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1. Contents of Talk

• The talk surveys the problem of packing space with
congruent copies of regular tetrahedra.

• How dense can such a packing be?

• What are their packing properties?

• The problem has a very long history.
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2. History to 1900

• The five regular solids (Platonic solids) are the tetrahedron,
cube, octahedron, dodecahedron, icosahedron.

• At least three regular solids were known to the
Pythagoreans: tetrahedron, cube and dodecahedron. (6th
Centry BCE)

• Discovery of the remaining two: octahedron and
icosahedron (20 sides) and proof there are only five, is
sometimes attributed to Theaetetus (ca 419- 369 BCE), a
contemporary of Plato.
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Plato (427 BCE - 347 BCE)

• The regular solids feature in the philosophy of Plato.

• In the dialogue Timeaus Plato associates earth, air, fire,
and water with the solids:
cube, octahedron,tetrahedron and icosahedron.

• The dodecahedron is exceptional! Plato assigns it with the
shape: “ ...god used for arranging the constellations in the
whole heaven.”
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Platonic Solids
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Aristotle (384 BCE - 322 BCE)

• In De Caelo ( Latin title)
( a.k.a. On Heavenly Bodies), Aristotle discusses the
elements earth, air, fire, water etc. and the regular solids.

• He states in De Caelo, Book III, Part 8:
“It is agreed that there are only three plane figures which
can fill a space, the triangle, the square and the hexagon,
and only two solids, the pyramid and the cube.”

• In this context pyramid= regular tetrahedron. This may be
taken to mean that Aristotle asserted: regular tetrahedra
tile space. (If so, Aristotle made a mistake.)
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Roy Lichtenstein: Pyramids II (1969)
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Euclid (ca 300 BCE)

• Euclid is believed to have lived in the generation following
Plato.

• Euclid’s Elements, systematized geometry and number
theory. It is still in print, in the Heath translation from the
Greek (Cambridge University Press). (Dover reprint also
available.)

• It has 13 books. Book 13 of the Elements constructs the
five regular Platonic solids (Propositions 13-17). Euclid
proves these are the complete list of regular solids
(Proposition 18 ↵.) He gives explicit constructions,
producing them inscribed in a sphere.
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Averroes (1126 AD- 1198 AD)

• Full name: Abu-Walid Muhammad Ibn Ahmad ibn Rushd
(Cordoba, Spain–Marrakech, Morocco)

• He wrote 20,000 pages, making commentaries on most of
Aristotle’s works, including “De Caelo.” His commentaries
are based on Arabic translations of Aristotle.

• Averroes commentary & Aristotle ‘De Caelo’ translated
from Arabic to Latin by Michel Scotus (1175– ca 1232).
Much Averroes commentary survives in Latin translation, in
the Justine edition of Aristotle (Venice 1562-1574).
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Averroes (1126 - 1198 )

• The Averroes commentary asserts that 12 tetrahedra meet
at a point and fill space there. That is:
Twelve pyramids (locally) fill space.

• If so, Averroes made a mistake!
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Regiomontanus (1436 - 1476)

• Full name: Johannes Müller (born in Kónigsburg, Bavaria -
died Rome, Italy)

• Works on astronomy,plane and spherical trigonometry,
calendar reform.

• He reportedly wrote a lost work titled: “On the five solids,
which are called regular, and which do fill space and which
do not, in contradiction to the commentator on Aristotle,
Averroes.”
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Franciscus Maurolyctus
(1494 - 1575)

• Full name: Francesco Maurolico. Born: Messina, Sicily. Of
Greek origin. Benedictine monk and abbot. Became master
of the mint in Messina. Gave one of earliest proofs using
mathematical induction.(Arithmeticorum libri duo (1575)).

• He wrote a work called : “De qvinque solidis, qvaue vvlgo
regvlaria dicvntvr, qvae videlicet eorvm locvm impleant et
qvae non, contra commentatorem Aristotelis Averroem.”
(On the five solids, which are called regular, on which

do fill space and which do not, in contradiction to the
commentator on Aristotle, Averroes)
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Franciscus Maurolyctus (1529)

• Colophon to work: “Libellus de Impletione loci quinque
solidorum regularium per franciscum mauolycium
Compositus & exararus hic finitur. Messanae In freto siculo.
Decembris 9. 1529.”

• This manuscript is in Rome. A transcription by Luigi de
Marchi in 14 July 1883, listed a table of contents. From
the table of contents we infer Maurolyctus knew:
There is a periodic tiling of space whose unit cell is
6 regular octahedra plus 8 regular tetrahedra.

• The manuscript and its contents are the subject of the
ongoing PhD thesis of Claudia Addabbo (Univ. of Pisa).
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David Hilbert (1862-1943)

• Hilbert made major contributions in many fields:
Invariant Theory (“Hilbert basis theorem”)
Number Theory (“Zahlbericht”)
Geometry (“Foundations of Geometry”),
Mathematical Physics (“Hilbert spaces”)
Mathematical Logic (“Hilbert program”)

( ) He was a “polymath”)

• Hilbert formulated at the 1900 International Mathematical
Congress, held in Paris, a famous list of Mathematical
Problems. (23 problems, some still unsolved.)

17



Hilbert’s 18-th Problem (1900)

• The 18-th problem, on Hilbert’s list discusses: packing and
tiling of space by congruent polyhedra.

• “I point out the following question [...] important in
number theory and perhaps sometimes useful to physics
and chemistry: How can one arrange most densely in space
an infinite number of equal solids of given form, e.g.
spheres with given radii or regular tetrahedra with given
edges (or in prescribed position), that is, how can one so fit
them together so that the ratio of the filled space to the
unfilled space may be as great as possible.”
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Hilbert’s 18-th Problem- Remarks

• The main part of Hilbert’s 18-th problem, not considered
here, concerns crystallographic packings in higher
dimensions.

• It was solved by Ludwig Bieberbach (1910, 1912).
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Packing Spheres versus Packing Regular
Tetrahedra

• Kepler’s Conjecture (1611). A densest sphere packing is
given by the face-centered cubic (FCC) lattice packing
(“cannonball packing”).

FCC Packing Density: ⇡p
18

⇡ 0.74048.

• Kepler’s Conjecture was proved in 1998-2006 by Thomas
C. Hales with Samuel P. Ferguson. It is a hard problem.
(250+ pages). Update: Hales formal proof (2015).

• Packing regular tetrahedra is probably much harder!
(Tetrahedra are not invariant under rotation!)
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Hilbert: Two Packing Problems for Regular
Tetrahedra (1900)

• General Packings: Pack congruent regular tetrahedra,
allowing Euclidean motions.

• Translational Packings: Pack allowing copies of a single
tetrahedron moved only by translations.

• A Subclass of Translational Packings: Lattice packings.
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3. Interlude: Hilbert’s Third Problem

• Hilbert’s third problem: “The equality of the volumes of
two tetrahedra of equal bases and equal altitudes”
(Scissors Congruence Problem)

• Goal. To prove an impossibility result showing that the
(infinite) “method of exhaustion” is needed for a
satisfactory theory of 3-dimensional volume.

• To “succeed in specifying two tetrahedra of equal bases
and equal altitudes which can in no way be split up into
congruent tetrahedra, and which cannot be combined with
congruent tetrahedra to form two polyhedra which
themselves can be split up into congruent tetrahedra.”
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Hilbert’s Third Problem-2

• Call the finite cutting up operation: ”Scissors Congruence”
(Equicomplementability)

• Solved by Max Dehn (1900, 1904). He introduced a new
3-dimensional scissors congruence invariant, which is an
obstruction to polyhedra of equal volume being equivalent
under scissors congruence.

• New Dehn invariant is 1-dimensional:

D1(P ) =
X

e
(edge length)⌦ (dihedral angle)
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Hilbert’s Third Problem-3

• Dehn showed that a regular tetrahedron is not scissors
congurent to a cube of the same volume.

• More recently (Conjecture of Hadwiger 1963), solved 1980:

Theorem 1. (Debrunner (1980))
If a polyhedron P tiles three-dimensional space, then P

must be scissors congruent to a cube of the same volume.

• Result rediscovered by Lagarias and Moews, Disc. Comp.
Geom. 1995.
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Hilbert’s Third Problem-4

• Now we have also:

Theorem 2. (Wolfgang Schmidt (1961) If a polyhedron P
does not tile space, then its packing density

�(P ) < 1.

• Combining these results with that of Dehn, we conclude:

Corollary. The maximal density of a packing of congurent
copies of a regular tetrahedron T satisfies �(T ) < 1.

• This proof is ine↵ective. It gives no upper bound.
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Hilbert’s Third Problem-5

• Dehn also defined higher-dimensional invariants, one in
each even codimension: codimension 0= volume, codim 2,
codim 4, etc.

• There are thus dn2e such invariants in dimension n.

• Open Problem: Are Dehn’s invariants a complete set of
Euclidean scissors congruence invariants?

• Answer: Yes, for dimensions n  4. (Sydler (1965) for
n = 3, Jessen (1969) for n = 4.) Open Problem, for n � 5.
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4. More History

Hermann Minkowski (1864-1909)

• Minkowski is known for the Geometry of Numbers (1896),
Many applications in algebraic number theory, Diophantine
approximation.

• Geometry of numbers concerns interactions of: lattices and
convex bodies. Specifically studies:
densest lattice packings of congruent convex bodies.

• Minkowski (1896, 1904) obtained sharp results for centrally
symmetric convex bodies
(in theory).
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Hermann Minkowski (1904)

• But: A regular tetrahedron is a non-symmetric convex body.

• In 1904, Minkowski showed that the densest lattice packing
of non-symmetric convex bodies C is the same as that of
their centrally symmetric di↵erence body

D(C) :=
1

2
(C � C) =

⇢1
2
(x� y) : x, y 2 C

�

• He applied his method to the regular tetrahedron. He
asserted that the densest lattice packing of a regular
tetrahedron has density

9

38
= 0.236842...
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Helmut Groemer (1962)

• Theorem. (Groemer) There exists a lattice packing of
regular tetrahedra having packing density

� =
18

49
= 0.367346...

• ) Minkowski made a mistake!
(He asserted the di↵erence body of
a regular tetrahedron is a regular octahedron; it is not.)
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Douglas Hoylman (1970)

• Hoylman proved Groemer’s construction is optimal.

• Theorem. (Hoylman) The densest lattice packing of a
regular tetrahedron has packing density

� =
18

49
= 0.367346...
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Ulrich Betke and Martin Henk (2000)

• Betke and Henk (2000) designed an e�cient algorithm to
find the density of the densest lattice packing of any
(symmetric or nonsymmetric) polyhedron (i.e.
3-dimensional polytope). (Discrete & Computational
Geometry 16 (2000), 157–186.)

• The algorithm solves a series of linear programming
problems. They make a computer implementation of the
algorithm.

• Method is applied to compute the densest lattice packings
of all regular polyhedra.
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Elizabeth Chen (PhD student): Studies
Packings of Tetrahedral Clusters 2005
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John H. Conway and Salvatore Torquato
(PNAS 2006)-1

• John Horton Conway is a well known mathematician at
Princeton, and Salvatore Torquato is a chemist, materials
scientist (and much more) at Princeton. They find general
packings and coverings of space with regular tetrahedra.

• (Initial packing) Pack 20 regular tetrahedra inside a regular
icosahedron, with centers touching at central point. Form
the convex hull of these 20 tetrahedra. This is a centrally
symmetric convex body C. Then lattice pack C using the
Betke and Henk algorithm. Packing density attained this
way: � = 45

64 = 0.703125.
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John H. Conway and Salvatore Torquato
(PNAS 2006)-2

• (Packing Improvement)
(“reformed Scottish packing”)
Deform the arrangement of 20 tetrahedra slightly and
repack as above. Packing density obtained is now:

� ⇡ 0.7165598.

• (From Conway-Torquato paper abstract)
“Our results suggest that the regular tetrahedron may not
be able to pack as densely as the sphere, which would
contradict a conjecture of Ulam. The regular tetrahedron
might even be the convex body having the smallest possible
packing density.”
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The Glotzer Group @ University of Michigan

Conway H J & Torquato S, PNAS 103(28): 10612 (2006).

0.7166CT “very low”CT 0.7175CT

“Icosahedral” 
lattice packing 

Irish bubbles

Type I Clathrate

Welsh bubbles

Type II Clathrate

Scottish* bubbles

Conway and Torquato conjectured: 
Is Ulam wrong?  Are tetrahedra the worst packers of all?
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Paul M. Chaikin (2007)

• Paul Chaikin is a physics professor at New York University.

• With undergraduates, experimented with filling fishbowls
and other containers with tetrahedral dice. Packings seem
more dense than spheres, about 75 percent.

• No rigorous proof: the dice are not perfect tetrahedra, the
container walls influence the density. Error estimate 3%.

• Talk at APS meeting (March 2007): P. Chaikin, Stacy
Wang (Stuvesant High School !), A. Jaoshvili, “Packing of
Tetrahedral and other Dice,” BAPS.2007.MAR.S29.10
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Elizabeth R. Chen (2007-2008)

• Elizabeth Chen finds a “world record” dense packing of
regular tetrahedra. (Discrete and Computational Geometry
40 (2008), 214–240.) (Submitted 1 January 2007)

• Theorem. (E. Chen) There exists a packing of regular
tetrahedra having density at least 0.7786.

• This disproves the speculation of Conway and Torquato, so
Ulam’s Conjecture remains unsolved.

Ulam’s Conjecture: The hardest 3-dimensional convex body
to pack is the solid sphere (density ⇡ 0.74048)
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Chen “Wagon Wheel” packing-1

• Five regular tetrahedra sharing a common edge fill space
nearly perfectly around that edge. The uncovered dihedral
angle is: 0.020433... of the full dihedral angle.

• “Wagon wheels” (Nonomers) are configurations of 9
tetrahedra, having two “wagon wheels” of 5 tetrahedra on
diagonally opposite edges.

• Geometric fact: diagonally opposite edges are
perpendicular. This favors cubical packings.
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The Glotzer Group @ University of Michigan

Ulam verified for tetrahedra in 2007

Elizabeth Chen (2007) 
proposed and constructed a 
crystal of nonamers with 
ϕ = 0.7786   > ϕrcp!
Discrete Comput.. Geom. 40: 214 (2008)

i

ii iii

viv
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Torquato Strikes Back.
(13 August 2009)

• S. Torquato and Y. Jiao, Dense packings of the Platonic
and Archimedean solids, Nature 460 (13 August 2009).
(submitted 29 April 2009)

• They obtain a “world record” tetrahedral packing by
“deforming ” the Chen wagon-wheel packing.

• Density achieved: � ⇡ 0.78202.

• Based in part on this result, the paper gets on the front
cover of Nature.
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Torquato Followup, Phys Rev E
(arxiv 9 Sept 2009)

• S. Torquato and Y. Jiao, Dense packings of polyhedra:
Platonic and Archimedean solids, Phys. Rev. E. (50
pages). arXiv:0909.0940 9 Sept 2009 (submitted June 2009)

• Paper present further deformations of the “wagon wheel
packings” achieving a “world record” density � = 0.8203...
The final packing is “disordered.”

The method used a computer search, termed the “Adaptive
Shrinking Cell” (ASC) optimization method. It “squeezes”
uses a “simulated annealing” stochastic Monte Carlo
method with acceptance rules.
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Glotzer Group Packings (Nature 10 Dec
2009)

• Sharon Glotzer is a Professor of Chemical Engineering (also
Materials Science, Physics and much more) at the
University of Michigan. Her research group studies
Computational Nanoscience and Soft Matter.

• A. Haji-Akbari, M. Engel, A. S. Keys, X. Zheng, R. G.
Petsche, P. Pal↵y-Muhoray, S. C. Glotzer,
“Disordered, quasicrystalline and crystalline phases of
densely packed tetrahedra”, Nature 462, 10 Dec 2009,
773–777. (submitted 5 July 2009). [Lead authors:
grad student Amir Haji-Akbari and postdoc Michael Engel.]
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Aside: Nanomaterials

• There is now interest in nanomaterials made of tiny
tetrahedra. What properties do such materials have?

• Methods now exist to fabricate such materials. Variations:
tetrahedra that are “sticky” on one face.

• Of great interest: unusual optical properties.
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Glotzer Group Packing-2
(10 Dec 2009)

• By “squeezing” tetrahedral packings (simulation), they
predict that a fluid of hard tetrahedra undergoes a first
order phase transition to a dodecagonal quasicrystal having
packing density approximately 0.8324. The quasicrystal
property is remarkable!

• By further compression they obtain a “world record”
tetrahedra packing with density

� ⇡ 0.8503...

Method used Glotzer group “squeezing” computer package:
Glotzilla.
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Glotzer Group Dodecagonal Quasicrystal
Packing-3
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Quasicrystals-1

• Quasicrystals are materials have di↵raction patterns
indicating long range order of atoms, but which have
forbidden symmetries ruling out periodic atomic order.
Discovered by Dan Schechtman (Technion-Haifa) while at
National Bureau of Standards (= NIST) in 1982, published
Phys Rev. Letters 1984.

• These materials can exhibit di↵raction symmetries forbidden
for crystals: 5-fold symmetry or 12-fold symmetry.

• Their discovery was initially treated with incredulity and
ridicule.

47



Quasicrystals-2

• Over 200 kinds of quasicrysalline materials are now known.
Typically they are mixtures of two or three kinds of atoms
(eg. AlCuFe) at suitable density.

• Some quasicrystalline phases appear to be
thermodynamically stable. They can be grown to
macroscopic size, e.g. 1 inch across, and then appear
crystalline in the usual sense.

• Dan Shechtman awarded Nobel Prize in Chemistry 2011 for
this discovery (October 2011).
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Quasicrystals-3

• Regular tetrahedra are the first example known of single
hard bodies which (apparently) exhibit a quasicrystalline
phase.

• Note: Ideal dodecagonal quasicrystalline symmetry is
aperiodic in two directions, periodic in third direction.
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Glotzer Group Quasicrystal
Packing:Di↵raction
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Y. Kallus, V. Elser and
S. Gravel (arXiv 9 Dec. 2009)

• Yoav Kallus is a physics grad student at Cornell in the
group of Veit Elser, where Simon Gravel is postdoc (as of
2009).

• They find a simple crystallographic packing having only four
tetrahedra in the unit cell. These tetrahedra correspond to
a dimer of two tetrahedra glued face to face, and a
reflection of this dimer. The crystallographic symmetry
group acts transitively on the dimers.

They achieve a new “world record” density of

� =
100

117
⇡ 0.854700...

51



The Glotzer Group @ University of Michigan

Triangular Bipyramid (Dimer) Packings
Kallus, Elser, Gravel 2009

Kallus, Elser, Gravel
arXiv:0910.5226

DCG 2010
ϕ = 0.854700... 52



Flashback: Double Lattice Packings
(Kuperberg2 (1990))

• The Kallus-Elser-Gravel packing uses idea of G. Kuperberg
and W. Kuperberg, that double lattice packings, using a
body P with its reflected body �P , yield good packings.

• The Kuperbergs used their idea (Disc. Comp. Geom 5
(1990), 389-397) in 2-D to show that every convex body S
in the plane has a general packing density of at least

�(S) �
p
3

2
= 0.8660....

(Comparison: a circular disk C packs with density
�(C) = ⇡p

12
⇡ 0.9069....)
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Flashback-2: Ulam Problem in Two
Dimensions

• Mini-Ulam Problem: What is the hardest convex body to
pack in two dimensions?

• Answer: Definitely NOT a circular disk, whose packing
density is ⇡p

12
⇡ 0.9069

• Reinhardt (1934) found a “smoothed octagon” O that has
smaller packing density

�(O) =
8�

p
32� log 2p
8� 1

⇡ 0.902414.
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Flashback-3: Ulam Problem in Two
Dimensions

• Reinhardt (1934) conjectured the “smoothed octagon” to
be optimal.

• Proving the Reinhardt body is “hardest to pack” seems
complicated! (There is some evidence for its optimality, in
a variational approach to the problem put forward by Tom
Hales (2011).)

• Best lower bound for general bodies is strictly bigger than
Kuperberg bound 0.8660.... Current best lower bound for
centrally symmetric convex bodies is 0.892656.. (Tammela
(1970)).
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Torquato and Jiao Return
(arXiv 21 Dec 2009)

• S. Torquato and Y. Jiao, Analytical Constructions of a
family of dense tetrahedron packings and the role of
symmetry, eprint: arXiv:0912.4210 21 Dec. 2009

(Condensed Matter).

• Torquato and Jiao find a two-parameter family of
deformations of the Kallus-Elser-Gravel packing. They
optimize over their family and obtain a new “world-record”
packing with density

� =
12250

14319
⇡ 0.855506...
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Chen, Engel and Glotzer
(arXiv 5 January 2010)

• Elizabeth R. Chen, Michael Engel, and Sharon C. Glotzer,
Dense crystalline dimer packings of regular tetrahedra,
Disc. Comp. Geom 44 2010, 253–280.
eprint arXiv:1001.0586 5 January 2010 (Condensed Matter)

• They find a three-parameter family of deformations of the
Kallus-Elser-Gravel packing. They argue that that 3 is the
maximum dimensional set of deformations. They optimize
and obtain a new“world-record” packing with density

4000

4671
⇡ 0.856347...

This is the current champion packing!

57



The Glotzer Group @ University of Michigan

Triangular Bipyramid (Dimer) Packings

Kallus, Elser, Gravel
arXiv:0910.5226
ϕ = 0.854700...

Torquato & Jiao
arXiv:0912.4210
ϕ = 0.855506...

Chen, Engel & Glotzer
arXiv:1001.0586
ϕ = 0.856347...

All analytical constructions

Simulations @ small N find densest (Chen dimer) packing

Most general:

Monoclinic

Triclinic 58



Upper Bound for Tetrahedral Packing
Density

• Know abstractly that the maximal packing density �(T ) of
regular tetrahedra is some constant c0 < 1.

• Problem. Obtain a numerical upper bound for this quantity.

• Y.Kallus, V. Elser and S. Gravel (Disc. Comp. Geom.
2011) obtained such a bound: It is less than 1 by a
minuscule amount:

2.6⇥ (10)�25.
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Summary-1

• In low-dimensional discrete geometry, mistakes eventually
get uncovered and corrected.

• Large-scale computational work is valuable and useful in
making progress in this area.

• The current “world record” packing may be a viable
candidate for a “densest packing of regular tetrahedra.”

• The progress on this problem justifies Hilbert’s remark
“sometimes useful in chemistry and physics,” and now also
in materials science!
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Recent Progress

• Materials Science. Glotzer group further analyzes phase
diagram of packing tetrahedra, studied sensitivity to
changing shape slightly.

• Mathematical Physics. Understanding quasicrystalline phase
transitions in simple models (C. Radin, U. Texas)

• (Soft) Condensed Matter Physics. General packing search
algorithms (Elser, Kallus, Gravel), (Torquato et al)

• Metric Geometry. Study of densest packings of other
shapes: Regular octahedra, archimedean solids.
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Thank you for your attention!
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