 1
3 1 2 4

3

7775 , M

T =

2

6664

1 4 2 3
3 2 4 1
4 1 3 2
2 3 1 4

3

7775 ,

Then

(M,M

T ) =

2

6664

11 34 42 23
43 22 14 31
24 41 33 12
32 13 21 44

3

7775 .
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Self-Orthogonal Latin Squares-2

• Question: For which orders n do there exist self-orthogonal
Latin squares?

• Anthony J. W. Hilton (circa 1971) approached problem of
construction using old ideas of A. Sade (1953, 1960).

• Method: Given an SOLS Q of order p+ q that has an upper
left corner that is an SOLS of order p, plus an orthogonal pair
(N1, N2) of order q � p, there exists for each SOLS of order x a
construction of another one of order f(x) = (q � p)x+ p.

• f(x) is an integer a�ne function. If one has a lot of initial
constructions x

i

then by iterating the function get a lot of
orders n that work. Solicited aid of Crampin to test on
computer.
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Self-Orthogonal Latin Squares-3

• Theorem. (Crampin, Hilton + computer)

(1) There exist SOLS of every order n > 482.

(2) There exist SOLS of every order n � 36372, having
another SOLS of order 22 in its upper left corner.

• Result announced at British Math. Colloquium 1972.
Authors slow to write up...
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Self-Orthogonal Latin Squares-4

• Then came the announcement:

• Theorem. (Brayton, Coppersmith, A. Ho↵man (1974 ))
There exist SOLS of every order n except 2,3 and 6.

• Authors at IBM, bigger computers... (Done independently)

• Crampin and Hilton published in 1975, JCTA. Long version
of Brayton, Coppersmith, Ho↵man published 1976.
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2. Klarner and Rado-1

• David A. Klarner (1940–1999) was a noted
combinatorialist. He wrote to Martin Gardner about
polyominoes in high school, contributed to Martin
Gardner’s column, and later edited “The Mathematical
Gardner”, to which RLG contributed.

• He received his PhD in 1967 at Univ. of Alberta, with
advisor John W. Moon.

• In 1970-1971 Klarner spent a year at University of Reading
visiting Richard Rado.
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Klarner and Rado-2

• Motivated by discussions with A. J. W. Hilton on SOLS
problem, Klarner and Rado begin investigating integer orbits
of a�ne maps. They considered a finite collection of maps

f(x1, ..., , x
k

) = m1x1 +m2x2 + · · ·+m

k

x

x

+ b

with integer coe�cients m

i

� 2, all b � 0.

• Given a initial set of integers A = {a
i

}, they formed the
smallest set T = hR : Ai ⇢ N closed under iteration,
substituting any member of T for each of the variables x

i

.

• For two or more variables, they noted T often contained
infinite arithmetic progressions, had positive density.
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Klarner and Rado-3

• For one variable,more complicated...

• Test problem: f1(x) = 2x+1, f2(x) = 3x+1.
Will call it here: Klarner-Rado semigroup.

• Question. Does the orbit h2x+1,3x+1 : 1i contain an
infinite arithmetic progression?

• Orbit:

1,3,4,7,9,10,13,15,19,21,22,27,28,31,39,40,43...
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Klarner-Rado Sequence

31 46

15

OO ;;

22 21 31 19 28 27 40

7

cc 77

10

gg 77

9

gg 77

13

gg ;;

3

gg 77

4

gg 77

1

kk 33
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3. Erdős’s Result -1

• Erdős was a long time collaborator with Rado, starting
1934. Eighteen joint papers, Erdős-Ko-Rado theorem.

• Erdős answered Klarner-Rado question: “No.”

• He proved the orbit has density 0, giving a quantitative
estimate of its size.
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Erdős’s Result -2

• Theorem. (Erdős(1972)) Let S = hf1, f2, ..., f
k

, ...i with
f

i

(x) = m

x

+ b

i

with m

i

� 2 and b

i

� 0. Let exponent � > 0
be such that

↵ :=
X

k

1

m

�

i

< 1.

Then for any N � 1, and any A = {a
i

} with a

i

! 1,

|hR : Ai] \ [0, N ]| 
1

1� ↵

T

�

.

• Application. For Klarner-Rado semigroup, we find ⌧ with
1
2⌧ + 1

3⌧ = 1, which is ⌧ = 0.78788... It su�ces to take
� = ⌧ + ✏ for some ✏ > 0. Since � < 1 we get density 0.
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Erdős’s Result -3

• Asymptotics of non-linear recurrences analyzed by D. Knuth
PhD student Mike Fredman (PhD. 1972) Some results
published in paper Fredman and Knuth (1974).

• One special case of Fredman’s thesis improves the upper
bound to CN

⌧ , with

X

i

1

m

⌧

i

= 1.

He applies result to Klarner-Rado sequence.
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Erdős’s Problem (1972)

• Problem (Erdős £10) Consider the semigroup S generated
by

R = {f2(x) = 2x+1, f3(x) = 3x+1, f6(x) = 6x+1}

with “seed” A = {1}. Does the orbit S := hR : Ai have a
positive density? More precisely, does S have a positive lower
asymptotic density d(S) > 0?

• These parameters are “extremal”: ⌧ = 1,

3X

i=1

1

m

i

=
1

2
+

1

3
+

1

6
= 1.
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Erdős’s Problem-2

• This Erdős problem was solved by Crampin and Hilton with
the answer “No”. The orbit has zero density.

• Key Idea. The semigroup S is not free, it has a nontrivial
relation:

f232(x) = f2 � f3 � f2(x) = f6 � f2(x) = f62(x) = 12x+7.

• One can show the orbit density up to N is less than cN

5/6,
as N ! 1. [The proof uses Erdős’s theorem.]
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4. Klarner-Rado Complement Covering
Problem

• In 1972 Chvatal, Klarner and Knuth wrote a Stanford
Technical Report giving a problem list in Combinatorial Topics.

• One problem considered the complement N r S of the
Klarner-Rado set S, which has density one, and asked if it can
be covered by infinite arithmetic progressions.
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Klarner-Rado Complement Covering
Problem-3

• In 1975 Don Coppersmith wrote a paper that answered the
question. The answer is “Yes”.

• Coppersmith gave two results.

• First result gave a su�cient condition for a semigroup
generated by relations R to have all sets S = hR : Ai for
A = {a}, a � 1 with N r S covered by infinite arithmetic
progressions. He showed the covering can always be done by
disjoint arithmetic progressions.

• Second result gave a (very complicated) su�cient condition
for there to exist some a where such S cannot be covered by
infinite arithmetic progressions.
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Klarner-Rado Complement Covering
Problem-4

• For the set S = h2x+1,3x+1 : 1i examined (mod 6) the
residues on the third level all occur at lower levels. Thus there
at most 6� (1 + 2) = 3 classes (mod 6) completely in N r S.

• Examined (mod 36) all nodes at the fifth level take residue
classes that occur at lower levels. Thus at least
36� (1 + 2+ 4+ 8) = 21 residue classes (mod 36) fall
completely in N r S.

• Assuming this pattern continues, we find
6n � (1 + 2+ 4+ · · ·+22n�1) residue classes (mod 6n) fall
completely in N r S. In this limit these a.p’s cover a set of
natural density one.
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5. Klarner Free Semigroup Criterion-1982

• In 1982 Klarner gave a su�cient condition for a set of a�ne
maps to generate a free semigroup.

• Claim. The a�ne maps f

i

(x) = m

i

x+ b

i

, with m

i

� 2, b

i

� 0
can always be ordered so that

0 
b1

m1 � 1
<

b2

m2 � 1
< ... <

b

k

m

k

� 1
.

Set p

i

:= b

i

m

i

�1, then: 0  p1 < p2 < ... < p

k

.

• Why? If equality holds, two generators commute, not free
semigroup.
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Klarner Free Semigroup Criterion-2

• Theorem (Klarner 1982) Given a�ne maps f

i

(x) = m

i

x+ b

i

satisfying the claim, 0  p1 < p2 < ... < p

k

, and if in addition

p

k

+ a

i

m

i


p1 + a

i+1

m

i+1
holds for 1  i  k � 1,

then this semigroup on k generators is free.

• Proof idea: Show product order matches auxiliary
lexicographic order, on elements of same level 2j3kx+ c

`

,
puts a total order on semigroup.
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Klarner Free Semigroup Criterion-3

• Klarner gave six examples of three generator semigroups
with parameters m

i

= 2,3,6 that are free.

• R = h2x, 3x+2, 6x+3i

• R

⇤ = h3x, 6x+2, 2x+1i, and four more.

• Klarner raised the problem: Do any of these semigroups
have orbits of positive density, starting from the single
integer seed 1? (Unsolved Problem!)
(Listed in various Richard Guy problem lists and books.)

26



6. A�ne Semigroups and the 3x+1
Problem

Recall the 3x+1 Problem:

• Iterate T (x) = x/2 if x even, T (x) = 3x+1
2 if x odd.

• 3x+1 Conjecture. Every positive integer x � 1 iterates to
1 using T .

• Observation. Running the iteration backwards from x = 1
produces a tree of inverse iterates, generated by two a�ne
maps. f1(x) = 2x, f2(x) = 2x�1

3 .
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3x+1 Problem-2

• 3x+1 Conjecture first appeared in print 1971, record of
lecture of Coxeter on frieze patterns in Australia (1970).

• Coxeter o↵ered 50 dollars for a proof, 100 dollars for a
counterexample.

• J. H. Conway proved undecidability result in 1972.

• These results done about same time as Klarner-Rado work:
such problems were “in the air.”
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x+1 Problem

• Treat a simpler case first: the x+1 problem.
Iterate T (x) = x/2 if x even, T (x) = x+1

2 if x odd.

• All forward orbits of T (x) go “downhill” to 1, a periodic
point.

• Inverse iterate maps: f1(x) = 2x, f2(x) = 2x� 1.
(These are a�ne maps of Klarner-Rado type.)
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x+1 Tree: Seed a = 4

32 31 30 29 28 27 26 25

16

cc 77

15

gg 77

14

gg 77

13

gg ;;

8

gg 77

7

gg 77

4

kk 33
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x+1 Tree: Orbit Properties

• Orbit S = h2x,2x� 1 : 4i has positive lower density. Density
1
n

|S \ [1, N ]| oscillates as N increases.

• Complement N r S cannot be covered by complete
arithmetic progressions!

• In 1972 Ron Graham gave Klarner and Rado a related bad
example.
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3x+1 Problem- A�ne Semigroup Form

3x+1 Conjecture (A�ne Semigroup Form) The semigroup
orbit S

⇤ = h2x, 2x�1
3 : 4i contains every positive integer larger

than 2.

32 31/3 10 3 28/3 25/9 22/9 13/27

16

aa 77

5

ff 77

14/3

hh 55

11/9

ii 88

8

gg 88

7/3

ii 55

4

kk 22
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3x+1 Problem vs. Klarner (1982) problem

• 3x+1 Semigroup problem is more complicated than
Klarner-Rado semigroup problem.

(1) Maps can have negative entries, orbits can have
negative numbers in them.

(2) Maps can have rational entries, orbits have rational
numbers. (The 3x+1 problem only cares about the
integer entries in backwards orbits.)

(3) Only a small fraction of orbit values are integers.
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7. Summary

• In response to work of Klarner and Rado,
in 1972 Erdős proved a theorem on iterates of a�ne
semigroups and formulated a prize problem, solved the
same year by Crampin and Hilton.

• In 1982 Klarner produced a “corrected” semigroup problem,
currently unsolved.

• The 3x+1 Problem can be formulated in a�ne semigroup
orbit framework. It has new features making it hard.
(P. Erdős (1984) said: “Hopeless. Absolutely hopeless! ”)
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Thank You!
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