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Paul Erdos and 32 + 1 Problem

e Q. Why did Paul Erdds never study problems like the
3x + 1 problem?

e A. He came very close.

e It took place at the University of Reading, UK around 1972.
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1. Orthogonal Latin Squares-1

e Joan Crampin and Anthony J. W. Hilton at the University
of Reading around 1971 studied the problem: For which n
do self-orthogonal latin squares (SOLS) exist?

e A Latin square M of order n is an n x n matrix has integers
1 to n in each row and column.

e Two Latin squares (M, N) are orthogonal if their entries
combined in each square give all n2 pairs (i,5), 1 <4, <n
in some order.



1. Orthogonal Latin Squares-1

e L. Euler (1782) wrote an 60 page paper [E530] on magic
squares. He found there were no orthogonal Latin squares
of order 2 and 6, and tried to prove there were none of

order 4k + 2.

e [ his conjecture was disproved by:
S. K. Bose, S.S. Shrikande and E. T. Parker (1959, 1960):
They showed orthogonal Latin squares exist for all orders

4k 4+ 2 > 10.

e [ he used various constructions building new size orthogonal
pairs from old, with some extra structure.



Self-Orthogonal Latin Squares-1

A Latin square is self-orthogonal if the pair (M, M1) is
orthogonal. An example for n = 4.

1 3 4 2 1 4 2 3
14 2 1 3 T |3 2 41
M_2431’M_4132’
3 1 2 4 2 3 1 4
Then
(11 34 42 23]
(M,MT)z 43 22 14 31

24 41 33 12
32 13 21 44




Self-Orthogonal Latin Squares-2

e Question: For which orders n do there exist self-orthogonal
Latin squares?

e Anthony J. W. Hilton (circa 1971) approached problem of
construction using old ideas of A. Sade (1953, 1960).

e Method: Given an SOLS @ of order p 4+ g that has an upper
left corner that is an SOLS of order p, plus an orthogonal pair
(N1, N>) of order g — p, there exists for each SOLS of order z a
construction of another one of order f(x) = (¢ — p)x + p.

e f(x) is an integer affine function. If one has a lot of initial
constructions x; then by iterating the function get a lot of
orders n that work. Solicited aid of Crampin to test on
computer.



Self-Orthogonal Latin Squares-3

e Theorem. (Crampin, Hilton 4+ computer)
(1) There exist SOLS of every order n > 482.

(2) There exist SOLS of every order n > 36372, having
another SOLS of order 22 in its upper left corner.

e Result announced at British Math. Colloquium 1972.
Authors slow to write up...



Self-Orthogonal Latin Squares-4

e [ hen came the announcement:

e Theorem. (Brayton, Coppersmith, A. Hoffman (1974 ))
There exist SOLS of every order n except 2,3 and 6.

e Authors at IBM, bigger computers... (Done independently)

e Crampin and Hilton published in 1975, JCTA. Long version
of Brayton, Coppersmith, Hoffman published 1976.



2. Klarner and Rado-1

e David A. Klarner (1940—-1999) was a noted
combinatorialist. He wrote to Martin Gardner about
polyominoes in high school, contributed to Martin
Gardner’'s column, and later edited “The Mathematical
Gardner' , to which RLG contributed.

e He received his PhD in 1967 at Univ. of Alberta, with
advisor John W. Moon.

e In 1970-1971 Klarner spent a year at University of Reading
visiting Richard Rado.
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Klarner and Rado-2

e Motivated by discussions with A. J. W. Hilton on SOLS
problem, Klarner and Rado begin investigating integer orbits
of affine maps. They considered a finite collection of maps

f(x1,...,, ) = mix1 + moxo + -+ - + myxy + b
with integer coefficients m; > 2, all b > 0.

e Given a initial set of integers A = {a;}, they formed the
smallest set T'= (R : A) C N closed under iteration,
substituting any member of T' for each of the variables z;.

e For two or more variables, they noted T often contained
infinite arithmetic progressions, had positive density.
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Klarner and Rado-3

e For one variable,more complicated...

e Test problem: fi(x) =2x+ 1, fo(zx) =3z 4+ 1.
Will call it here: Klarner-Rado semigroup.

e Question. Does the orbit (2z + 1,3z + 1 : 1) contain an
infinite arithmetic progression?

e Orbit:
1,3,4,7,9,10,13,15,19,21,22,27,28,31,39,40,43...
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Klarner-Rado Sequence
31 46
Vé
3
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3. Erdos’s Result -1

e Erdds was a long time collaborator with Rado, starting
1934. Eighteen joint papers, Erdds-Ko-Rado theorem.

e Erdds answered Klarner-Rado question: “No.”

e He proved the orbit has density O, giving a quantitative
estimate of its size.
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Erdds’'s Result -2

e Theorem. (Erd6s(1972)) Let S = (f1, fo, .-+, [k, ...) With

fi(x) = mg +b; with m; > 2 and b; > 0. Let exponent o > 0
be such that
1

kmz

Then for any N > 1, and any A = {a;} with a; — oo,

(R: A N[0,N]| < ——7°.
1 — «o

e Application. For Klarner-Rado semigroup, we find = with
~ + 5+ = 1, which is 7 = 0.78788... It suffices to take
oc=1T1-4+¢€ for some ¢ > 0. Since o <1 we get density 0.
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Erdds’'s Result -3

e Asymptotics of non-linear recurrences analyzed by D. Knuth
PhD student Mike Fredman (PhD. 1972) Some results
published in paper Fredman and Knuth (1974).

e One special case of Fredman’'s thesis improves the upper
bound to CN7, with

1
2=t

He applies result to Klarner-Rado sequence.
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Erdds’'s Problem (1972)

e Problem (Erd6s £10) Consider the semigroup S generated
by

R={fax) =20 +1, f3(@)=324+1, fs(x)=06x+1}

with “seed” A = {1}. Does the orbit S:= (R : A) have a
positive density? More precisely, does S have a positive lower
asymptotic density d(S) > 07

e [ hese parameters are “extremal”’: r =1,
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Erdos’'s Problem-2

e [ his Erdbs problem was solved by Crampin and Hilton with
the answer “No”. The orbit has zero density.

o Key Idea. The semigroup S is not free, it has a nontrivial
relation:

f232(x) = foo fao fo(x) = fe o fo(x) = feo(x) = 122 + 7.

e One can show the orbit density up to N is less than cN5/6,
as N — oo. [The proof uses Erdds’s theorem.]
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4. Klarner-Rado Complement Covering
Problem

e In 1972 Chvatal, Klarner and Knuth wrote a Stanford
Technical Report giving a problem list in Combinatorial Topics.

e One problem considered the complement N~ S of the
Klarner-Rado set S, which has density one, and asked if it can
be covered by infinite arithmetic progressions.
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Problem 1.

Consider the set (2x+1,3x+1: 1) defined to be the smallest set
of natural numbers which contagns 1 and is closed under the operations
X = 2xtl or 3x+l . The set can be constructed by iterating these

operations as indicated in the following tree.

1

/(\/m\ 7N,

15 22 21 31 19 28 27 Lo

Michael Fredman showed in his thesis that this set has density 0
in the set of all natural numbers; hence, S = (2xﬂb5xfl:1) does not
contain an infinite arithmetic progression. ret N denote the set of
all natural numbers. TIs it true that N\S may be expressed as a disjoint

union of infinite arithmetic progressions?
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Klarner-Rado Complement Covering
Problem-3

e In 1975 Don Coppersmith wrote a paper that answered the
question. The answer is ‘“Yes".

e Coppersmith gave two results.

e First result gave a sufficient condition for a semigroup
generated by relations R to have all sets S = (R : A) for

A= {a}, a > 1 with N~ S covered by infinite arithmetic
progressions. He showed the covering can always be done by
disjoint arithmetic progressions.

e Second result gave a (very complicated) sufficient condition
for there to exist some a where such S cannot be covered by
infinite arithmetic progressions.
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Klarner-Rado Complement Covering
Problem-4

e For theset S= 2z + 1,3z + 1:1) examined (mod 6) the
residues on the third level all occur at lower levels. Thus there
at most 6 — (1 4+ 2) = 3 classes (mod 6) completely in N~ S.

e Examined (mod 36) all nodes at the fifth level take residue
classes that occur at lower levels. Thus at least

36 — (1 4+ 2+ 4+ 8) = 21 residue classes (mod 36) fall
completely in N~ S.

e Assuming this pattern continues, we find
6" — (1 +2+4+4+---+22"1) residue classes (mod 67) fall
completely in N~ S. In this limit these a.p’'s cover a set of
natural density one.
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5. Klarner Free Semigroup Criterion-1982

e In 1982 Klarner gave a sufficient condition for a set of affine
maps to generate a free semigroup.

e Claim. The affine maps f;(x) = m;x + b;, with m; > 2, b; > 0
can always be ordered so that
b1 bo by

0< < < ... <
" mi1—1 mo—1

mk— 1.
b;

mi—l’

Set p; =

then: 0 <pj < ps < ... < pg.

e \Why? If equality holds, two generators commute, not free
semigroup.

24



Klarner Free Semigroup Criterion-2

e Theorem (Klarner 1982) Given affine maps f;(x) = m;x + b,
satisfying the claim, O < p1 < pp < ... < pg, and if in addition

pE + a; <P + a;41

my mi+1

then this semigroup on k generators is free.

holds for 1<:<k-—1,

e Proof idea: Show product order matches auxiliary
lexicographic order, on elements of same level 273kz 4 ¢,
puts a total order on semigroup.
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Klarner Free Semigroup Criterion-3

e Klarner gave six examples of three generator semigroups
with parameters m; = 2,3,6 that are free.

e R= {2z, 3x + 2, 6 + 3)
e R* = (3z, 6z + 2, 2x + 1), and four more.

e Klarner raised the problem: Do any of these semigroups
have orbits of positive density, starting from the single
integer seed 17 (Unsolved Problem!)

(Listed in various Richard Guy problem lists and books.)
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6. Affine Semigroups and the 3z 4+ 1
Problem

Recall the 32z + 1 Problem:

e Iterate T'(x) = x/2 if x even, T(z) = Sxél_l if x odd.

e 3x + 1 Conjecture. Every positive integer £ > 1 iterates to
1 using T

e Observation. Running the iteration backwards from z =1
produces a tree of inverse iterates, generated by two affine
maps. fi(z) =2z, fo(z) = 251

27



32z + 1 Problem-2

e 3x + 1 Conjecture first appeared in print 1971, record of
lecture of Coxeter on frieze patterns in Australia (1970).

e Coxeter offered 50 dollars for a proof, 100 dollars for a
counterexample.

e J. H. Conway proved undecidability result in 1972.

e [ hese results done about same time as Klarner-Rado work:
such problems were “in the air.”
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r+ 1 Problem

e Treat a simpler case first: the x 4+ 1 problem.
Iterate T'(x) = z/2 if x even, T(x) = 3742'1 if x odd.

e All forward orbits of T'(x) go “downhill” to 1, a periodic
point.

e Inverse iterate maps: f1(x) =2z, fo(x) =22 —1.
(These are affine maps of Klarner-Rado type.)
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r+ 1 Tree: Seed a =4

32 31 30 29 28 27 26 25
6~ Sis— S1a 0 hai3
\8/ \7/

—
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r+ 1 Tree: Orbit Properties

e Orbit S = (2x,2x — 1 : 4) has positive lower density. Density
%|Sﬁ [1, N]| oscillates as N increases.

e Complement N~ S cannot be covered by complete
arithmetic progressions!

e In 1972 Ron Graham gave Klarner and Rado a related bad
example.
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3x + 1 Problem- Affine Semigroup Form

3x + 1 Conjecture (Affine Semigroup Form) The semigroup
orbit S* = (2z,2%1 : 4) contains every positive integer larger
than 2.

31/3 10 3 28/3 25/9 22/9 13/27

\\ 6 s Tiane a1

"~ ~
=
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3x 4+ 1 Problem vs. Klarner (1982) problem

e 3x + 1 Semigroup problem is more complicated than
Klarner-Rado semigroup problem.

(1) Maps can have negative entries, orbits can have
negative numbers in them.

(2) Maps can have rational entries, orbits have rational
numbers. (The 3z 4+ 1 problem only cares about the
integer entries in backwards orbits.)

(3) Only a small fraction of orbit values are integers.
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7. Summary

e In response to work of Klarner and Rado,
in 1972 Erd0s proved a theorem on iterates of affine
semigroups and formulated a prize problem, solved the
same vear by Crampin and Hilton.

e In 1982 Klarner produced a ‘corrected” semigroup problem,
currently unsolved.

e T he 3x+1 Problem can be formulated in affine semigroup
orbit framework. It has new features making it hard.
(P. Erdds (1984) said: “Hopeless. Absolutely hopeless! ')
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Thank Youl
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