Intersections of Multiplicative Translates of 3-Adic Cantor Sets

Will Abram and Jeff Lagarias

University of Michigan

JMM, San Diego AMS-SIAM Special Session on Mathematics of Computation: Algebra and Number Theory January 11, 2013

Topics Covered

- Part I. Ternary expansions of powers of 2 and a 3-Adic generalization
- Part II. Intersections of translates of 3-adic Cantor sets

References

• Part III reports:

W. Abram and J. C. Lagarias, Path sets and their symbolic dynamics, arXiv:1207.5004

W. Abram and J. C. Lagarias, *p*-adic path set fractals and arithmetic, arXiv:1210.2478

W. Abram and J. C. Lagarias, Intersections of Multiplicative Translates of 3-adic Cantor sets, in preparation.

 Work of J.C.Lagarias supported by NSF grant DMS-1101373. Work by W. Abram supported by an NSF Graduate Fellowship.

Part I. Erdős Ternary Digit Problem and 3-adic generalization

 Problem. Let (M)₃ denote the integer M written in ternary (base 3). How many powers 2ⁿ of 2 omit the digit 2 in their ternary expansion?

• Conjecture. (Erdős 1979) There are no solutions for $n \ge 9$.

3-Adic Dynamical System-1

- Approach: View the set $\{1, 2, 4, ...\}$ as a forward orbit of the discrete dynamical system $T : x \mapsto 2x$.
- The forward orbit $\mathcal{O}(x_0)$ of x_0 is $\mathcal{O}(x_0) := \{x_0, T(x_0), T^{(2)}(x_0) = T(T(x_0), \cdots\}$

Thus: $O(1) = \{1, 2, 4, 8, \cdots\}.$

Generalized Problem. Study the forward orbit O(λ) of an arbitrary initial starting value λ. For how many λ can it have infinite intersection with the "Cantor set" (omit the digit 2)? View orbit inside the 3-adic integers.

- The integers \mathbb{Z} are contained in the set of 3-adic integers \mathbb{Z}_3 (and are dense in it.)
- The 3-adic integers \mathbb{Z}_3 are the set of all formal expansions

$$\beta = d_0 + d_1 \cdot 3 + d_2 \cdot 3^2 + \dots$$

where $d_i \in \{0, 1, 2\}$. Call this the 3-adic expansion of β .

• Now view $\{1, 2, 4, 8, ...\}$ as a subset of the 3-adic integers, still a forward orbit of $x \mapsto 2x$.

- The 3-adic Cantor set Σ is the set of all 3-adic integers whose 3-adic expansion omits the digit 2. The Hausdorff dimension of Σ is $\log_3 2 \approx 0.63092$.
- Generalization: Consider the set of all $\lambda \in \mathbb{Z}_3$ for which the forward orbit

$$\mathcal{O}(\lambda) = \{\lambda, 2\lambda, 4\lambda, \cdots, 2^n\lambda, \cdots\}$$

intersects Σ infinitely many times. Call this the 3-adic exceptional set and denote it $\mathcal{E}^*_{\infty}(\mathbb{Z}_3)$.

- The Erdös Conjecture asserts that $\lambda = 1$ is not in the exceptional set.
- This problem seems hopelessly hard. Instead will consider question:
- The 3-adic exceptional set E^{*}_∞(Z₃) ought to be very small.
 Conceivably it is just one point {0}. Can one show it is "small"?

• Exceptional Set Conjecture.

The 3-adic exceptional set $\mathcal{E}^*_{\infty}(\mathbb{Z}_3)$ has Hausdorff dimension 0.

• This conjecture may be approachable, due to nice symbolic dynamics!

Can approach the Exceptional Set Conjecture by nested intervals.

- Define Level k exceptional set $\mathcal{E}_k^*(\mathbb{Z}_3)$ to be all λ with at least k distinct powers of 2 with $\lambda 2^k$ in the Cantor set.
- Level k exceptional sets are nested by increasing k: $\mathcal{E}^*_{\infty}(\mathbb{Z}_3) \subset \cdots \subset \mathcal{E}^*_3(\mathbb{Z}_3) \subset \mathcal{E}^*_2(\mathbb{Z}_3) \subset \mathcal{E}^*_1(\mathbb{Z}_3)$
- Goal: Study the Hausdorff dimension of $\mathcal{E}_k^*(\mathbb{Z}_3)$; it gives an upper bound on $\dim_H(\mathcal{E}^*(\mathbb{Z}_3))$.

In 2009, one author (J. L.) showed:

• Theorem. (Upper Bounds on Hausdorff Dimension) (1). $dim_H(\mathcal{E}_1^*(\mathbb{Z}_3)) = \alpha_0 \approx 0.63092.$

- (2). $dim_H(\mathcal{E}_2^*(\mathbb{Z}_3)) \leq 0.5.$
- Remark. There is also a lower bound:

$$dim_{H}(\mathcal{E}_{2}^{*}(\mathbb{Z}_{3})) \geq \log_{3}(\frac{1+\sqrt{5}}{2}) \approx 0.438$$

• Upper Bound Theorem: Proof Idea: The set $\mathcal{E}_k^*(\mathbb{Z}_3)$ is a countable union of closed sets $\mathcal{E}_k^*(\mathbb{Z}_3) = \bigcup_{\substack{0 \le r_1 < r_2 < \ldots < r_k}} \mathcal{C}(2^{r_1}, 2^{r_2}, \ldots, 2^{r_k}),$ with: $\mathcal{C}(2^{r_1}, 2^{r_2}, \ldots, 2^{r_k}) := \{\lambda : (2^{r_i}\lambda)_2 \text{ omits digit } 2\}$

with: $\mathcal{C}(2^{r_1}, 2^{r_2}, ..., 2^{r_k}) := \{\lambda : (2^{r_i}\lambda)_3 \text{ omits digit } 2\}.$

• We have

 $dim_H(\mathcal{E}_k^*(\mathbb{Z}_3)) = \sup\{dim_H(\mathcal{C}(2^{r_1}, 2^{r_2}, ..., 2^{r_k}))\}$

• Proof for k = 1, 2: obtain upper bounds on Hausdorff dimension of all the sets $C(2^{r_1}, 2^{r_2}, ..., 2^{r_k})$.

• Question. Could it be true that

 $\lim_{k\to\infty} \dim_H(\mathcal{E}_k^*(\mathbb{Z}_3)) = 0?$

• If so, this would imply that the complete exceptional set $\mathcal{E}^*(\mathbb{Z}_3)$ has Hausdorff dimension 0.

Part III. Intersections of Translates of 3-adic Cantor sets

- New Problem. For positive integers $r_1 < r_2 < \cdots < r_k$ set $C(2^{r_1}, 2^{r_2}, ..., 2^{r_k}) := \{\lambda : (2^{r_i}\lambda)_3 \text{ omits the digit } 2\}$ Determine the Hausdorff dimension of $C(2^{r_1}, 2^{r_2}, ..., 2^{r_k})$.
- More generally, allow arbitrary positive integers $N_1, N_2, ..., N_k$. Determine the Hausdorff dimension of:

Discovery and Experimentation

- The Hausdorff dimension of sets $\mathcal{C}(N_1, N_2, ..., N_k)$ can in principle be determined exactly. (Structure of these sets describable by finite automata.)
- Key Fact. Multiplication by integer N of 3-adic set X described by a finite automaton gives set NX describable by another finite automaton.
- It turns out that even the special cases C(1, N) already have a complicated and intricate structure!

Basic Structure of the answer-1

- The 3-adic expansions of allowed members λ of sets $\mathcal{C}(N_1, N_2, ..., N_k)$ are describable dynamically as having the symbolic dynamics of a sofic shift, given as the set of allowable infinite paths in a suitable labelled graph (finite automaton). Actually we need a slight generalization of sofic shift, which we call path set.
- The sequence of allowable paths is characterized by the topological entropy of the dynamical system. This is the growth rate ρ of the number of allowed label sequences of length n. It is the maximal (Perron-Frobenius) eigenvalue ρ of the weight matrix of the labelled graph, a non-negative integer matrix. (Adler-Konheim-McAndrew (1965))

Basic Structure of the answer-2

- The Hausdorff dimension of the associated "fractal set" $C(N_1, ..., N_k)$ is given as the base 3 logarithm of the topological entropy of the dynamical system.
- This is $\log_3 \rho$ where ρ is the Perron-Frobenius eigenvalue of the symbol weight matrix of the labelled graph.
- Remark. These sets $C(N_1, ..., N_k)$ are 3-adic analogs of "self-similar fractals" in sense of Hutchinson (1981), as extended in Mauldin-Williams (1985). Such a set is a fixed point of a system of set-valued functional equations.

Basic Structure of the answer-3

Some reductions to the problem:

- If some $N_j \equiv 2 \pmod{3}$ occurs, then Hausdorff dimension $\mathcal{C}(N_1, N_2, ..., N_k)$ will be 0.
- If one replaces N_j with $3^k N_j$ then the Hausdorff dimension does not change.
- Can therefore reduce to case: All $N_j \equiv 1 \pmod{3}$.

Associated Matrix N = 4

• Weight matrix is:

state 0 state 1

state 0	[1	1]
state 1	[0	1]

• This is Fibonacci shift. Perron-Frobenius eigenvalue is:

$$\rho = \frac{1 + \sqrt{5}}{2} = 1.6180...$$

• Hausdorff Dimension = $\log_3 \rho \approx 0.438$.

Graph: C(1, N), $N = (21)_3 = 7$

Associated Matrix N = 7

• Weight matrix is:

 state 0
 state 2
 state 10
 state 1

 state 0
 [
 1
 1
 0
 0
]

 state 2
 [
 0
 0
 1
 0
]

 state 10
 [
 0
 0
 1
 1
]

 state 10
 [
 0
 0
 1
 1
]

 state 1
 [
 1
 0
 0
 0
]

- Perron-Frobenius eigenvalue is : $\rho = \frac{1+\sqrt{5}}{2} = 1.6180...$
- Hausdorff Dimension = $\log_3 \rho \approx 0.438$.

Graphs for $N = (10^k 1)_3$

• Theorem. ("Fibonacci Graphs" Infinite Family) For $N = (10^k 1)_3$, (i.e. $N = 3^{k+1} + 1$)

$$dim_H(\mathcal{C}(1,N)) := dim_H(\Sigma \cap \frac{1}{N}\Sigma) = \log_3(\frac{1+\sqrt{5}}{2}) \approx 0.438$$

- Remark. The finite graph associated to $N = 3^{k+1} + 1$ has 2^k states and is strongly connected.
- The eigenvector for the maximal eigenvalue (Perron-Frobenius eigenvalue) of the adjacency matrix of this graph has an explicit self-similar structure, and has all entries in $\mathbb{Q}(\sqrt{5})$. (Many other eigenvalues.)

Graphs for family $N = (20^k 1)_3$

- This family has more complicated graphs.
- Computations. Here N = 2 ⋅ 3^{k+1} + 1.
 For 1 ≤ k ≤ 7, the graphs have increasing numbers of strongly connected components, which are nested.
- There is an outer component with about k states, whose Hausdorff dimension goes rapidly to 0 as k increases.
- The Hausdorff dimension of the inner component(s) start small but eventually exceed that of the outer component.

A Bad Case: $N = 139 = (12011)_3$

- This value N=139 is a value of $N \equiv 1 \pmod{3}$ where the associated set has Hausdorff dimension 0.
- The corresponding graph has 5 strongly connected components; each one separately has Perron-Frobenius eigenvalue 1, giving Hausdorff dimension 0!

Lower Bound for Hausdorff Dimension

• Theorem. (Lower Bound Theorem) For any any $k \ge 1$ there exist

 $N_1 < N_2 < \dots < N_k$, all $N_i \equiv 1 \pmod{3}$

such that

$$dim_H(\mathcal{C}(N_1, N_2, \dots, N_k)) := dim_H(\bigcap_{i=1}^k \frac{1}{N_i} \Sigma) \ge 0.35.$$

Thus: the maximal Hausdorff dimension of intersection of translates is uniformly bounded away from zero.

• Proof. Take suitable N_i of the form $3^{k_i} + 1$ for various large k_i . One can show the Hausdorff dimension of intersection remains large (There is large overlap of symbolic dynamics).

Conclusions: Part II

(1) The graphs for $\mathcal{C}(1, N)$ exhibit a complicated structure depending on an irregular way on the ternary digits of N.

(2) Approach to prove Hausdorff dimension 0 by nested sets cannot be done if one generalizes it from powers of 2 to all $N \equiv 1 \pmod{3}$. (Lower Bound Theorem).

Thank you for your attention!