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Part I. Erd0s Ternary Digit Problem and
3-adic generalization

e Problem. Let (M)3 denote the integer M written in ternary
(base 3). How many powers 2" of 2 omit the digit 2 in
their ternary expansion?

Examples Non-examples
, @93 =1 (23)3 =22

(22); =11 (2%)3 =121

(28)3 = 100111 (20); = 2101

e Conjecture. (Erd&s 1979) There are no solutions for n > 9.
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3-Adic Dynamical System-1

e Approach: View the set {1,2,4,...} as a forward orbit of the
discrete dynamical system T' . z — 2.

e The forward orbit O(xzg) of zg is

O(xq) := {wo, T(x0), T? (zg) = T(T(x0),-- -}
Thus: 0(1) =411,2,4,8,---}.

e Generalized Problem. Study the forward orbit O(\) of an
arbitrary initial starting value A. For how many X\ can it
have infinite intersection with the “Cantor set”

(omit the digit 2)7 View orbit inside the 3-adic integers.
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3-adic Integer Dynamical System-2

e The integers Z are contained in the set of 3-adic integers
Z3 (and are dense in it.)

e T he 3-adic integers Z3 are the set of all formal expansions

B=dyg+dy-34+d>-3°+..
where d; € {0,1,2}. Call this the 3-adic expansion of 3.

e Now view {1,2,4,8,...} as a subset of the 3-adic integers,
still a forward orbit of z — 2x.



3-adic Integer Dynamical System-3

e [ he 3-adic Cantor set > is the set of all 3-adic integers
whose 3-adic expansion omits the digit 2. The Hausdorff
dimension of > is logz2 ~ 0.63092.

e Generalization: Consider the set of all A € Z3 for which the
forward orbit

O(A) :{A72>‘74>‘7 ,27?,)\’}

intersects > infinitely many times. Call this the
3-adic exceptional set and denote it &% (Z3).



3-adic Integer Dynamical System-4

e [ he Erdos Conjecture asserts that A = 1 is not in the
exceptional set.

e [ his problem seems hopelessly hard. Instead will consider
question:

e The 3-adic exceptional set &% (Z3) ought to be very small.
Conceivably it is just one point {0}. Can one show it is
“small’ 7



3-adic Integer Dynamical System-5

e EXxceptional Set Conjecture.
The 3-adic exceptional set £% (Z3) has
Hausdorff dimension O.

e [ his conjecture may be approachable, due to nice symbolic
dynamics!



3-adic Integer Dynamical System-6

Can approach the Exceptional Set Conjecture by nested
intervals.

o Define Level k exceptional set £ (Z3) to be all A with at
least k distinct powers of 2 with A2k in the Cantor set.

e Level k exceptional sets are nested by increasing k:

Ex(Z3) C -+ C E3(Z3) C E5(Z3) C E1(Z3)

e Goal: Study the Hausdorff dimension of & (Z3); it gives an
upper bound on dimygy(E*(Z3)).



3-adic Integer Dynamical System-7
In 2009, one author (J. L.) showed:

e Theorem. (Upper Bounds on Hausdorff Dimension)

(1).  dimp(E5(Z3)) = ag ~ 0.63092.

(2). dim g (E5(Z3)) < 0.5.

e Remark. There is also a lower bound:

dzmH(é’;(Zg,)) > Iog3(1 +2\/§) ~ 0.438
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3-adic Integer Dynamical System-8

e Upper Bound Theorem: Proof Idea:
The set £/ (Z3) is a countable union of closed sets

Ei(Z3) = g C(2"1,2"2 ... 2"k),
0<r1<ro<...<rg

with:  C(2",2"2, ... 2") ;= {\: (2"i)\)3 omits digit 2}.

e \We have

dimpg(E;(Z3)) = sup{dimpg (C(2"1,2"2, ..., 2"k))}

e Proof for k = 1,2: obtain upper bounds on Hausdorff
dimension of all the sets C(2"1,2™2 ... 2"k),

11



3-adic Integer Dynamical System-9

e Question. Could it be true that

im dim g (£} (Z3)) = 07
k— 00

e If so, this would imply that the complete exceptional set
E*(Z3) has Hausdorff dimension 0.
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Part III. Intersections of Translates of
3-adic Cantor sets

e New Problem. For positive integers r1 <ro < --- < rp set
c(2m,2m2 [ 2"k) :={X: (2"\)3 omits the digit 2}

Determine the Hausdorff dimension of C(2"1,2"2, ..., 27k),

e More generally, allow arbitrary positive integers
N1, No, ..., Ni.. Determine the Hausdorff dimension of:

C(N1i,No,--- ,Nr) = {X:all (IN;A)z omit the digit 2}
= Ni2ZNNox2N---NNp2.
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Discovery and Experimentation

e The Hausdorff dimension of sets C(N1, No, ..., Ni) can in
principle be determined exactly. (Structure of these sets
describable by finite automata.)

e Key Fact. Multiplication by integer N of 3-adic set X
described by a finite automaton gives set NX describable
by another finite automaton.

e It turns out that even the special cases C(1,N) already have
a complicated and intricate structure!
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Basic Structure of the answer-1

e [ he 3-adic expansions of allowed members A\ of sets
C(N1, No,...,N;) are describable dynamically as having the
symbolic dynamics of a sofic shift, given as the set of
allowable infinite paths in a suitable labelled graph (finite
automaton). Actually we need a slight generalization of
sofic shift, which we call path set.

e [ he sequence of allowable paths is characterized by the
topological entropy of the dynamical system. This is the
growth rate p of the number of allowed label sequences of
length n. It is the maximal (Perron-Frobenius) eigenvalue p
of the weight matrix of the labelled graph, a non-negative
integer matrix. (Adler-Konheim-McAndrew (1965))
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Basic Structure of the answer-2

e T he Hausdorff dimension of the associated " fractal set”
C(N1,..., Nr) is given as the base 3 logarithm of the
topological entropy of the dynamical system.

e This is logz p where p is the Perron-Frobenius eigenvalue of
the symbol weight matrix of the labelled graph.

e Remark. These sets C(Ny,..., N;) are 3-adic analogs of
N " in sense of Hutchinson (1981), as
extended in Mauldin-Williams (1985). Such a set is a fixed
point of a system of set-valued functional equations.
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Basic Structure of the answer-3

Some reductions to the problem:

o If some N; =2 (mod 3) occurs, then Hausdorff dimension
C(Nl,NQ,...,Nk) will be O.

e If one replaces Nj with 3kNj then the Hausdorff dimension
does not change.

e Can therefore reduce to case: All N; =1 (mod 3).
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Graph: C(1,N), N=2°=4
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Associated Matrix N = 4

e \Weight matrix is:
state O state 1

state 0 | 1 1 ]
state 1 | 0 1 ]

e T his is Fibonacci shift. Perron-Frobenius eigenvalue is:

_1++5

P = 1.6180...

e Hausdorff Dimension = logz p =~ 0.438.
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Graph: C(1,N), N =
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Associated Matrix N =7

e \Weight matrix is:

state O state 2 state 10 state 1

state O 1 1 0
state 2 0 0 1
state 10 0 O 1
state 1 1 0 0

e Perron-Frobenius eigenvalue is . p = 1+2\/§

e Hausdorff Dimension = logz p =~ 0.438.

O OO

= 1.6130...
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Graphs for N = (10%F1)5

e Theorem. (“Fibonacci Graphs” Infinite Family)
For N = (10F1)3, (i.e. N =3FT1 4 1)

1++5
2

1
dimg(C(1,N)) :=dimg(X N NZ) = logs( ) ~ 0.438

e Remark. The finite graph associated to N = 3kt1 41
has 2% states and is strongly connected.

e [ he eigenvector for the maximal eigenvalue
(Perron-Frobenius eigenvalue) of the adjacency matrix of
this graph has an explicit self-similar structure, and has all
entries in Q(v/5). (Many other eigenvalues.)
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Graphs for family N = (20%F1)5

e [ his family has more complicated graphs.

e Computations. Here N =2 .3kt1 4 1.
For 1 < k <7, the graphs have increasing numbers of
strongly connected components, which are nested.

e [ here is an outer component with about k£ states, whose
Hausdorff dimension goes rapidly to O as k increases.

e The Hausdorff dimension of the inner component(s) start
small but eventually exceed that of the outer component.
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A Bad Case: N =139 = (12011)3

e This value N=139 is a value of N =1 (mod 3) where the
associated set has Hausdorff dimension O.

e [ he corresponding graph has 5 strongly connected
components; each one separately has Perron-Frobenius
eigenvalue 1, giving Hausdorff dimension 0!

24



Lower Bound for Hausdorff Dimension

e Theorem. (Lower Bound Theorem) For any any £ > 1
there exist

Ni <Ny <---< N, all Ny=1(mod 3)
such that

k
1
dimp (C(N1, No, ..., Ng)) = dimg( () ﬁZ) > 0.35.
i=1*"1
Thus: the maximal Hausdorff dimension of intersection of
translates is uniformly bounded away from zero.

e Proof. Take suitable N, of the form 3% 4 1 for various large
k;. One can show the Hausdorff dimension of intersection
remains large (There is large overlap of symbolic dynamics).
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Conclusions: Part II

(1) The graphs for C(1, N) exhibit a complicated structure
depending on an irregular way on the ternary digits of N.

(2) Approach to prove Hausdorff dimension O by nested sets

cannot be done if one generalizes it from powers of 2 to all
N =1 (mod3). (Lower Bound Theorem).
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Thank you for your attention!
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