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Topics Covered

• Part I. Ternary expansions of powers of 2 and a 3-Adic
generalization

• Part II. Intersections of translates of 3-adic Cantor sets
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Part I. Erdős Ternary Digit Problem and
3-adic generalization

• Problem. Let (M)3 denote the integer M written in ternary
(base 3). How many powers 2n of 2 omit the digit 2 in
their ternary expansion?

•
Examples Non-examples
(20)3 = 1 (23)3 = 22
(22)3 = 11 (24)3 = 121
(28)3 = 100111 (26)3 = 2101

• Conjecture. (Erdős 1979) There are no solutions for n � 9.
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3-Adic Dynamical System-1

• Approach: View the set {1,2,4, ...} as a forward orbit of the
discrete dynamical system T : x 7! 2x.

• The forward orbit O(x0) of x0 is

O(x0) := {x0, T (x0), T
(2)(x0) = T (T (x0), · · · }

Thus: O(1) = {1,2,4,8, · · · }.

• Generalized Problem. Study the forward orbit O(�) of an
arbitrary initial starting value �. For how many � can it
have infinite intersection with the “Cantor set”
(omit the digit 2)? View orbit inside the 3-adic integers.
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3-adic Integer Dynamical System-2

• The integers Z are contained in the set of 3-adic integers
Z3 (and are dense in it.)

• The 3-adic integers Z3 are the set of all formal expansions

� = d0 + d1 · 3 + d2 · 32 + ...

where di 2 {0,1,2}. Call this the 3-adic expansion of �.

• Now view {1,2,4,8, ...} as a subset of the 3-adic integers,
still a forward orbit of x 7! 2x.
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3-adic Integer Dynamical System-3

• The 3-adic Cantor set ⌃ is the set of all 3-adic integers
whose 3-adic expansion omits the digit 2. The Hausdor↵
dimension of ⌃ is log3 2 ⇡ 0.63092.

• Generalization: Consider the set of all � 2 Z3 for which the
forward orbit

O(�) = {�,2�,4�, · · · ,2n�, · · · }
intersects ⌃ infinitely many times. Call this the
3-adic exceptional set and denote it E⇤1(Z3).
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3-adic Integer Dynamical System-4

• The Erdös Conjecture asserts that � = 1 is not in the
exceptional set.

• This problem seems hopelessly hard. Instead will consider
question:

• The 3-adic exceptional set E⇤1(Z3) ought to be very small.
Conceivably it is just one point {0}. Can one show it is
“small”?
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3-adic Integer Dynamical System-5

• Exceptional Set Conjecture.
The 3-adic exceptional set E⇤1(Z3) has
Hausdor↵ dimension 0.

• This conjecture may be approachable, due to nice symbolic
dynamics!
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3-adic Integer Dynamical System-6

Can approach the Exceptional Set Conjecture by nested
intervals.

• Define Level k exceptional set E⇤k(Z3) to be all � with at
least k distinct powers of 2 with �2k in the Cantor set.

• Level k exceptional sets are nested by increasing k:

E⇤1(Z3) ⇢ · · · ⇢ E⇤3(Z3) ⇢ E⇤2(Z3) ⇢ E⇤1(Z3)

• Goal: Study the Hausdor↵ dimension of E⇤k(Z3); it gives an
upper bound on dimH(E⇤(Z3)).
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3-adic Integer Dynamical System-7

In 2009, one author (J. L.) showed:

• Theorem. (Upper Bounds on Hausdor↵ Dimension)

(1). dimH(E⇤1(Z3)) = ↵0 ⇡ 0.63092.

(2). dimH(E⇤2(Z3))  0.5.

• Remark. There is also a lower bound:

dimH(E⇤2(Z3)) � log3(
1 +

p
5

2
) ⇡ 0.438
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3-adic Integer Dynamical System-8

• Upper Bound Theorem: Proof Idea:
The set E⇤k(Z3) is a countable union of closed sets

E⇤k(Z3) =
[

0r1<r2<...<rk

C(2r1,2r2, ...,2rk),

with: C(2r1,2r2, ...,2rk) := {� : (2ri�)3 omits digit 2}.

• We have

dimH(E⇤k(Z3)) = sup{dimH (C(2r1,2r2, ...,2rk))}

• Proof for k = 1,2: obtain upper bounds on Hausdor↵
dimension of all the sets C(2r1,2r2, ...,2rk).
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3-adic Integer Dynamical System-9

• Question. Could it be true that

lim
k!1

dimH(E⇤k(Z3)) = 0?

• If so, this would imply that the complete exceptional set
E⇤(Z3) has Hausdor↵ dimension 0.
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Part III. Intersections of Translates of
3-adic Cantor sets

• New Problem. For positive integers r1 < r2 < · · · < rk set

C(2r1,2r2, ...,2rk) := {� : (2ri�)3 omits the digit 2}
Determine the Hausdor↵ dimension of C(2r1,2r2, ...,2rk).

• More generally, allow arbitrary positive integers
N1, N2, ..., Nk. Determine the Hausdor↵ dimension of:

C(N1, N2, · · · , Nk) := {� : all (Ni�)3 omit the digit 2}
= N1⌃ \N2⌃ \ · · · \Nk⌃.
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Discovery and Experimentation

• The Hausdor↵ dimension of sets C(N1, N2, ..., Nk) can in
principle be determined exactly. (Structure of these sets
describable by finite automata.)

• Key Fact. Multiplication by integer N of 3-adic set X

described by a finite automaton gives set NX describable
by another finite automaton.

• It turns out that even the special cases C(1, N) already have
a complicated and intricate structure!
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Basic Structure of the answer-1

• The 3-adic expansions of allowed members � of sets
C(N1, N2, ..., Nk) are describable dynamically as having the
symbolic dynamics of a sofic shift, given as the set of
allowable infinite paths in a suitable labelled graph (finite
automaton). Actually we need a slight generalization of
sofic shift, which we call path set.

• The sequence of allowable paths is characterized by the
topological entropy of the dynamical system. This is the
growth rate ⇢ of the number of allowed label sequences of
length n. It is the maximal (Perron-Frobenius) eigenvalue ⇢
of the weight matrix of the labelled graph, a non-negative
integer matrix. (Adler-Konheim-McAndrew (1965))
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Basic Structure of the answer-2

• The Hausdor↵ dimension of the associated ”fractal set”
C(N1, ..., Nk) is given as the base 3 logarithm of the
topological entropy of the dynamical system.

• This is log3 ⇢ where ⇢ is the Perron-Frobenius eigenvalue of
the symbol weight matrix of the labelled graph.

• Remark. These sets C(N1, ..., Nk) are 3-adic analogs of
“self-similar fractals” in sense of Hutchinson (1981), as
extended in Mauldin-Williams (1985). Such a set is a fixed
point of a system of set-valued functional equations.
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Basic Structure of the answer-3

Some reductions to the problem:

• If some Nj ⌘ 2 (mod 3) occurs, then Hausdor↵ dimension
C(N1, N2, ..., Nk) will be 0.

• If one replaces Nj with 3kNj then the Hausdor↵ dimension
does not change.

• Can therefore reduce to case: All Nj ⌘ 1 (mod 3).
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Graph: C(1, N), N = 22 = 4
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Associated Matrix N = 4

• Weight matrix is:

state 0 state 1

state 0 [ 1 1 ]
state 1 [ 0 1 ]

• This is Fibonacci shift. Perron-Frobenius eigenvalue is:

⇢ =
1 +

p
5

2
= 1.6180...

• Hausdor↵ Dimension = log3 ⇢ ⇡ 0.438.
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Graph: C(1, N), N = (21)3 = 7

0

12

10

0

1

1

1 0

0

20



Associated Matrix N = 7

• Weight matrix is:

state 0 state 2 state 10 state 1

state 0 [ 1 1 0 0 ]
state 2 [ 0 0 1 0 ]
state 10 [ 0 0 1 1 ]
state 1 [ 1 0 0 0 ]

• Perron-Frobenius eigenvalue is : ⇢ = 1+
p

5
2 = 1.6180...

• Hausdor↵ Dimension = log3 ⇢ ⇡ 0.438.
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Graphs for N = (10k1)3

• Theorem. (“Fibonacci Graphs” Infinite Family)
For N = (10k1)3, (i.e. N = 3k+1 + 1)

dimH(C(1, N)) := dimH(⌃ \ 1

N
⌃) = log3(

1 +
p

5

2
) ⇡ 0.438

• Remark. The finite graph associated to N = 3k+1 + 1
has 2k states and is strongly connected.

• The eigenvector for the maximal eigenvalue
(Perron-Frobenius eigenvalue) of the adjacency matrix of
this graph has an explicit self-similar structure, and has all
entries in Q(

p
5). (Many other eigenvalues.)

22



Graphs for family N = (20k1)3

• This family has more complicated graphs.

• Computations. Here N = 2 · 3k+1 + 1.
For 1  k  7, the graphs have increasing numbers of
strongly connected components, which are nested.

• There is an outer component with about k states, whose
Hausdor↵ dimension goes rapidly to 0 as k increases.

• The Hausdor↵ dimension of the inner component(s) start
small but eventually exceed that of the outer component.
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A Bad Case: N = 139 = (12011)3

• This value N=139 is a value of N ⌘ 1 (mod 3) where the
associated set has Hausdor↵ dimension 0.

• The corresponding graph has 5 strongly connected
components; each one separately has Perron-Frobenius
eigenvalue 1, giving Hausdor↵ dimension 0!
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Lower Bound for Hausdor↵ Dimension

• Theorem. (Lower Bound Theorem) For any any k � 1
there exist

N1 < N2 < · · · < Nk, all Ni ⌘ 1 (mod 3)

such that

dimH(C(N1, N2, ..., Nk)) := dimH(
k\

i=1

1

Ni
⌃) � 0.35.

Thus: the maximal Hausdor↵ dimension of intersection of
translates is uniformly bounded away from zero.

• Proof. Take suitable Ni of the form 3ki + 1 for various large
ki. One can show the Hausdor↵ dimension of intersection
remains large (There is large overlap of symbolic dynamics).
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Conclusions: Part II

(1) The graphs for C(1, N) exhibit a complicated structure
depending on an irregular way on the ternary digits of N .

(2) Approach to prove Hausdor↵ dimension 0 by nested sets
cannot be done if one generalizes it from powers of 2 to all
N ⌘ 1 (mod 3). (Lower Bound Theorem).
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Thank you for your attention!
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